Rolling Bearings | Technical Informati | on A7 | Tech.
Info. | |---|-----------|----------------------| | Deep Groove Ball Br | gs. B4 | | | Angular Contact Ball Br | gs. B46 | | | Self-Aligning Ball Br | gs. B76 | | | Cylindrical Roller Br | gs. B84 | | | Tapered Roller Br | gs. B110 | F | | Spherical Roller Br | gs. B182 | | | Thrust Br | gs. B206 | Thrust
Brgs. | | Needle Roller Br | gs. B244 | | | Ball Brg. Un | its B280 | | | Plummer Bloc | ks B304 | | | Cylindrical Roller Brgs. for Sheav | es B326 | Sheaves | | Roll-Neck Brgs. (4-Row
Railway Rolling Stock Brg | R K K K A | Roll Neck
Railway | | Balls and Rolle | ers B346 | O | | Accessories for Rolling Br | gs. B356 | Sleeves | | NSK Products and Appendic | es C1 | Appendices | # **Rolling Bearings** CAT. No. E1102k # Introduction to Revised NSK Rolling Bearing Catalog (CAT.No.E1102k) We want to thank you for your interest in this edition of our Rolling Bearing Catalog. It has been revised with our customers in mind, and we hope it fills your needs. Recently, technology has been advancing at a remarkable pace, and with it has come a host of new products in many fields including computers, office automation, audiovisual equipment, medical equipment, and many others. These striking innovations present a challenge to bearing manufacturers since there are ever increasing demand to offer bearings with higher performance, accuracy, and reliability. Manufacturers of diverse equipment have many different bearing requirements including higher speeds, less torque, less noise and vibration, zero maintenance, survival in harsh environments, integration into units, and many more. This catalog was revised to reflect the growing number of NSK products and certain revisions in JIS and ISO and to better serve our customers. The first part contains general information about rolling bearings to facilitate selection of the most appropriate type. Next supplementary technical information is provided regarding bearing life, load ratings, limiting speeds, handling and mounting, lubrication, etc. Finally, the catalog presents extensive tables containing most bearing numbers and showing dimensions and pertinent design data listed in the order of increasing bore size. Data in the table are given in both the international Unit System (SI) and Engineering Unit System (Gravitational System of Units). We hope this catalog will allow you to select the optimum bearing for your application. However, if assistance is required, please contact NSK, and the company's engineers and computer programs can quickly supply the information you need. NSK ### NSK ### **CONTENTS** | ECHNI | CAL INFORMATION | Pages | |--|--|--| | BEARII
1.1 De: | NGSsign and Classification | A 7
A 7 | | | | | | 3.1 Allo
3.2 Loa
3.3 Per
3.4 Mis
Bea
3.5 Rig
3.6 No
Typ
3.7 Ru
3.8 Mo | owable Bearing Space | A18
A18
A18
A18
A19
A19 | | 4.1 Fix | ed-End and Free-End Bearings | A20 | | SELEC
5.1 Bea
5.1.1 | aring Life
Rolling Fatigue Life and Basic Rating | A24 | | 5.2 Bas
5.2.1
5.2.2 | sic Load Rating and Fatigue Life
Basic Load Rating
Machinery in which Bearings are | A24
A24 | | 5.2.3 | Selection of Bearing Size Based on Basic Load Rating | A25 | | 5.2.5
5.3 Calc
5.3.1
5.3.2
5.3.3 | Rating Correction of Basic Rating Life Culation of Bearing Loads Load Factor Bearing Loads in Belt or Chain Transmission Applications Bearing Loads in Gear Transmission Applications Load Distribution on Bearings | A26
A27
A28
A28
A28
A29
A29 | | | TYPES BEARII 1.1 De 1.2 Ch BEARII 1.1 De 1.2 Ch BEARII SELEC 3.1 All 3.2 Loi 3.3 Pei 3.6 No Tyl 3.7 Ru 3.8 Mc Bei SELEC 4.1 Fix 4.2 Exi SELEC 5.1 1 5.2 Bat 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.3 Calc 5.3.1 5.3.2 5.3.3 | BEARING SELECTION PROCEDURE SELECTION OF BEARING TYPE 3.1 Allowable Bearing Space 3.2 Load Capacity and Bearing Types 3.3 Permissible Speed and Bearing Types 3.4 Misalignment of Inner/Outer Rings and Bearing Types 3.5 Rigidity and Bearing Types 3.6 Noise and Torque of Various Bearing Types 3.7 Running Accuracy and Bearing Types 3.8 Mounting and Dismounting of Various Bearing Types 3.9 Research and Free-End Bearing Search and Fixed-End and Free-End Bearings 3.1 Fixed-End and Free-End Bearings 3.2 Examples of Bearing Arrangements 3.3 Selection OF BEARING SIZE 3.4 Rolling Fatigue Life and Basic Rating Life 3.5 Load Rating and Fatigue Life 3.6 Load Rating and Fatigue Life 3.7 Selection of Bearing Size Based on Basic Load Rating 3.8 Selection of Bearing Size Based on Basic Load Rating 3.9 Selection of Bearing Size Based on Basic Load Rating 3.1 Load Factor 3.2 Bearing Loads in Belt or Chain Transmission Applications 3.3 Bearing Loads in Gear Transmission Applications 3.4 Load Distribution on Bearings | | | | | | Pages | |----|------|----------|--|-------| | | E 4 | Г~. | uivalent Load ······ | | | | | - | | | | | | .1
.2 | | ASI | | | 5.4 | .2 | | | | | | | Contact Ball Bearings and Tapered | A O 1 | | | | 0. | Roller Bearings | A3 I | | | 5.5 | | tic Load Ratings and Static Equivalent | 400 | | | | | ads | | | | 5.5 | | Static Load Ratings | A32 | | | | .2 | | A32 | | | | .3 | | A32 | | | 5.6 | | ximum Permissible Axial Loads for | | | | | Cyl | indrical Roller Bearings | A33 | | | 5.7 | Exa | imples of Bearing Calculations | A34 | | | | | | | | 6 | | | IG SPEED | | | | 6.1 | | rection of Limiting Speed | A37 | | | 6.2 | | niting Speed for Rubber Contact Seals | | | | | for | Ball Bearings | A37 | | | | | | | | 7 | | | ARY DIMENSIONS AND IDENTIFYING | | | | | | RS FOR BEARINGS | A38 | | | 7.1 | Βοι | undary Dimensions and Dimensions of | | | | | | ap Ring Grooves | A38 | | | 7.1 | | Boundary Dimensions | A38 | | | 7.1 | .2 | Dimensions of Snap Ring Grooves | | | | | | and Locating Snap Rings | | | | 7.2 | For | mulation of Bearing Numbers | A54 | | _ | | | | | | 8 | | | G TOLERANCES | | | | 8.1 | Bea | aring Tolerance Standards | A58 | | | 8.2 | Sel | ection of Accuracy Classes | A81 | | _ | | | | | | 9 | | | ID INTERNAL CLEARANCES | | | | | | | | | | | .1 | | A82 | | | 9.1 | | Selection of Fit | | | | 9.1 | | Recommended Fits | | | | | | aring Internal Clearances | A88 | | | 9.2 | .1 | Internal Clearances and Their | | | | | | Standards | A88 | | | 9.2 | .2 | Selection of Bearing Internal | | | | | | Clearances | A94 | | | | | | | | 10 |) PR | ELO |)AD | A96 | | | 10.1 | Pι | urpose of Preload | A96 | | | 10.2 | ۱٩ | reloading Methods | A96 | | | | | Position Preload ····· | | | | 10 | 22 | Constant-Pressure Preload | Δ96 | | | _ | |--|---------| | | Pages | | 10.3 Preload and Rigidity | · A96 | | 10.3.1 Position Preload and Rigidity | · A96 | | 10.3.2 Constant-Pressure Preload and | | | Rigidity | · A97 | | 10.4 Selection of Preloading Method and | | | Amount of Preload | · A97 | | 10.4.1 Comparison of Preloading | | | Methods | | | 10.4.2 Amount of Preload | · A98 | | 11 DESIGN OF SHAFTS AND HOUSINGS | A 1 0 0 | | 11 DESIGN OF SHAFTS AND HOUSINGS | ATUU | | and Housings | ۸100 | | 11.2 Shoulder and Fillet Dimensions | | | 11.3 Bearing Seals | A100 | | 11.3.1 Non-Contact Types Seals | | | 11.3.2 Contact Type Seals | Δ104 | | 11.0.2 Contact Type Ocals | 7104 | | 12 LUBRICATION | A105 | | 12.1 Purposes of Lubrication | | | 12.2 Lubricating Methods ······ | A105 | | 12.2.1 Grease Lubrication | | | 12.2.2 Oil Lubrication | | | 12.3 Lubricants | | | 12.3.1 Lubricating Grease | | | 12.3.2 Lubricating Oil ······ | A112 | | | | | 13 BEARING MATERIALS | A114 | | 13.1 Materials for Bearing Rings and Rolling | | | Elements | | | 13.2 Cage Materials | A115 | | , | | | 14 BEARING HANDLING | A116 | | 14.1 Precautions for Proper Handling of | | | Bearings | | | 14.2 Mounting | A116 | | 14.2.1 Mounting of Bearings with | | | Cylindrical Bores | A116 | | 14.2.2 Mounting of Bearings with Tapered | | | Bores ····· | | | 14.3 Operation Inspection | A118 | | 14.4 Dismounting | | | 14.4.1 Dismounting of Outer Rings | A121 | | 14.4.2 Dismounting of Bearings with | | | Cylindrical Bores | A121 | | 14.4.3 Dismounting of Bearings with | | | Tapered Bores | A122 | | 14.5 Inspection of Bearings | | | 14.5.1 Bearing Cleaning | A123 | | 14.5.2 Inspection and Evaluation of | | | Bearings | A123 | | | | Pages | |-------|--|--------------| | | Maintenance and Inspection | A124 | | 14.6. | 1 Detecting and Correcting
Irregularities | Λ19 <i>1</i> | | 14.6. | 2 Bearing Failures and | A124 | | | Measures | A124 | | 5 TEC |
HNICAL DATA | A126 | | | | | | 15.1 | Axial Displacement of Bearings | | | 15.2 | Fits | A130 | | 15.3 | Radial and Axial Internal Clearances | A132 | | 15.4 | Preload and Starting Torque | A134 | | 15.5 | Coefficients of Dynamic Friction and | | | | Other Bearing Data | A136 | | 15.6 | Brands and Properties of Lubricating | | | | Greases | A138 | | | | | | | | | **CONTENTS** B2 # INTRODUCTION OF NSK PRODUCTS-APPENDICES **BEARING TABLES** | CONTENTS - | | С. | l | |--------------|---------------------------------------|-----------------|---| | Photos of NS | SK Products | C 2 |) | | Appendix 1 | Conversion from SI (International | | | | | Units) System | | | | Appendix 2 | N-kgf Conversion Table | C10 |) | | Appendix 3 | kg-lb Conversion Table | C1 ⁻ | l | | Appendix 4 | °C-°F Temperature Conversion | | | | | Table | | | | Appendix 5 | Viscosity Conversion Table | | | | Appendix 6 | Inch-mm Conversion Table | | | | Appendix 7 | Hardness Conversion Table | C16 | j | | Appendix 8 | Physical and Mechanical Properties | | | | | of Materials | | | | Appendix 9 | Tolerances for Shaft Diameters | C18 | 3 | | Appendix 10 | Tolerances for Housing Bore | | | | | Diameters | C20 | J | | Appendix 11 | Values of Standard Tolerance Grades | 001 | | | A 1:- · 10 | IT | | | | Appendix 12 | | U24 | ł | | Appendix 13 | Fatigue Life Factor f_h and Fatigue | 001 | _ | | Annandiy 1.1 | Life L-L _h | 62 |) | | Appendix 14 | Index of Inch Design Tapered Roller | 00/ | | | | Bearings | UZt |) | | | | | | ### 1.TYPES AND FEATURES OF ROLLING BEARINGS #### 1.1 Design and Classification Rolling bearings generally consist of two rings, rolling elements, and a cage, and they are classified into radial bearings or thrust bearings depending on the direction of the main load. In addition, depending on the type of rolling elements, they are classified into ball bearings or roller bearings, and they are further segregated by differences in their design or specific purpose. The most common bearing types and nomenclature of bearing parts are shown in Fig.1.1, and a general classification of rolling bearings is shown in Fig. 1.2. #### 1.2 Characteristics of Rolling Bearings Compared with plain bearings, rolling bearings have the following major advantages: Their starting torque or friction is low and the difference between the starting torque and running torque is small. - (2) With the advancement of worldwide standardization, rolling bearings are internationally available and interchangeable. - (3) Maintenance, replacement, and inspection are easy because the structure surrounding rolling bearings is simple - (4) Many rolling bearings are capable of taking both radial and axial loads simultaneously or independently. - (5) Rolling bearings can be used under a wide range of temperatures. - (6) Rolling bearings can be preloaded to produce a negative clearance and achieve greater rigidity. Furthermore, different types of rolling bearings have their own individual advantages. The features of the most common rolling bearings are described on Pages A10 to A12 and in Table 1.1 (Pages A14 and A15). Fig. 1.1 Nomenclature for Bearing Parts #### Single-Row Deep Groove **Ball Bearings** Single-row deep groove ball bearings are the most common type of rolling bearings. Their use is very widespread. The raceway grooves on both the inner and outer rings have circular arcs of slightly larger radius than that of the balls. In addition to radial loads, axial loads can be imposed in either direction. Because of their low torque, they are highly suitable for applications where high speeds and low power loss are required. In addition to open type bearings, these bearings often have steel shields or rubber seals installed on one or both sides and are prelubricated with grease. Also, snap rings are sometimes used on the periphery. As to cages, pressed steel ones are the most common. #### Magneto Bearings The inner groove of magneto bearings is a little shallower than that of deep groove bearings. Since the outer ring has a shoulder on only one side, the outer ring may be removed. This is often advantageous for mounting. In general, two such bearings are used in duplex pairs. Magneto bearings are small bearings with a bore diameter of 4 to 20 mm and are mainly used for small magnetos, gyroscopes, instruments, etc. Pressed brass cages are generally used. #### Single-Row **Angular Contact Ball Bearings** Individual bearings of this type are capable of taking radial loads and also axial loads in one direction. Four contact angles of 15°, 25°, 30°, and 40° are available. The larger the contact angle, the higher the axial load capacity. For high speed operation, however, the smaller contact angles are preferred. Usually, two bearings are used in duplex pairs, and the clearance between them must be adjusted properly. Pressed-steel cages are commonly used, however, for high precision bearings with a contact angle less than 30°, polyamide resin cages are often used. Duplex Bearings A combination of two radial bearings is called a duplex pair. Usually, they are formed using angular contact ball bearings or tapered roller bearings. Possible combinations include face-to-face, which have the outer ring faces together (type DF), back-to-back (type DB), or both front faces in the same direction (type DT). DF and DB duplex bearings are capable of taking radial loads and axial loads in either direction. Type DT is used when there is a strong axial load in one direction and it is necessary to impose the load equally on each bearing. #### Double-Row **Angular Contact** Ball Bearings Double-row angular contact ball bearings are basically two single-row angular contact ball bearings mounted back-to-back except that they have only one inner ring and one outer ring, each having raceways. They can take axial loads in either direction. #### Four-Point Contact **Ball Bearings** The inner and outer rings of four-point contact ball bearings are separable because the inner ring is split in a radial plane. They can take axial loads from either direction. The balls have a contact angle of 35° with each ring. Just one bearing of this type can replace a combination of face-to-face or back-to-back angular contact bearings. Machined brass cages are generally used. #### Self-Aligning Ball Bearings The inner ring of this type of bearing has two raceways and the outer ring has a single spherical raceway with its center of curvature coincident with the bearing axis. Therefore, the axis of the inner ring, balls, and cage can deflect to some extent around the bearing center. Consequently, minor angular misalignment of the shaft and housing caused by machining or mounting error is automatically corrected. This type of bearing often has a tapered bore for mounting using an adapter sleeve. #### Cylindrical **Roller Bearings** There are different types designated NU, NJ, NUP, N, NF for single-row bearings, and NNU, NN for double-row bearings depending on the design or absence of side ribs. The outer and inner rings of all types are separable. Some cylindrical roller bearings have no ribs on either the inner or outer ring, so the rings can move axially relative to each other. These can be used as free-end bearings. Cylindrical roller bearings, in which either the inner or outer rings has two ribs and the other ring has one, are capable of taking some axial load in one direction. Double-row cylindrical roller bearings have high radial rigidity and are used primarily for precision machine tools. Pressed steel or machined brass cages are generally used, but sometimes molded polyamide cages are also used. A 11 A 10 #### Needle **Roller Bearings** Needle roller bearings contain many slender rollers with a length 3 to 10 times their diameter. As a result, the ratio of the bearing outside diameter to the inscribed circle diameter is small, and they have a rather high radial load capacity. There are numerous types available, and many have no inner rings. The drawn-cup type has a pressed steel outer ring and the solid type has a machined outer ring. There are also cage and roller assemblies without rings. Most bearings have pressed steel cages, but some are without cages. #### **Tapered** Roller Bearings Bearings of this type use conical rollers guided by a back-face rib on the cone. These bearings are capable of taking high radial loads and also axial loads in one direction. In the HR series, the rollers are increased in both size and number giving it an even higher load capacity. They are generally mounted in pairs in a manner similar to single-row angular contact ball bearings. In this case, the proper internal clearance can be obtained by adjusting the axial distance between the cones or cups of the two opposed bearings. Since they are separable, the cone assemblies and cups can be mounted independently. Depending upon the contact angle, tapered roller bearings are divided into three types called the normal angle, medium angle, and steep angle. Double-row and four-row tapered roller bearings are also available. Pressed steel cages are generally used. #### Spherical Roller Bearings These bearings have barrel-shaped rollers between the inner ring, which has two raceways, and the outer ring which has one spherical raceway. Since the center of curvature of the outer ring raceway surface coincides with the bearing axis, they are self-aligning in a manner similar to that of selfaligning ball bearings. Therefore, if there is deflection of the shaft or housing or misalignment of their axes, it is automatically corrected so excessive force is not applied to the bearings. Spherical roller bearings can take, not only heavy radial loads, but also some axial loads in either direction. They have excellent radial load-carrying capacity and are suitable for use where there are heavy or impact loads. Some bearings have tapered bores and may be mounted directly on tapered shafts or cylindrical shafts using adapters or
withdrawal sleeves. Pressed steel and machined brass cages are used. #### Single-Direction Thrust Ball Bearings Single-direction thrust ball bearings are composed of washer-like bearing rings with raceway grooves. The ring attached to the shaft is called the shaft washer (or inner ring) while that attached to the housing is called the housing washer(or outer ring). In double-direction thrust ball bearings, there are three rings with the middle one (center ring) **Double-Direction** being fixed to the shaft. Thrust Ball Bearings There are also thrust ball bearings with an aligning seat washer beneath the housing washer in order to compensate for shaft misalignment or mounting error. Pressed steel cages are usually used in the smaller bearings and machined cages in the larger Spherical Thrust These bearings have a spherical raceway in the housing washer and barrel-shaped rollers obliquely Roller Bearings arranged around it. Since the raceway in the housing washer in spherical, these bearings are selfaligning. They have a very high axial load capacity and are capable of taking moderate radial loads when an axial load is applied. Pressed steel cages or machined brass cages are usually used. A 13 A 12 Table 1. 1 Types and Characteristics | Fe | Bearing
Types | Deep
Groove
Ball
Bearings | Magneto
Bearings | Angular
Contact
Ball
Bearings | Double-Row
Angular
Contact
Ball
Bearings | Duplex
Angular
Contact
Ball
Bearings | Four-Point
Contact
Ball
Bearings | Self-
Aligning
Ball
Bearings | Cylindrical
Roller
Bearings | Double-Row
Cylindrical
Roller
Bearings | Cylindrical
Roller
Bearings
with
Single Rib | |---------------|------------------------------|------------------------------------|---|---|--|--|---|---------------------------------------|-----------------------------------|---|---| | - 10 | | | M | | | | | | | | | | sity | Radial Loads | \bigcirc | 0 | \bigcirc | \bigcirc | \bigcirc | 0 | \bigcirc | \bigcirc | 0 | \bigcirc | | Load Capacity | Axial Loads | | 0 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 0 | × | × | \bigcirc | | Loi | Combined
Loads | \bigcirc | 0 | 0 | 0 | 0 | | 0 | × | × | | | ŀ | High Speeds | | \odot | 0 | | 0 | 0 | \odot | 0 | 0 | 0 | | ŀ | High Accuracy | 0 | | 0 | | 0 | 0 | | (| 0 | | | | ow Noise and
Torque | 0 | | | | | | | 0 | | | | F | Rigidity | | | | | 0 | | | 0 | 0 | 0 | | ļ | Angular
Misalignment | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \bigcirc | 0 | | | (| Self-Aligning
Capability | | | | | | | ☆ | | | | | ļ | Ring
Separability | | ☆ | | | | ☆ | | ☆ | ☆ | ☆ | | F | Fixed-End
Bearing | ☆ | | | ☆ | ☆ | ☆ | ☆ | | | | | F | Free-End
Bearing | * | | | * | * | * | * | ☆ | ☆ | | | i | Tapered Bore
n Inner Ring | | | | | | | ☆ | | ☆ | | | F | Remarks | | Two bearings are usually mounted in opposition. | Contact angles of 15°, 25° 30°, and 40°. Two bearings are usually mounted in opposition. Clearance adjustment is necessary. | | Combination of DF and DT pairs is possible, but use on free-end is not possible. | Contact angle of 35° | | Including N type | Including NNU type | Including NF type | | F | Page No. | B5
B31 | B5
B28 | B47 | B47
B70 | B47 | B47
B72 | B77 | B85 | B85
B110 | B85 | | | © Excellent | ⊙ G | ood | ◯ Fair | 0 | Poor × | Impossible | ←— Or | ne direction
nly | ←→ Tw | o directions | of Rolling Bearings | Cylindrical
Roller
Bearings
with Thrust
Collars | Needle
Roller
Bearings | Tapered
Roller
Bearings | Double-and
Multiple-Row
Tapered
Roller
Bearings | Spherical
Roller
Bearings | Thrust
Ball
Bearings | Thrust Ball
Bearings
with
Aligning
Seat | Double-
Direction
Angular
Contact
Thrust
Ball
Bearings | Thrust
Cylindrical
Roller
Bearings | Thrust
Tapered
Roller
Bearings | Thrust
Spherical
Roller
Bearings | Page No. | |---|------------------------------|--|---|---------------------------------|----------------------------|---|--|---|---|---|---| | \odot | 0 | 0 | 0 | 0 | × | × | × | × | × | 0 | _ | | $\overline{\bigcirc}$ | × | \bigcirc | \bigcirc | \bigcirc | \bigcirc | $\overline{\bigcirc}$ | \odot | (i) | (i) | (i) | _ | | | × | 0 | 0 | \odot | × | × | × | × | × | 0 | _ | | \odot | 0 | \bigcirc | \bigcirc | \bigcirc | × | × | \bigcirc | 0 | 0 | 0 | A18
A37 | | | | 0 | | | 0 | | 0 | | | | A19
A58
A81 | | | | | | | | | | | | | A19 | | \odot | 0 | 0 | 0 | | | | 0 | 0 | 0 | | A19
A96 | | | 0 | | 0 | 0 | × | 0 | × | × | × | (| A18
Blue pages of
each brg.
type | | | | | | ☆ | | ☆ | | | | ☆ | A18 | | ☆ | ☆ | ☆ | ☆ | | ☆ | ☆ | ☆ | ☆ | ☆ | ☆ | A19
A20 | | ☆ | | | ☆ | ☆ | | | | | | | A20
~A21 | | | ☆ | | * | * | | | | | | | A20
~A27 | | | | | | ☆ | | | | | | | A80
A118
A122 | | Including NUP type | | Two bearings are usually mounted in opposition. Clearance adjustment is necessary. | KH, KV types are
also available but
use on free-end is
impossible. | | | | | Including needle
roller thrust bearings | | To be used with oil
lubrication | | | B85 | | B115 | B115
B176
B299 | B183 | B207 | B207 | B235 | B207
B224 | | B207
B228 | | A 14 A 15 [☆] Applicable ★ Applicable, but it is necessary to allow shaft contraction/elongation at fitting surfaces of bearings. #### 2. BEARING SELECTION PROCEDURE The number of applications for rolling bearings is almost countless and the operating conditions and environments also vary greatly. In addition, the diversity of operating conditions and bearing requirements continue to grow with the rapid advancement of technology. Therefore, it is necessary to study bearings carefully from many angles to select the best one from the thousands of types and sizes available. Usually, a bearing type is provisionally chosen considering the operating conditions, mounting arrangement, ease of mounting in the machine, allowable space, cost, availability, and other factors. Then the size of the bearing is chosen to satisfy the desired life requirement. When doing this, in addition to fatigue life, it is necessary to consider grease life, noise and vibration, wear, and other factors. There is no fixed procedure for selecting bearings. It is good to investigate experience with similar applications and studies relevant to any special requirements for your specific application. When selecting bearings for new machines, unusual operating conditions, or harsh environments, please consult with NSK. The following diagram (Fig.2.1) shows an example of the bearing selection procedure. Fig. 2.1 Flow Chart for Selection of Rolling Bearings A 16 A 17 #### 3. SELECTION OF BEARING TYPES #### 3.1 Allowable Bearing Space The allowable space for a rolling bearing and its adjacent parts is generally limited so the type and size of the bearing must be selected within such limits. In most cases, the shaft diameter is fixed first by the machine design; therefore, the bearing is often selected based on its bore size. For rolling bearings, there are numerous standardized dimension series and types, and the selection of the optimum bearing from among them is necessary. Fig. 3.1 shows the dimension series of radial bearings and corresponding bearing types. #### 3.2 Load Capacity and Bearing Types The axial load carrying capacity of a bearing is closely related to the radial load capacity (see Page A24) in a manner that depends on the bearing design as shown in Fig. 3.2. This figure makes it clear that when bearings of the same dimension series are compared, roller bearings have a higher load capacity than ball bearings and are superior if shock loads exist. #### 3.3 Permissible Speed and Bearing Types The maximum speed of rolling bearings varies depending, not only the type of bearing, but also its size, type of cage, loads, lubricating method, heat dissipation, etc. Assuming the common oil bath lubrication method, the bearing types are roughly ranked from higher speed to lower as shown in Fig. 3.3. ## 3.4 Misalignment of Inner/Outer Rings and Bearing Types Because of deflection of a shaft caused by applied loads, dimensional error of the shaft and housing, and mounting errors, the inner and outer rings are slightly misaligned. The permissible misalignment varies depending on the bearing type and operating conditions, but usually it is a small angle less than 0.0012 radian (4'). When a large misalignment is expected, bearings having a self-aligning capability, such as self-aligning ball bearings, spherical roller bearings, and certain bearing units should be selected (Figs. 3.4 and 3.5). Fig. 3.1 Dimension Series of Radial Bearings Bearing Types Deep Groove Ball Bearings Needle Roller Tapered Roller Bearings Angular Contact Cylindrical Roller Note(1) The bearings with ribs can take some axial loads. Fig. 3.2 Relative Load Capacities of Various Bearing Types Relative permissible speed 13 10 Fig. 3.3 Relative
Permissible Speeds of Various Bearing Types Permissible bearing misalignment is given at the beginning of the dimensional tables for each bearing type. Fig. 3.4 Permissible Misalignment of Spherical Roller Bearings Fig. 3.5 Permissible Misalignment of Ball Bearing Units | Bearing Types | Highest
accuracy
specified | Tolerance comparison of inner ring radial runout | | | |----------------------------------|----------------------------------|--|--|--| | Deep Groove Ball | | 1 2 3 4 5 | | | | Bearings | Class 2 | | | | | Angular Contact
Ball Bearings | Class 2 | | | | | Cylindrical Roller
Bearings | Class 2 | | | | | Tapered Roller
Bearings | Class 4 | | | | | Spherical Roller
Bearings | Normal | | | | Fig. 3.6 Relative Inner Ring Radial Runout of Highest Accuracy Class for Various Bearing Types #### 3.5 Rigidity and Bearing Types When loads are imposed on a rolling bearing, some elastic deformation occurs in the contact areas between the rolling elements and raceways. The rigidity of the bearing is determined by the ratio of bearing load to the amount of elastic deformation of the inner and outer rings and rolling elements. For the main spindles of machine tools, it is necessary to have high rigidity of the bearings together with the rest of the spindle. Consequently, since roller bearings are deformed less by load, they are more often selected than ball bearings. When extra high rigidity is required, bearings are given a preload, which means that they have a negative clearance. Angular contact ball bearings and tapered roller bearings are often preloaded. ### 3.6 Noise and Torque of Various Bearing Types Since rolling bearings are manufactured with very high precision, noise and torque are minimal. For deep groove ball bearings and cylindrical roller bearings particularly, the noise level is sometimes specified depending on their purpose. For high precision miniature ball bearings, the starting torque is specified. Deep groove ball bearings are recommended for applications in which low noise and torque are required, such as motors and instruments. #### 3.7 Running Accuracy and Bearing Types For the main spindles of machine tools that require high running accuracy or high speed applications like superchargers, high precision bearings of Class 5, 4 or 2 are usually used. The running accuracy of rolling bearings is specified in various ways, and the specified accuracy classes vary depending on the bearing type. A comparison of the inner ring radial runout for the highest running accuracy specified for each bearing type is shown in Fig. 3.6. For applications requiring high running accuracy, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable. ## 3.8 Mounting and Dismounting of Various Bearing Types Separable types of bearings like cylindrical roller bearings, needle roller bearings and tapered roller bearings are convenient for mounting and dismounting. For machines in which bearings are mounted and dismounted rather often for periodic inspection, these types of bearings are recommended. Also, self-aligning ball bearings and spherical roller bearings (small ones) with tapered bores can be mounted and dismounted relatively easily using sleeves. #### 4. SELECTION OF BEARING ARRANGEMENT In general, shafts are supported by only two bearings. When considering the bearing mounting arrangement, the following items must be investigated: - Expansion and contraction of the shaft caused by temperature variations. - (2) Ease of bearing mounting and dismounting. - (3) Misalignment of the inner and outer rings caused by deflection of the shaft or mounting error. - (4) Rigidity of the entire system including bearings and preloading method. - (5) Capability to sustain the loads at their proper positions and to transmit them. #### 4.1 Fixed-End and Free-End Bearings Among the bearings on a shaft, only one can be a "fixed-end" bearing that is used to fix the shaft axially. For this fixed-end bearing, a type which can carry both radial and axial loads must be selected. Bearings other than the fixed-end one must be "freeend" bearings that carry only radial loads to relieve the shaft's thermal elongation and contraction. If measures to relieve a shaft's thermal elongation and contraction are insufficient, abnormal axial loads are applied to the bearings, which can cause premature failure. For free-end bearings, cylindrical roller bearings or needle roller bearings with separable inner and outer rings that are free to move axially (NU, N types, etc.) are recommended. When these types are used, mounting and dismounting are also easier. When non-separable types are used as free-end bearings, usually the fit between the outer ring and housing is loose to allow axial movement of the running shaft together with the bearing. Sometimes, such elongation is relieved by a loose fitting between the inner ring and shaft. When the distance between the bearings is short and the influence of the shaft elongation and contraction is negligible, two opposed angular contact ball bearings or tapered roller bearings are used. The axial clearance (possible axial movement) after the mounting is adjusted using nuts or shims. No distinction between fixed-end and free-end #### BEARING A Deep Groove Ball Bearing Matched Angular Contact Ball Bearing Double-Row Angular Contact Ball Bearing · Self-Aligning Ball Bearing · Cylindrical Roller Bearing with Ribs (NH, NUP types) Double-Row Tapered Roller Bearing Spherical Roller Bearing #### BEARING D,E(2) Angular Contact Ball Bearing Tapered Roller Bearing Magneto Bearing Cylindrical Roller Bearing (NJ. NF types) #### BEARING B · Cylindrical Roller Bearing (NU, N types) · Needle Roller Bearing (NA type, etc.) #### BEARING C(1) Deep Groove Ball Bearing Matched Angular Contact Ball Bearing (back-toback) Double-Row Angular Contact Ball Bearing Self-Aligning Ball Bearing Double-Row Tapered Roller Bearing (KBE type) Spherical Roller Bearing #### BEARING F Deep Groove Ball Bearing Self-Aligning Ball Bearing Spherical Roller Bearing Notes: (1) In the figure, shaft elongation and contraction are relieved at the outside surface of the outer ring, but sometimes it is done at the bore. (2) For each type, two bearings are used in opposition. The distinction between free-end and fixed-end bearings and some possible bearing mounting arrangements for various bearing types are shown in Fig. 4.1. #### 4.2 Example of Bearing Arrangements Some representative bearing mounting arrangements considering preload and rigidity of the entire assembly, shaft elongation and contraction, mounting error, etc. are shown in Table 4.1. Table 4. 1 Representative Bearing Mounting Arrangements and Application Examples | Bearing Arrangements | | Remarks | Application Examples | |----------------------|------|--|--| | Fixed-end Free | -end | | | | | | This is a common arrangement in which abnormal loads are not applied to bearings even if the shaft expands or contracts. If the mounting error is small, this is suitable for high speeds. | Medium size electric motors,
blowers | | | | This can withstand heavy loads and shock loads and can take some axial load. Every type of cylindrical roller bearing is separable. This is helpful when interference is necessary for both the inner and outer rings. | Traction motors for rolling stock | | | | This is used when loads are relatively heavy. For maximum rigidity of the fixed-end bearing, it is a back-to-back type. Both the shaft and housing must have high accuracy and the mounting error must be small. | Table rollers for steel mills, main spindles of lathes | | | | OThis is also suitable when interference is necessary for both the inner and outer rings. Heavy axial loads cannot be applied. | Calender rolls of paper making
machines, axles of diesel
locomotives | | | | This is suitable for high speeds and heavy radial loads. Moderate axial loads can also be applied. It is necessary to provide some clearance between the outer ring of the deep groove ball bearing and the housing bore in order to avoid subjecting it to radial loads. | Reduction gears in diesel locomotives | | | | | | Continued on next page Table 4. 1 Representative Bearing Mounting Arrangements and Application Examples (cont'd) | Bearing Arrangements | Remarks | Application Examples | |---|--|--| | Fixed-end Free-end | | | | | This is the most common arrangement. It can sustain not only radial loads, but moderate axial loads also. | Double suction volute pumps, automotive transmissions | | | This is the most suitable arrangement when there is mounting error or shaft deflection. It is often used for general and industrial applications in which
heavy loads are applied. | Speed reducers, table rollers of
steel mills, wheels for overhead
travelling cranes | | | This is suitable when there are rather heavy axial loads in both directions. Double row angular contact bearings may be used instead of a arrangement of two angular contact ball bearings. | Worm gear reducers | | When there is no distinction between fixed-end and free-end | Remarks | Application Examples | | Back-to-back mounting Face-to-face mounting | This arrangement is widely used since it can withstand heavy loads and shock loads. The back-to-back arrangement is especially good when the distance between bearings is short and moment loads are applied. Face-to-face mounting makes mounting easier when interference is necessary for the inner ring. In general, this arrangement is good when there is mounting error. To use this arrangement with a preload, affection must be paid to the amount of preload and clearance adjustment. | Pinion shafts of automotive
differential gears, automotive
front and rear axles, worm gear
reducers | | Back-to-back mounting | This is used at high speeds when radial loads are not so heavy and axial loads are relatively heavy. It provides good rigidity of the shaft by preloading. For moment loads, back-to-back mounting is better than face-to-face mounting. | Grinding wheel shafts | | When there is no distinction between fixed-end and free-end | Remarks | Application Examples | |---|--|---| | NJ + NJ mounting | ○This can withstand heavy loads and shock loads. ○It can be used if interference is necessary for both the inner and outer rings. ○Care must be taken so the axial clearance doesn't become too small during running. ○NF type + NF type mounting is also possible. | Final reduction gears of construction machines | | | OSometimes a spring is used at the side of the outer ring of one bearing. | Small electric motors, small
speed reducers, small pumps | | Vertical arrangements | Remarks | Application Examples | | | Matched angular contact ball bearings are on the fixed end. Cylindrical roller bearing is on the free end. | Vertical electric motors | | | ○The spherical center of the self-aligning seat must coincide with that of the self-aligning ball bearing. ○The upper bearing is on the free end. | Vertical openers (spinning and weaving machines) | Continued on next page ### 5. SELECTION OF BEARING SIZE #### 5.1 Bearing Life The various functions required of rolling bearings vary according to the bearing application. These functions must be performed for a prolonged period. Even if bearings are properly mounted and correctly operated, they will eventually fail to perform satisfactorily due to an increase in noise and vibration, loss of running accuracy, deterioration of grease, or fatigue flaking of the rolling surfaces. Bearing life, in the broad sense of the term, is the period during which bearings continue to operate and to satisfy their required functions. This bearing life may be defined as noise life, abrasion life, grease life, or rolling fatigue life, depending on which one causes loss of bearing service. Aside from the failure of bearings to function due to natural deterioration, bearings may fail when conditions such as heat-seizure, fracture, scoring of the rings, damage of the seals or the cage, or other damage occurs. Conditions such as these should not be interpreted as normal bearing failure since they often occur as a result of errors in bearing selection, improper design or manufacture of the bearing surroundings, incorrect mounting, or insufficient maintenance. #### 5.1.1 Rolling Fatigue Life and Basic Rating Life When rolling bearings are operated under load, the raceways of their inner and outer rings and rolling elements are subjected to repeated cyclic stress. Because of metal fatique of the rolling contact surfaces of the raceways and rolling elements, scaly particles may separate from the bearing material (Fig. 5.1). This phenomenon is called "flaking". Rolling fatique life is represented by the total number of revolutions at which time the bearing surface will start flaking due to stress. This is called fatigue life. As shown in Fig. 5.2, even for seemingly identical bearings, which are of the same type, size, and material and receive the same heat treatment and other processing, the rolling fatique life varies greatly even under identical operating conditions. This is because the flaking of materials due to fatigue is subject to many other variables. Consequently, "basic rating life", in which rolling fatigue life is treated as a statistical phenomenon, is used in preference to actual rolling fatigue life. Suppose a number of bearings of the same type are operated individually under the same conditions. After a certain period of time, 10 % of them fail as a result of flaking caused by rolling fatigue. The total number of revolutions at this point is defined as the basic rating life or, if the speed is constant, the basic rating life is often expressed by the total number of operating hours completed when 10 % of the bearings become inoperable due to flaking. In determining bearing life, basic rating life is often the only factor considered. However, other factors must also be taken into account. For example, the grease life of grease-prelubricated bearings (refer to Section 12, Lubrication, Page A107) can be estimated. Since noise life and abrasion life are judged according to individual standards for different applications, specific values for noise or abrasion life must be determined empirically. #### 5.2 Basic Load Rating and Fatigue Life 5.2.1 Basic Load Rating The basic load rating is defined as the constant load applied on bearings with stationary outer rings that the inner rings can endure for a rating life of one million revolutions (10^6 rev). The basic load rating of radial bearings is defined as a central radial load of constant direction and magnitude, while the basic load rating of thrust bearings is defined as an axial load of constant magnitude in the same direction as the central axis. The load ratings are listed under C_r for radial bearings and C_a for thrust bearings in the dimension tables. ### 5.2.2 Machinery in which Bearings are Used and Projected Life It is not advisable to select bearings with unnecessarily high load ratings, for such bearings may be too large and uneconomical. In addition, the bearing life alone should not be the deciding factor in the selection of bearings. The strength, rigidity, and design of the shaft Fig. 5.1 Example of Flaking Table 5. 1 Fatigue Life Factor f_h for Various Bearing Applications | | _ | - | _ | | | |---|--|--|---|---|--| | Operating Periods | | | Fatigue Life Factor $f_{ m h}$ | ı | | | Operating Perious | ~3 | 2~4 | 3~5 | 4~7 | 6~ | | Infrequently used or only
for short periods | •Small motors for
home appliances
like vacuum
cleaners and
washing machines
•Hand power tools | · Agricultural
equipment | | | | | Used only occasionally but reliability is important | | Motors for home
heaters and air
conditioners Construction
equipment | • Conveyors
• Elevator cable
sheaves | | | | Used intermittently for relatively long periods | • Rolling mill roll
necks | Small motors Deck cranes General cargo cranes Pinion stands Passenger cars | Factory motors Machine tools Transmissions Vibrating screens Crushers | Crane sheaves Compressors Specialized transmissions | | | Used intermittently for
more than eight hours
daily | | ·Escalators | Centrifugal separators Air conditioning equipment Blowers Woodworking machines Large motors Axle boxes on railway rolling stock | Mine hoists Press flywheels Railway traction motors Locomotive axle boxes | • Paper making
machines | | Used continuously and high reliability is important | | | | | Waterworks pumps Electric power stations Mine draining pumps | on which the bearings are to be mounted should also be considered. Bearings are used in a wide range of applications and the design life varies with specific applications and operating conditions. Table 5.1 gives an empirical fatigue life factor derived from customary operating experience for various machines. Also refer to Table 5.2. ### 5.2.3 Selection of Bearing Size Based on Basic Load Rating The following relation exists between bearing load and basic rating life: For ball bearings $$L = \left(\frac{C}{P}\right)^3$$(5.1) For roller bearings $L = \left(\frac{C}{P}\right)^{\frac{10}{3}}$(5.2) where L: Basic rating life (10 6 rev) P: Bearing load (equivalent load) (N), {kgf}(Refer to Page A30) C: Basic load rating (N), {kgf} C: Basic load rating (N), {kgf} For radial bearings, C is written C_r For thrust bearings, C is
written C_a In the case of bearings that run at a constant speed, it is convenient to express the fatigue life in terms of hours. In general, the fatigue life of bearings used in automobiles and other vehicles is given in terms of mileage. By designating the basic rating life as $L_{\rm h}$ (h), bearing speed as n (min⁻¹), fatigue life factor as $f_{\rm h}$, and speed factor as $f_{\rm n}$, the relations shown in Table 5.2 are obtained: Table 5. 2 Basic Rating Life, Fatigue Life Factor and Speed Factor | Life
Parameters | Ball Bearings | Roller Bearings | |---------------------------|---|---| | Basic
Rating
Life | $L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3 = 500 f_{\rm h}^3$ | $L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{\frac{10}{3}} = 500 f_{\rm h}^{\frac{10}{3}}$ | | Fatigue
Life
Factor | $f_{\rm h} = f_{\rm n} \frac{C}{P}$ | $f_{\rm h} = f_{\rm n} \frac{C}{P}$ | | Speed
Factor | $f_{n} = \left(\frac{10^{6}}{500 \times 60n}\right)^{\frac{1}{3}}$ $= (0.03n)^{-\frac{1}{3}}$ | $f_{n} = \left(\frac{10^{6}}{500 \times 60n}\right)^{\frac{3}{10}}$ $= (0.03n)^{-\frac{3}{10}}$ | $n,\ f_{\rm n}$Fig. 5.3 (See Page A26), Appendix Table 12 (See Page C24) $L_{\rm h},\,f_{\rm h}$Fig. 5.4 (See Page A26), Appendix Table 13 (See Page C25) Fig. 5.3 Bearing Speed and Speed Factor Fig. 5.4 Fatigue Life Factor and Fatigue Life If the bearing load P and speed n are known, determine a fatigue life factor f_h appropriate for the projected life of the machine and then calculate the basic load rating C by means of the following equation. $$C = \frac{f_{\rm h} \cdot P}{f_{\rm n}} \dots (5.3)$$ A bearing which satisfies this value of C should then be selected from the bearing tables. #### 5.2.4 Temperature Adjustment for Basic Load Rating If rolling bearings are used at high temperature, the hardness of the bearing steel decreases. Consequently, the basic load rating, which depends on the physical properties of the material, also decreases. Therefore, the basic load rating should be adjusted for the higher temperature using the following equation: $$C_t = f_t \cdot C \quad \dots \quad (5.4)$$ where C_t : Basic load rating after temperature correction (N), {kgf} f_t: Temperature factor (See Table 5.3.) C: Basic load rating before temperature adjustment (N), {kgf} If large bearings are used at higher than 120°C, they must be given special dimensional stability heat treatment to prevent excessive dimensional changes. The basic load rating of bearings given such special dimensional stability heat treatment may become lower than the basic load rating listed in the bearing tables. Table 5.3 Temperature Factor $f_{\rm t}$ | Bearing
Temperature °C | 125 | 150 | 175 | 200 | 250 | |-------------------------------|------|------|------|------|------| | Temperature Factor $f_{ m t}$ | 1.00 | 1.00 | 0.95 | 0.90 | 0.75 | #### 5.2.5 Correction of Basic Rating Life As described previously, the basic equations for calculating the basic rating life are as follows: For ball bearings $$L_{10} = \left(\frac{C}{P}\right)^3$$(5.5) For roller bearings $$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}}$$(5.6) The L_{10} life is defined as the basic rating life with a statistical reliability of 90%. Depending on the machines in which the bearings are used, sometimes a reliability higher than 90% may be required. However, recent improvements in bearing material have greatly extended the fatigue life. In addition, the developent of the Elasto-Hydrodynamic Theory of Lubrication proves that the thickness of the lubricating film in the contact zone between rings and rolling elements greatly influences bearing life. To reflect such improvements in the calculation of fatigue life, the basic rating life is adjusted using the following adjustment factors: $$L_{\text{na}} = a_1 a_2 a_3 L_{10}$$(5.7) where $L_{\rm na}$: Adjusted rating life in which reliability, material improvements, lubricating conditions, etc. are considered L_{10} : Basic rating life with a reliability of 90% a₁: Life adjustment factor for reliability a₂: Life adjustment factor for special bearing properties *a*₃: Life adjustment factor for operating conditions The life adjustment factor for reliability, a_1 , is listed in Table 5.4 for reliabilities higher than 90%. The life adjustment factor for special bearing properties, a_2 , is used to reflect improvements in bearing steel. NSK now uses vacuum degassed bearing steel, and the results of tests by NSK show that life is greatly improved when compared with earlier materials. The basic load ratings $C_{\rm r}$ and $C_{\rm a}$ listed in the bearing tables were calculated considering the extended life achieved by improvements in materials and manufacturing techniques. Consequently, when estimating life using Equation (5.7), it is sufficient to assume that is greater than one. Table 5.4 Reliability Factor a_1 | Reliability (%) | 90 | 95 | 96 | 97 | 98 | 99 | |-----------------|------|------|------|------|------|------| | a_1 | 1.00 | 0.62 | 0.53 | 0.44 | 0.33 | 0.21 | The life adjustment factor for operating conditions a_3 is used to adjust for various factors, particularly lubrication. If there is no misalignment between the inner and outer rings and the thickness of the lubricating film in the contact zones of the bearing is sufficient, it is possible for a_3 to be greater than one; however, a_3 is less than one in the following cases: - When the viscosity of the lubricant in the contact zones between the raceways and rolling elements is low. - When the circumferential speed of the rolling elements is very slow. - · When the bearing temperature is high. - When the lubricant is contaminated by water or foreign matter. - When misalignment of the inner and outer rings is excessive. It is difficult to determine the proper value for a_3 for specific operating conditions because there are still many unknowns. Since the special bearing property factor a_2 is also influenced by the operating conditions, there is a proposal to combine a_2 and a_3 into one quantity($a_2 \times a_3$), and not consider them independently. In this case, under normal lubricating and operating conditions, the product ($a_2 \times a_3$) should be assumed equal to one. However, if the viscosity of the lubricant is too low, the value drops to as low as 0.2. If there is no misalignment and a lubricant with high viscosity is used so sufficient fluid-film thickness is secured, the product of $(a_2 \times a_3)$ may be about two. When selecting a bearing based on the basic load rating, it is best to choose an a_1 reliability factor appropriate for the projected use and an empirically determined C/P or f_h value derived from past results for lubrication, temperature, mounting conditions, etc. in similar machines. The basic rating life equations (5.1), (5.2), (5.5), and (5.6) give satisfactory results for a broad range of bearing loads. However, extra heavy loads may cause detrimental plastic deformation at ball/raceway contact points. When $P_{\rm r}$ exceeds $C_{\rm or}$ (Basic static load rating) or 0.5 $C_{\rm r}$, whichever is smaller, for radial bearings or $P_{\rm a}$ exceeds 0.5 $C_{\rm a}$ for thrust bearings, please consult NSK to establish the applicablity of the rating fatigue life equations. #### 5.3 Calculation of Bearing Loads The loads applied on bearings generally include the weight of the body to be supported by the bearings. the weight of the revolving elements themselves, the transmission power of gears and belting, the load produced by the operation of the machine in which the bearings are used, etc. These loads can be theoretically calculated, but some of them are difficult to estimate. Therefore, it becomes necessary to correct the estimated using empirically derived data. #### 5.3.1 Load Factor When a radial or axial load has been mathematically calculated, the actual load on the bearing may be greater than the calculated load because of vibration and shock present during operation of the machine. The actual load may be calculated using the following equation: $$F_{\rm r} = f_{\rm w} \cdot F_{\rm rc} F_{\rm a} = f_{\rm w} \cdot F_{\rm ac}$$ \ (5.8) where F_r , F_a : Loads applied on bearing (N), {kgf} $F_{\rm rc}$, $F_{\rm ac}$: Theoretically calculated load (N), {kgf} $f_{\rm w}$: Load factor The values given in Table 5.5 are usually used for the load factor $f_{\rm w}$. #### 5.3.2 Bearing Loads in Belt or Chain Transmission **Applications** The force acting on the pulley or sprocket wheel when power is transmitted by a belt or chain is calculated using the following equations. $$M = 9 550 000H / n(N \cdot mm)$$ = 974 000H / n(kgf·mm)}......(5.9) $$P_{k} = M / r$$(5.10) where M: Torque acting on pulley or sprocket wheel (N·mm), {kgf·mm} > $P_{\rm b}$: Effective force transmitted by belt or chain (N), {kgf} H: Power transmitted(kW) n: Speed (min⁻¹) r: Effective radius of pulley or sprocket wheel (mm) When calculating the load on a pulley shaft, the belt tension must be included. Thus, to calculate the actual load K, in the case of a belt transmission, the effective transmitting power is multiplied by the belt factor $f_{\rm b}$, which represents the belt tension. The values of the belt factor $f_{\rm b}$ for different types of belts are shown in Table 5.6. $$K_{\rm b} = f_{\rm b} \cdot P_{\rm k}$$(5.11) In the case of a chain transmission, the values corresponding to f_b should be 1.25 to 1.5. Table 5. 5 Values of Load Factor $f_{\rm w}$ | Operating Conditions | Typical Applications | $f_{ m w}$ | |--|--
------------| | Smooth operation free from shocks | Electric motors,
Machine tools,
Air conditioners | 1 to 1.2 | | Normal operation | Air blowers,
Compressors,
Elevators, Cranes,
Paper making
machines | 1.2 to 1.5 | | Operation accompanied by shock and vibration | Construction
equipment, Crushers,
Vibrating screens,
Rolling mills | 1.5 to 3 | Table 5. 6 Belt Factor f_b | $f_{ m b}$ | |------------| | 1.3 to 2 | | 2 to 2.5 | | 2.5 to 3 | | 4 to 5 | | | #### 5.3.3 Bearing Loads in Gear Transmission Applications The loads imposed on gears in gear transmissions vary according to the type of gears used. In the simplest case of spur gears, the load is calculated as follows: $$M = 9 550 \ 000H / n \dots (N \cdot mm)$$ = 974 000H / n \...\{kgf\cdot mm\}\\ P_k = M / r \....(5.13) $$S_{\mathbf{k}} = P_{\mathbf{k}} \tan \theta$$(5.14) $K_c = \sqrt{P_k^2 + S_k^2} = P_k \sec \theta$(5.15) where M: Torque applied to gear $(N \cdot mm) \{ kgf \cdot mm \}$ P_{k} : Tangential force on gear (N), {kgf} S_{ν} : Radial force on gear (N), {kgf} K_{\circ} : Combined force imposed on gear (N), {kgf} H: Power transmitted (kW) n: Speed (min⁻¹) r: Pitch circle radius of drive gear (mm) θ : Pressure angle In addition to the theoretical load calculated above. vibration and shock (which depend on how accurately the gear is finished) should be included using the gear factor f_g by multiplying the theoretically calculated load by this factor. The values of f_g should generally be those in Table 5.7. When vibration from other sources accompanies gear operation, the actual load is obtained by multiplying the load factor by this gear factor. Table 5. 7 Values of Gear Factor f_{α} | Gear Finish Accuracy | $f_{ m g}$ | |-------------------------|------------| | Precision ground gears | 1 ~1.1 | | Ordinary machined gears | 1.1~1.3 | #### 5.3.4 Load Distribution on Bearings In the simple examples shown in Figs. 5.5 and 5.6. The radial loads on bearings I and II can be calculated using the following equations: $$F_{\rm CI} = \frac{b}{c} K$$(5.16) $$F_{\text{CII}} = \frac{a}{c}K \qquad (5.17)$$ where $F_{\rm CI}$: Radial load applied on bearing I (N), {kgf} > F_{CII} : Radial load applied on bearing II (N), {kgf} K: Shaft load (N), {kgf} When these loads are applied simultaneously, first the radial load for each should be obtained, and then, the sum of the vectors may be calculated according to the load direction. Fig. 5.5 Radial Load Distribution (1) Fig. 5.6 Radial Load Distribution (2) #### 5.3.5 Average of Fluctuating Load When the load applied on bearings fluctuates, an average load which will yield the same bearing life as the fluctuating load should be calculated. (1) When the relation between load and rotating speed is divided into the following steps (Fig. 5.7) Load F_1 : Speed n_1 ; Operating time t_1 Load F_2 : Speed n_2 ; Operating time t_2 Load F_n : Speed n_n : Operating time t_n Then, the average load F_m may be calculated using the following equation: $$F_{\rm m} = \sqrt[p]{\frac{F_1^{\rm p} n_1 t_1 + F_2^{\rm p} n_2 t_2 + \dots + F_n^{\rm p} n_n t_n}{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}}$$ (5.18) where F_m : Average fluctuating load (N), {kgf} p = 3 for ball bearings p = 10/3 for roller bearings NSK The average speed $n_{\rm m}$ may be calculated as follows: $$n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}{t_1 + t_2 + \dots + t_n}$$(5.19) (2) When the load fluctuates almost linearly (Fig. 5.8), the average load may be calculated as follows: $$F_{\rm m} = \frac{1}{3} (F_{\rm min} + 2F_{\rm max})$$(5.20) where F_{\min} : Minimum value of fluctuating load (N), {kgf} F_{max} : Maximum value of fluctuating load (N), $\{\mathrm{kgf}\}$ (3) When the load fluctuation is similar to a sine wave (Fig. 5.9), an approximate value for the average load F_m may be calculated from the following equation: In the case of Fig. 5.9 (a) $$F_{\rm m} \stackrel{...}{=} 0.65 \; F_{\rm max} \;$$ (5.21) In the case of Fig. 5.9 (b) $$F_{\rm m} = 0.75 \; F_{\rm max} \;$$ (5.22) (4) When both a rotating load and a stationary load are applied (Fig. 5.10). $F_{\mathbb{R}}$: Rotating load (N), {kgf} $F_{\rm s}$: Stationary load (N). {kgf} An approximate value for the average load F_m may be calculated as follows: a) Where $$F_{\rm R} \ge F_{\rm S}$$ $F_{\rm m} = F_{\rm R} + 0.3F_{\rm S} + 0.2 \frac{F_{\rm S}^2}{F_{\rm R}}$(5.23) b) Where $$F_{\rm R} < F_{\rm S}$$ $$F_{\rm m} = F_{\rm S} + 0.3 F_{\rm R} + 0.2 \frac{F_{\rm R}^2}{F_{\rm S}}......(5.24)$$ #### 5.4 Equivalent Load In some cases, the loads applied on bearings are purely radial or axial loads; however, in most cases. the loads are a combination of both. In addition, such loads usually fluctuate in both magnitude and direction. In such cases, the loads actually applied on bearings cannot be used for bearing life calculations; therefore, a hypothetical load that has a constant magnitude and passes through the center of the bearing, and will give the same bearing life that the bearing would attain under actual conditions of load and rotation should be estimated. Such a hypothetical load is called the equivalent load. Fig. 5.9 Sinusoidal Load Variation Fig. 5.7 Incremental Load Variation Fig. 5.8 Simple Load Fluctuation #### 5.4.1 Calculation of Equivalent Loads The equivalent load on radial bearings may be calculated using the following equation: $$P = XF_r + YF_a$$(5.25) P: Equivalent Load (N), {kgf} F_r : Radial load (N), {kgf} F_a : Axial load (N), {kgf} X: Radial load factor Y: Axial load factor The values of X and Y are listed in the bearing tables. The equivalent radial load for radial roller bearings with $\alpha = 0^{\circ}$ is $$P = F_r$$ In general, thrust ball bearings cannot take radial loads, but spherical thrust roller bearings can take some radial loads. In this case, the equivalent load may be calculated using the following equation: $$P = F_{\rm a} + 1.2 F_{\rm r}$$(5.26) where $\frac{F_{\rm r}}{F_{\rm o}} \le 0.55$ #### 5.4.2 Axial Load Components in Angular Contact Ball Bearings and Tapered Roller Bearings The effective load center of both angular contact ball bearings and tapered roller bearings is at the point of intersection of the shaft center line and a line representing the load applied on the rolling element by the outer ring as shown in Fig. 5.11. This effective load center for each bearing is listed in the bearing tables. When radial loads are applied to these types of bearings, a component of load is produced in the axial direction. In order to balance this component load. bearings of the same type are used in pairs, placed face to face or back to back. These axial loads can be calculated using the following equation: $$F_{ai} = \frac{0.6}{V} F_{r}$$(5.27) where F_{ai} : Component load in the axial direction (N), {kgf} F_r : Radial load (N), {kgf} Y: Axial load factor Assume that radial loads $F_{r\mathbb{I}}$ and $F_{r\mathbb{I}}$ are applied on bearings I and II (Fig. 5.12) respectively, and an external axial load $F_{\rm ae}$ is applied as shown. If the axial load factors are $Y_{\rm I}$, $Y_{\rm II}$ and the radial load factor is X, then the equivalent loads $P_{\scriptscriptstyle \rm T}$, $P_{\scriptscriptstyle \rm II}$ may be calculated as $$\begin{split} \text{where} \quad & F_{\mathrm{ae}} + \frac{0.6}{Y_{\mathrm{II}}} \; F_{r_{\,\mathrm{II}}} \geqq \frac{0.6}{Y_{\,\mathrm{I}}} \; F_{r_{\,\mathrm{I}}} \\ & P_{_{\mathrm{I}}} = \mathrm{X} F_{r_{\,\mathrm{I}}} + Y_{_{\mathrm{I}}} \left(F_{\mathrm{ae}} + \frac{0.6}{Y_{\,\mathrm{II}}} \; F_{r_{\,\mathrm{II}}} \right) \right\}(5.28) \\ & P_{_{\mathrm{II}}} = F_{r_{\,\mathrm{II}}} \end{split}$$ where $$F_{\mathrm{ae}} + \frac{0.6}{Y_{\mathrm{II}}} F_{\mathrm{rII}} < \frac{0.6}{Y_{\mathrm{I}}} F_{\mathrm{rI}}$$ $$P_{\text{I}} = F_{\text{rI}}$$ $P_{\text{II}} = XF_{\text{rII}} + Y_{\text{II}} \left(\frac{0.6}{Y_{\text{I}}} F_{\text{rI}} - F_{\text{ae}} \right)$(5.29) Fig. 5.11 Effective Load Centers Fig. 5.12 Loads in Opposed Duplex Arrangement ### 5.5 Static Load Ratings and Static Equivalent #### 5.5.1 Static Load Ratings When subjected to an excessive load or a strong shock load, rolling bearings may incur a local permanent deformation of the rolling elements and permanent deformation of the rolling elements and raceway surface if the elastic limit is exceeded. The nonelastic deformation increases in area and depth as the load increases, and when the load exceeds a certain limit, the smooth running of the bearing is impeded. The basic static load rating is defined as that static load which produces the following calculated contact stress at the center of the contact area between the rolling element subjected to the maximum stress and the raceway surface. $\begin{array}{lll} \mbox{For self-aligning ball bearings} & 4\,600\mbox{MPa} \\ & \{469\mbox{kgf/mm}^2\} \\ \mbox{For other ball bearings} & 4\,200\mbox{MPa} \\ & \{428\mbox{kgf/mm}^2\} \\ \mbox{For roller bearings} & 4\,000\mbox{MPa} \\ & \{408\mbox{kgf/mm}^2\} \\ \end{array}$ In this most heavily stressed contact area, the sum of the permanent deformation of the rolling element and that of the raceway is nearly 0.0001 times the rolling element's diameter. The basic static load rating $C_{\rm o}$ is written $C_{\rm or}$ for radial bearings and $C_{\rm oa}$ for thrust bearings in the bearing tables. In addition, following the modification of the criteria for basic static load rating by ISO, the new $C_{\rm o}$ values for NSK's ball bearings became about 0.8 to 1.3 times the past values and those for roller bearings about 1.5 to 1.9 times. Consequently, the values of permissible static load factor $f_{\rm s}$ have also changed, so please pay attention to this. #### 5.5.2 Static Equivalent Loads The static equivalent load is a hypothetical load that produces
a contact stress equal to the above maximum stress under actual conditions, while the bearing is stationary (including very slow rotation or oscillation), in the area of contact between the most heavily stressed rolling element and bearing raceway. The static radial load passing through the bearing center is taken as the static equivalent load for radial bearings, while the static axial load in the direction coinciding with the central axis is taken as the static equivalent load for thrust bearings. #### (a) Static equivalent load on radial bearings The greater of the two values calculated from the following equations should be adopted as the static equivalent load on radial bearings. $$P_0 = X_0 F_r + Y_0 F_a$$(5.30) $P_0 = F_r$(5.31) where P_o : Static equivalent load (N), {kgf} $F_{\rm r}$: Radial load (N), {kgf} $F_{\rm a}$: Axial load (N), {kgf} $X_{\rm o}$: Static radial load factor Y_0 : Static axial load factor (b)Static equivalent load on thrust bearings $$P_0 = X_0 F_r + F_a$$ $\alpha \neq 90^{\circ}$(5.32) where P_0 : Static equivalent load (N), {kgf} α : Contact angle When $F_{\rm a}{<}X_{\rm o}F_{\rm r}$, this equation becomes less accurate. The values of $X_{\rm o}$ and $Y_{\rm o}$ for Equations (5.30) and (5.32) are listed in the bearing tables. The static equivalent load for thrust roller bearings with $$\alpha = 90^{\circ}$$ is $P_0 = F_3$ #### 5.5.3 Permissible Static Load Factor The permissible static equivalent load on bearings varies depending on the basic static load rating and also their application and operating conditions. The permissible static load factor f_s is a safety factor that is applied to the basic static load rating, and it is defined by the ratio in Equation (5.33). The generally recommended values of f_s are listed in Table 5.8. Conforming to the modification of the static load rating, the values of f_s were revised, especially for bearings for which the values of C_o were increased, please keep this in mind when selecting bearings. $$f_{\rm S} = \frac{C_{\rm o}}{P_{\rm o}}$$(5.33) where C_0 : Basic static load rating (N), {kgf} P_{o} : Static equivalent load (N), {kgf} For spherical thrust roller bearings, the values of $f_{\rm s}$ should be greater than 4. Table 5. 8 Values of Permissible Static Load Factor $f_{\rm S}$ | Operating Conditions | | imit of $f_{ m s}$
Roller Bearings | |---|-----|---------------------------------------| | Low-noise applications | 2 | 3 | | Bearings subjected to vibration and shock loads | 1.5 | 2 | | Standard operating conditions | 1 | 1.5 | #### 5.6 Maximum Permissible Axial Loads for Cylindrical Roller Bearings Cylindrical roller bearings having inner and outer rings with ribs, loose ribs or thrust collars are capable of sustaining radial loads and limited axial loads simultaneously. The maximum permissible axial load is limited by an abnormal temperature rise or heat seizure due to sliding friction between the end faces of rollers and the rib face, or the rib strength. The maximum permissible axial load (the load considered the heat generation between the end face of rollers and the rib face) for bearings of diameter series 3 that are continuously loaded and lubricated with grease or oil is shown in Fig. 5.13. Grease lubrication (Empirical equation) $$C_{A} = 9.8f \left\{ \frac{900 (k \cdot d)^{2}}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} ...(N)$$ $$= f \left\{ \frac{900 (k \cdot d)^{2}}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} \{ kgf \}$$ Oil lubrication (Empirical equation) $$C_{A} = 9.8f \left\{ \frac{490 (k \cdot d)^{2}}{n + 1000} - 0.000135 \times (k \cdot d)^{3.4} \right\} ...(N)$$ $$= f \left\{ \frac{490 (k \cdot d)^{2}}{n + 1000} - 0.000135 \times (k \cdot d)^{3.4} \right\}(kgf)$$ where C_A : Permissible axial load (N), {kgf} d: Bearing bore diameter (mm) n: Speed (min⁻¹) In the equations (5.34) and (5.35), the examination for the rib strength is excluded. Concerning the rib strength, please consult with NSK. In addition, for cylindrical roller bearings to have a stable axial-load carrying capacity, the following precautions are required for the bearings and their surroundings: - Radial load must be applied and the magnitude of radial load should be larger than that of axial load by 2.5 times or more. - Sufficient lubricant must exist between the roller end faces and ribs. - ·Superior extreme-pressure grease must be used. - ·Sufficient running-in should be done. - ·The mounting accuracy must be good. - The radial clearance should not be more than necessary. In cases where the bearing speed is extremely slow, the speed exceeds the limiting speed by more than 50%, or the bore diameter is more than 200mm, careful study is necessary for each case regarding lubrication, cooling, etc. In such a case, please consult with NSK. Fig. 5.13 Permissible Axial Load for Cylindrical Roller Bearings For Diameter Series 3 bearings (k=1.0) operating under a continuous load and lubricated with grease or oil. #### 5.7 Examples of Bearing Calculations #### (Example1) Obtain the fatigue life factor $f_{\rm h}$ of single-row deep groove ball bearing **6208** when it is used under a radial load $F_{\rm r}$ =2 500 N, (255kgf) and speed n =900 min⁻¹. The basic load rating $C_{\rm r}$ of **6208** is 29 100N, 12 970kgfl (Bearing Table, Page B10). Since only a radial load is applied, the equivalent load P may be obtained as follows: $$P = F_r = 2500N$$, (255kgf) Since the speed is $n = 900 \text{ min}^{-1}$, the speed factor f_n can be obtained from the equation in Table 5.2 (Page A25) or Fig. 5.3(Page A26). $$f_{\rm n} = 0.333$$ The fatigue life factor $f_{\rm h}$, under these conditions, can be calculated as follows: $$f_h = f_n \frac{C_r}{P} = 0.333 \times \frac{29100}{2500} = 3.88$$ This value is suitable for industrial applications, air conditioners being regularly used, etc., and according to the equation in Table 5.2 or Fig. 5.4 (Page A26), it corresponds approximately to 29 000 hours of service life. #### (Example 2) Select a single-row deep groove ball bearing with a bore diameter of 50 mm and outside diameter under 100 mm that satisfies the following conditions: Radial load $F_r = 3000$ N, (306kgf) Speed $n = 1900 \text{ min}^{-1}$ Basic rating life $L_h \ge 10~000h$ The fatigue life factor f_h of ball bearings with a rating fatigue life longer than 10 000 hours is $f_h \ge 2.72$. Because $f_n = 0.26$. $P = F_r = 3\,000$ N. (306kgf) $$f_h = f_n \frac{C_r}{P} = 0.26 \times \frac{C_r}{3.000} \ge 2.72$$ therefore, $C_r \ge 2.72 \times \frac{3000}{0.26} = 31380N$, (3 200kgf) Among the data listed in the bearing table on Page B12, **6210** should be selected as one that satisfies the above conditions. #### (Example3 Obtain C_r/P or fatigue life factor f_h when an axial load F_a =1 000N, [102kgf] is added to the conditions of (Example 1) When the radial load F_r and axial load F_a are applied on single-row deep groove ball bearing **6208**, the dynamic equivalent load P should be calculated in accordance with the following procedure. Obtain the radial load factor X, axial load factor Y and constant e obtainable, depending on the magnitude of $f_0F_a/C_{\rm or}$, from the table above the single-row deep groove ball bearing table. The basic static load rating $C_{\rm or}$ of ball bearing **6208** is 17 900N, (1 820kgf) (Page B10) $$f_{\rm o}F_{\rm a}/C_{\rm or} = 14.0 \times 1\ 000/17\ 900 = 0.782$$ $e = 0.26$ and $$F_a / F_r = 1000/2500 = 0.4 > e$$ $$X = 0.56$$ Y = 1.67 (the value of Y is obtained by linear interpolation) Therefore, the dynamic equivalent load P is $$P = XF_r + YF_a$$ $$= 0.56 \times 2500 + 1.67 \times 1000$$ $$= 3070N, {313kgf}$$ $$\frac{C_{\rm r}}{P} = \frac{29\ 100}{3\ 070} = 9.48$$ $$f_h = f_n \frac{C_r}{P} = 0.333 \times \frac{29100}{3070} = 3.16$$ This value of f_h corresponds approximately to 15 800 hours for ball bearings. #### (Example 4) Select a spherical roller bearing of series 231 satisfying the following conditions: Radial load $F_r = 45\,000$ N, (4 950kgf) Axial load $F_a = 8000$ N, (816kgf) Speed $n = 500 \text{min}^{-1}$ Basic rating life $L_b \ge 30~000h$ The value of the fatigue life factor f_h which makes $L_h \ge 30~000h$ is bigger than 3.45 from Fig. 5.4 (Page A26). The dynamic equivalent load P of spherical roller bearings is given by: when $$F_a / F_r \leq e$$ $$P = XF_r + YX_a = F_r + Y_3F_a$$ when $$F_a/F_r > e$$ $$P = XF_r + YF_a = 0.67 F_r + Y_2 F_a$$ $F_a / F_r = 8000/45000 = 0.18$ We can see in the bearing table that the value of e is about 0.3 and that of Y_3 is about 2.2 for bearings of series 231: Therefore, $$P = XF_r + YF_a = F_r + Y_3F_a$$ = 45 000 + 2.2 × 8 000 = 62 600N. (6 380kef) From the fatigue life factor f_h , the basic load rating can be obtained as follows: $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.444 \times \frac{C_{\rm r}}{62\,600} \ge 3.45$$ consequently, $C_r \ge 490\,000N$, (50 0000kgf) Among spherical roller bearings of series 231 satisfying this value of C_r , the smallest is **23126CE4** ($C_r = 505\,000N$, (51 500kgf)) Once the bearing is determined, substitude the value of Y_2 in the equation and obtain the value of P_2 . $$P = F_r + Y_3 F_a = 45\,000 + 2.4 \times 8\,000$$ = 64 200N, {6 550kgf} $$L_{\rm h} = 500 \left(f_{\rm n} \frac{C_{\rm r}}{P} \right)^{\frac{10}{3}}$$ $$= 500 \left(0.444 \times \frac{505\ 000}{64\ 200} \right)^{\frac{10}{3}}$$ $$= 500 \times 3.49^{\frac{10}{3}} \stackrel{\text{3}}{=} 32\ 000\ \text{h}$$ #### (Example 5) Assume that tapered roller bearings **HR30305DJ** and **HR30206J** are used in a back-to-back arrangement as shown in Fig. 5.14, and the distance between the cup back faces is 50 mm. Calculate the basic rating life of each bearing when beside the radial load $F_r = 5500N$, (561kgf), axial load $F_{\rm ae}$ =2 000N,(204kgf) are applied to **HR30305DJ** as shown in Fig.
5.14. The speed is 600 min⁻¹. To distribute the radial load $F_{\rm r}$ on bearings I and II, the effective load centers must be located for tapered roller bearings. Obtain the effective load center a for bearings I and II from the bearing table, then obtain the relative position of the radial load $F_{\rm r}$ and effective load centers. The result will be as shown in Fig. 5.14. Consequently, the radial load applied on bearings I (HR30305DJ) and II (HR30206J) can be obtained from the following equations: $$F_{rI} = 5.500 \times \frac{23.9}{83.8} = 1.569$$ N, (160kgf) $$F_{\rm rII} = 5\,500 \times \frac{59.9}{83.8} = 3\,931\,\rm N$$, (401kgf) From the data in the bearing table, the following values are obtained: | Bearings | Basic dynamic load rating $C_{ m r}$ (N) {kgf} | | Axial load factor Y_1 | Constant $oldsymbol{e}$ | |-----------------------|--|---------|-------------------------|-------------------------| | Bearing I (HR30305DJ) | 38 000 | {3 900} | $Y_{\rm I} = 0.73$ | 0.83 | | Bearing II (HR30206J) | 43 000 | {4 400} | $Y_{\mathrm{II}} =$ 1.6 | 0.38 | When radial loads are applied on tapered roller bearings, an axial load component is produced, which must be considered to obtain the dynamic equivalent radial load (Refer to Paragraph 5.4.2, Page A31). $$F_{\text{ae}} + \frac{0.6}{Y_{\text{II}}} F_{\text{r II}} = 2\,000 + \frac{0.6}{1.6} \times 3\,931$$ = 3 474N, (354kgf) $$\frac{0.6}{Y_{\rm I}} F_{\rm rI} = \frac{0.6}{0.73} \times 1569 = 1290 \text{N}, \text{ (132kgf)}$$ Therefore, with this bearing arrangement, the axial load $F_{\rm ae}+\frac{0.6}{Y_{\rm II}}$ $F_{\rm r\,II}$ is applied on bearing I but not on bearing II . For bearing I $$F_{r\text{I}}=1~569\text{N},~\text{\{160kgf\}}$$ $$F_{aI} = 3 474 \text{N}, \text{ (354kgf)}$$ since $$F_{\rm aI} / F_{\rm rI} = 2.2 > e = 0.83$$ the dynamic equivalent load $P_{I} = XF_{rI} + Y_{I}F_{aI}$ $$= 0.4 \times 1569 + 0.73 \times 3474$$ = 3 164N, (323kgf) The fatigue life factor $f_h = f_n \frac{C_r}{D_r}$ $$= \frac{0.42 \times 38\ 000}{3\ 164} = 5.04$$ and the rating fatigue life $L_{\rm h} = 500 \times 5.04^{\frac{10}{3}} = 109$ 750h For bearing II since $F_{r_{\, {\rm II}}}=3~931{ m N},~$ (401kgf), $F_{a_{\, {\rm II}}}=0$ the dynamic equivalent load $$P_{\Pi} = F_{r\Pi} = 3\,931\,\text{N}, \,\,\,\text{(401kgf)}$$ the fatigue life factor $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P_{\rm T}} = \frac{0.42 \times 43\ 000}{3\ 931} = 4.59$$ and the rating fatigue life $L_{\rm h} = 500 \times 4.59^{\frac{10}{3}} = 80~400 h$ are obtained Remarks For face-to-face arrangements (DF type), please contact NSK. #### (Example 6) Select a bearing for a speed reducer under the following conditions: Operating conditions Radial load $F_r = 245~000N$, (25 000kgf) Axial load $F_a = 49 \, 000 \, \text{N}$, (5 000kgf) Speed Size limitation $n = 500 \text{min}^{-1}$ Shaft diameter: 300mm Bore of housing: Less than 500mm In this application, heavy loads, shocks, and shaft deflection are expected; therefore, spherical roller bearings are appropriate. The following spherical roller bearings satisfy the above size limitation (refer to Page B196) | d | D | В | Bearing No. | Basic dyl
load ra
$C_{ m r}$
(N) | | Constant $oldsymbol{e}$ | Factor Y_3 | |-----|------------|-----|--------------------------|---|--------------------|-------------------------|--------------| | 300 | 420 | 90 | 23960 CAE4 | 1 230 000 | 125 000 | 0.19 | 3.5 | | | 460 | 118 | 23060 CAE4 | 1 920 000 | 196 000 | 0.24 | 2.8 | | | 460 | 160 | 24060 CAE4 | 2 310 000 | 235 000 | 0.32 | 2.1 | | | 500
500 | | 23160 CAE4
24160 CAE4 | | 273 000
315 000 | 0.31
0.38 | 2.2
1.8 | since $F_a/F_r = 0.20 < e$ the dynamic equivalent load P is $$P = F_r + Y_3 F_2$$ Judging from the fatigue life factor f_h in Table 5.1 and examples of applications (refer to Page A25), a value of f_h between 3 and 5 seems appropriate. $$f_h = f_n \frac{C_r}{P} = \frac{0.444 \ C_r}{F_r + Y_3 F_a} = 3 \text{ to } 5$$ Assuming that $Y_3 =$ 2.1, then the necessary basic load rating $C_{\rm r}$ can be obtained $$C_{\rm r} = \frac{(F_{\rm r} + Y_3 F_{\rm a}) \times (3 \text{ to } 5)}{0.444}$$ $$= \frac{(245\ 000 + 2.1 \times 49\ 000) \times (3\ to\ 5)}{0.444}$$ $= 2\ 350\ 000\ to\ 3\ 900\ 000\ N,$ {240 000 to 400 000 kgf} The bearings which satisfy this range are 23160CAE4, and 24160CAE4. ### 6. LIMITING SPEED The speed of rolling bearings is subject to certain limits. When bearings are operating, the higher the speed, the higher the bearing temperature due to friction. The limiting speed is the empirically obtained value for the maximum speed at which bearings can be continuously operated without failing from seizure or generation of excessive heat. Consequently, the limiting speed of bearings varies depending on such factors as bearing type and size, cage form and material, load, lubricating method, and heat dissipating method including the design of the bearing's surroundings. The limiting speeds for bearings lubricated by grease and oil are listed in the bearing tables. The limiting speeds in the tables are applicable to bearings of standard design and subjected to normal loads, i. e. $C/P \ge 12$ and $F_a/F_r \le 0.2$ approximately. The limiting speeds for oil lubrication listed in the bearing tables are for conventional oil bath lubrication. Some types of lubricants are not suitable for high speed, even though they may be markedly superior in other respects. When speeds are more than 70 percent of the listed limiting speed, it is necessary to select an oil or grease which has good high speed (Refer to) characteristics. Table 12.2 Grease Properties (Pages A110 and 111) Table 12.5 Example of Selection of Lubricant for Béaring Operating Conditions (Page A113) Table 15.8 Brands and Properties of Lubricating Grease (Pages A138 to A141) #### 6.1 Correction of Limiting Speed When the bearing load P exceeds 8 % of the basic load rating C, or when the axial load F_a exceeds 20 % of the radial load F_r , the limiting speed must be corrected by multiplying the limiting speed found in the bearing tables by the correction factor shown in Figs. 6.1 and 6.2. When the required speed exceeds the limiting speed of the desired bearing; then the accuracy grade, internal clearance, cage type and material, lubrication, etc., must be carefully studied in order to select a bearing capable of the required speed. In such a case, forced-circulation oil lubrication, jet lubrication, oil mist lubrication, or oil-air lubrication must be used. If all these conditions are considered. The maximum permissible speed may be corrected by multiplying the limiting speed found in the bearing tables by the correction factor shown in Table 6.1. It is recommended that NSK be consulted regarding high speed applications. ## 6.2 Limiting Speed for Rubber Contact Seals for Ball Bearings The maximum permissible speed for contact rubber sealed bearings (DDU type) is determined mainly by the sliding surface speed of the inner circumference of the seal. Values for the limiting speed are listed in the bearing tables. Fig. 6.2 Limiting Speed Correction Factor for Combined Radial and Axial Loads Table 6.1 Limiting Speed Correction Factor for High-Speed Applications | Bearing Types | Correction
Factor | |---|----------------------| | | | | Cylindrical Roller Brgs.(single row) | 2 | | Needle Roller Brgs.(except broad width) | 2 | | Tapered Roller Brgs. | 2 | | Spherical Roller Brgs. | 1.5 | | Deep Grooove Ball Brgs. | 2.5 | | Angular Contact Ball Brgs.(except matched bearings) | 1.5 | | | | ### 7. BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS #### 7.1 Boundary Dimensions and Dimensions of Snap Ring Grooves #### 7.1.1 Boundary Dimensions The boundary dimensions of rolling bearings, which are shown in Figs.7.1 through 7.5, are the dimensions that define their external geometry. They include bore diameter d, outside diameter D, width B, bearing width(or height) T, chamfer dimension r, etc. It is necessary to know all of these dimensions when mounting a bearing on a shaft and in a housing. These boundary dimensions have been internationally standardized (ISO15) and adopted by JIS B 1512 (Boundary Dimensions of Rolling Bearings). The boundary dimensions and dimension series of radial bearings, tapered roller bearings, and thrust bearings are listed in Table 7.1 to 7.3 (Pages A40 to A49). In these boundary dimension tables, for each bore number, which prescribes the bore diameter, other boundary dimensions are listed for each diameter series and dimension series. A very large number of series are possible; however, not all of them are commercially available so more can be added in the future. Across the top of each bearing table (7.1 to 7.3), representative bearing types and series symbols are shown (refer to Table 7.5, Bearing Series Symbols, Page A55). The relative cross-sectional dimensions of radial bearings (except tapered roller bearings) and thrust bearings for the various series classifications are shown in Figs. 7.6 and 7.7 respectively. ### 7.1.2 Dimensions of Snap Ring Grooves and Locating Snap Rings The dimensions of Snap ring grooves in the outer surfaces of bearings are specified by ISO 464. Also, the dimensions and accuracy of the locating snap rings themselves are specified by ISO 464. The dimensions of snap ring grooves and locating snap ring for bearings of diameter series 8, 9, 0, 2, 3, and 4, are shown in Table 7.4 (Pages A50 to A53). Fig. 7.1 Boundary Dimensions of Radial Ball and Roller Bearings Fig. 7.6 Comparison of Cross Sections of Radial Bearings (except Tapered Roller Bearings) for various Dimensional Series Fig. 7.2 Tapered Roller Bearings Fig. 7.3 Single-Direction Thrust Ball Bearings Fig. 7.4 Double-Direction Thrust Ball Bearings Fig. 7.5 Spherical Thrust Roller Bearings Fig. 7.7 Comparison
of Cross Sections of Thrust Bearings (except Diameter Series 5) for Various Dimension Series | r Bearings) | |---| | 99
92 | | lapered | | (except | | lial Bearings (except Tapered Koller Be | | r Kadial | | Jimensions of Kadia | | dary Di | | Boundary D | | - | | lable / | | Single-Row
Ball Brgs. | Double-Row Ball
Brgs.
Cylindrical Roller
Brgs. | Needle
Brg | Spherica
Brg | 1 | | re Nu
<i>a</i> | | 0 - | 3 2 | | L 8 6 | 0000 | | | | | | 15 7
16 8
17 8 | | |--------------------------|---|---------------|------------------|-----------------|---------------------|-------------------|----------|-----------------------|---------------------|---------------------|--------------------------|-------------------------|----------------|---------------------------------------|------------------------------|---------------------------|------------------------|--|---| | 3rgs. | Row Ball
JS.
al Roller | Roller
1S. | al Roller
IS. | | | q | | 0.6
1 2.5
1.5 3 | 352 | 4 7
5 8
6 10 | 7
8
112
9
14 | 10 15
12 18
15 21 | 23 27 - 23 | 25 32
28 —
30 37 | 1 | ₹ 6 iè | 888 | 75
80

85 | 929 | | _ | | | | Dian | | 17 | | 3212
 | 5 1.5
6 2 | 7 2
8 2
0 2.5 | 2.5 | | 44 | 4 4 | 111 | 111 | 111 | | 11 | | | | | | Diameter Series | Dimension Series | 27 | В | 111 | 2.5 | | | 111 | 111 | 111 | 111 | 111 | | 111 | 1.1 | | | | | | eries . | ion Se | 37 | | 115 | 3.3 | ი ი ი
ნ | ಬ.ಬ.4
ದ:ದ:ದ: | | ا ماما | ي ا ي | 111 | 111 | 111 | 111 | 11 | | | | | | 7 | ries | 17~37 | min.) | 0.05 | 0.05 | 0.08
0.08
0.1 | 0.00 | 0.2 | 0.2 | 0.2 | 111 | 111 | 111 | 111 | 1.1 | | | | | | | | D | _ | 2.
3.
4. | 5 4 | 9 = 12 | 14
17 | 19
24 | 26
32
34 | 37
40
42 | 44
47
52 | 58
65
72 | 78
85
90 | 95
110 | 115 | | | | | | | | 80 | | 111 | 111 | 111 | 111 | 111 | 4 4 | 444 | 444 | 400 | ~ ~ 8 | 0000 | 00 | | 89 | | | | | | 18 | | 1.2 | 2 1.5 | 3.5 | 3.5 | വവവ | 7 2 | ~~~ | ~~~ | 7 / 6 | 200 | 1111 | 55 55 | | | N28 | | | Diar | Dimen | 28 | | 111 | 111 | 8.4 c | വവവ | 999 | ωω | ∞ ∞ | ∞ ∞ | 801 | 212 | 5.5.6 | 919 | | \exists | NN38 | | | neter (| Dimension Series | 88 | В | 2 1.5 | 2.3 | 409 | 999 | ~~~ | 701 | 999 | 999 | 1320 | 4 1 1 2 1 | 10 11 12 | 19 | | | NN48 | NA48 | | Diameter Series | eries | 8 | | 111 | 111 | | I ^{∞ ∞} | თთთ | 17 | 12 | 122 | 1123 | 18
20
20 | 20
25
25 | 25 | | \dashv | \vdash | | | ∞ | | 28 | | 111 | 111 | 111 | 111 | 111 | 199 | 919 | 9199 | 18
23
23 | 24
27
27 | 27
27
34 | 8 8 | | \dashv | \vdash | | | | | 89 | | 111 | 111 | 111 | 111 | 111 | 22 | 222 | 888 | 8238 | 888 | 888 | ₹9 £ | | \exists | | | | | Dimension
Series | 80 | r (min.) | 111 | 111 | 111 | 111 | 111 | 0.3 | 0000 | 0000 | 003 | 003 | 003 | 0.3 | | | | | | | sion s | 18~8 | <u>:</u> | 0.05 | 0.08
0.08
0.1 | 0.1
0.15
0.15 | 0.15
0.2
0.2 | 000
000
000 | 0.3 | e e e e e e e e e e e e e e e e e e e | 003
033 | 0.3 | 0.0 | 0.6 | | | \dashv | \vdash | | | | | D Q | | 4 2 | 9 / 8 | 121 | 17
20 | 27 57 58 58 | 30 | 42
45
47 | 52
55
62 | 68
72
80 | 85
100 | 105
110
120 | 125 | | | ² | | | | | 09 | | 111 | 111 | 111 | 111 | 111 | 1 ~ ~ | ~~~ | ~ ~ ~ « | 0000 | 000 | 222 | === | | 92° | N 91N | | | | Ö | 19 2 | | 2 2 | 3.5 | 440 | 000 | 991 | 200 | 000 | 222 | 222 | 555 | 116 | 18 | | \dashv | NZ9
NN | | 2 | Ö | imensi | 29 3 | | | 111 | | | 888 | 11.8.5 | === | 55.4 | 4 4 6 | 16
19
19
23 | 19 23
22 26
26 26 | 22 26 | | \dashv | NN 39 | Ž | 239 | Diameter Series | Dimension Series | 39 4 | В | 2.3 | 0.54 | 7 1 1 1 | 7 6 6 | 200 | 055 | 000 | 15 2 2 2 2 2 | 16
2
2
2
2 | | | | | \dashv | NN49 | NA49 NA | | r Serie | ies | 49 5 | | 111 | 111 | 166 | 2== | 555 | 13 2 17 2 | 11
2
17
2
2 | 20 22 22 3 | 22
22
32
25
3 | 25
25
30
4 | 30 35 4 4 4 | 35 4 | | \dashv | \vdash | NA59 NA | | 8 g | | 29 69 | | 1 1 1 | 111 | 111 | 111 | 916 | 23 32 23 | 3333 | 272 | 300 4 4 4 4 4 4 | 444 | 40 40 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60 | 46 69 | | _ | | NA69 | | | Di. | 60 6 | | 1 1 1 | 111 | 111 | 111 | 22 | 30 0.3 | 30003 | 36
36
0.3
40
0.3 | 40
0.3
45
0.3 | 45
0.0
54
0.0 | 54 0.6 | 63 0.6 | | | | | | | nensio | 9 19~39 | r (min.) | 100 | 000 | 0.15 | 0000 | 0000 | 00.00 | 0000 | 3 0.6 | 3 0.6 | 000 | 6 6 6 7 1 1 1 | 1.1 | | | | | | | Dimension Series | 64 | n.) | 1 - 1 - 1 | 111 | 5
0.15
0.15 | 0.15
0.2
0.3 | 00.00 | 00.00 | 0000 | 0.0
0.6
0.6 | 0.6 | | = | ======================================= | | | | | | | Si | -69 D | | 9 | 7 8 6 | 5 7 7 7 7 | 222 | 328 | 35 | 47
52
55 | 62
68
68 | 75
80
90 | 100 | 115
125
130 | 140 | | 160 | | | | | | 8 | | 111 | | | | 1 ~ ∞ | ∞ ∞ ∞ | 0000 | 000 | 292 | ===== | £ 4 4 | 9 9 | | 88 | N10 | | | | | 10 | | 2.5 | 3.88 | 4 10 0 | 9 ~ ~ | ∞ ∞ o | 127 | 127 | 545 | 999 | 8 8 8 | 222 | 24 | | | NZ0 | | | Ö | Dime | 20 | | 111 | 111 | 1.1.1 | 80£ | 297 | 244 | 4 5 9 | 9178 | 223 | 222 | 24 27 27 | 88 | | | NN30 | | 230 | amete | Dimension Series | 8 | В | m | 3.5 | 9 / 6 | 1110 | 212 | 4 9 9 | 91 8 6 | 20 21 21 | 23
26
26 | 26
30 | 34 38 | 37 | | | NN40 | | 240 | Diameter Series | Series | 40 | | 111 | 111 | 1.1.1 | 14 5 | 16
16
17 | 18
22
22 | 22
24
25 | 26
27
28 | 888 | 8889 | 42 49 | 20 | | | | | | 0 8 | | 20 | | 111 | 1.1.1 | 1.1.1 | 192 | 23 | 388 | 3433 | 3833 | 8 4 4 | 46
54
54 | 60 624 | 67 | | | | | | | | 09 | | 111 | 111 | 1.1.1 |
25
27 | 30 33 | 84 93 | 43 49 | 44
20
20 | 63 54 | 63 17 | 1288 | 88 | | | | | | | Dimension
Series | 8 | r (min.) | 111 | $\bot\bot\bot\bot$ | +++ | \perp | 0.3 | 0.3 | 0.3 | 000 | 9:0 | 0.6
0.6
0.6 | 9.0 | | | 130 9 13 16 19 25 140 10 16 19 23 30 10 16 19 23 30 | 175 11 18 22 26 35 190 13 20 24 30 40 | 200 13 20 24 30 40 205 14 22 27 34 45 25 14 22 27 34 45 | 240 16 24 30 37 50 250 16 24 30 37 50 270 16 24 30 37 50 | 320 19 28 36 45 60
320 19 28 36 45 60
350 22 33 42 52 69 | 380 25 38 48 60 80 400 25 38 48 60 80 420 25 38 48 60 80 | 440 25 38 48 60 80 14 | 540 31 46 60 75 100 15 100 15 100 15 100 15 100 11 | 620 37 56 72 90 118 11 650 37 56 72 90 118 11 118 11 | 680 37 56 72 90 118 1 730 42 60 78 98 128 1 780 48 69 88 112 150 2 | 820 48 69 88 112 150 2 870 50 74 95 118 160 2 920 54 78 100 128 170 2 | 980 57 82 106 136 180 23 030 57 82 106 136 180 22 090 60 85 112 140 190 22 | 1150 63 90 118 150 200 272 120 71 100 128 165 218 300 128 71 100 128 165 218 300 | 1360 78 106 140 180 243 325 1420 78 106 140 180 243 325 1500 80 112 145 186 250 335 | 00 88 122 166 206 280 375 00 96 132 176 224 300 400 00 - 140 186 243 315 - | 2066 — 155 200 265 345 — 2066 — 160 206 272 355 — 2180 — 166 218 290 375 — | 2300 — 175 230 300 400 — 2430 — 190 250 325 425 — | |---|---|--|---|--|--|---
---|---|--|---|--|--|---|--|---|--| | 13 16 19 25
16 19 23 30
16 19 23 30 | 18 22 26 20 20 20 24 30 24 30 | 20 24 30
22 27 34
22 27 34 | 24 30 37
24 30 37
24 30 37 | 28 36 45
28 36 45
33 42 52 | 38 48 60
38 48 60
38 48 60 | 38 48 60 80
46 60 75 100
46 60 75 100 | 46 60 75
46 60 75
56 72 90 | 56 72 90 118
56 72 90 118
56 72 90 118 | 56 72 90 118
60 78 98 128
69 88 112 150 | 69 88 112 150
74 95 118 160
78 100 128 170 | 82 106 136 180
82 106 136 180
85 112 140 190 | 90 118 150 200
100 128 165 218
100 128 165 218 | 106 140 180 243
106 140 180 243
112 145 185 250 | 122 165 206 280
132 175 224 300
140 185 243 315 | 155 200 265 345 160 206 272 355 165 218 290 375 | 175 230 300 400
190 250 325 425 | | 16 19 25 30 19 25 30 30 30 30 30 30 30 30 30 30 30 30 30 | 22 28
24 28
30 86 | 27.72 | 33333 | 38
36
45
52
52 | 8484 | 48 60 80
60 75 100
60 75 100 | 60
75
75
90
90
90 | 72 90 118
72 90 118
72 90 118 | 72 90 118
78 98 128
88 112 150 | 88 112 150
95 118 160
100 128 170 | 106 136 180
106 136 180
112 140 190 | 118 150 200
128 165 218
128 165 218 | 140 180 243
140 180 243
145 185 250 | 165 206 280
175 224 300
185 243 315 | 200 265 345
206 272 355
218 290 375 | 230 300 400
250 325 425 | | 19
23
30
30
30 | 888 | 888 | 33,33 | 52 45 | 888 | 60
75
70
75
100 | 9833 | 90 00 118 118 118 118 118 118 118 118 118 | 90 118
98 128
112 150 | 112 150
118 160
128 170 | 136
136
140
140 | 150 200
165 218
165 218 | 180 243
180 243
185 250 | 206 280
224 300
243 315 | 265 345
272 355
290 375 | 300 400
325 425 | | | 35
40 | 444 | 222 | | 888 | 866 | | | 118
128
150 | 150
160
170 | | | | | | | | | വവവ | 220 | 000 | 000 | 000 | | 008 | | | | | | | | | | | 요용용 | 848 | 72,88 | 67 | 888 | 888 | 888 | 888 | 888 | 160
175
200 | 200
218
230 | 243 | | | 10.0 | | | | 422
422 | 882 | £88
2 | 888 | 109 | 9 145 | 180 | 2180 | 218 | 218
5 236
0 272 | 388 | 325 345 345 | 400 835 | 4588 | 545 | 111 | 1.1 | | 0.00 | 0.00 | 0.0 | | | 10 10 10
10 10 10 | 2 2 2 2 | 222 | 2.1.1 | 3 3 2 7 | ω44 | 440 | വവവ | 0 2 2 | 99 | 111 | 11 | | | 222 | 222 | C C C | 222 | 2.17 | 22.1 | 22.2 | ოოო | ωω4 | 440 | വവവ | 0 0 0 | 999 | 6
7.5
7.5 | 7.5
7.5
9.5 | 9.5 | | 145
150
165 | 180
190
210 | 220
230
250 | 260
280
300 | 320
360
380 | 420
440
460 | 480
520
540 | 560
600
620 | 650
670
710 | 750
800
850 | 900
950
1000 | 1060
1120
1180 | 1250
1320
1400 | 1460
1540
1630 | 1720
1820
1950 | 2060
2180
2300 | 2430
_ | | 554 | 99 60 | 61 62 | 2525 | 3333 | 3333 | ⊗ 4 4 | 488 | 의절절 | 887 | 2228 | 8888 | 855 | 115 | 178 | 111 | 11 | | 22 20 | 24 28 28 | 3388 | 888 | 46
46
46 | 290 | 8888 | 24 4 8 | 78 78 82 | 100 | 103
106
112 | 118 | 152 | 2,62 | 138
198
198
198 | 200
212
218 | 730 | | 2442 | 888 | 888 | 488 | 888 | 222 | 882 | 8888 | 555 | 112
118
128 | 841
841
841 | 05.15
198
198
198
198
198
198
198
198
198
198 | 172
188
198
198 | 195
206
218 | 230
243
258 | 286
280
290 | 88 | | 34 30 | 37
45 | 42
52 | 92
90
90
90 | 60
75
75 | 888 | 901 | 108
118
118 | 128
128
136 | 140
150
165 | 170
180
185 | 195
200
206 | 224
236
250 | 250
272
280 | 335 | 345
375 | 9 1 | | 444 | 922 | 999 | 888 | 800 | 2
2
2
3
8
8
8 | 118
140
140 | 140
160
160 | 021
180
180 | 190
200
218 | 230
243
250 | 258
272
280 | 300
315
335 | 335
355
375 | 400
425
450 | 462
475
500 | 230 | | 6 5 5 5 | 67
67
80 | 888 | 96
109
109 | 136
136 | 091
091 | 09E
06E | 190
218
218 | 230
230
243 | 258
272
300 | 308
325
335 | 355
365
375 | 400
438
462 | 462
488
515 | 545 | 111 | 1.1 | | 177 | 886 | 109
125 | 125
145
145 | 180
180
180
180 | 218
218
218 | 218
250
250 | 250
290
290 | 308
308
325 | 345
355
400 | 412
438
450 | 462
488
500 | 545
580
615 | 615
650
690 | 710 | 1.1.1 | 11 | | 9.0 | | | <u> </u> | 1.5 | 2.1 | 3 3 | ω44 | 444 | വവവ | യവവ | 999 | 6 7.5 | 7.5
7.5
7.5 | 7.5 | 111 | 1.1 | | 222 | 1.5 | 222 | 2.1
2.1 | 2.1 | ოოო | w44 | 444 | വവവ | യവവ | 999 | 999 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 7.5
9.5
9.5 | 9.5
9.5 | 12 — | | 222 | 2 1 15 | 222 | 2.1
2.1 | 2.1 | ოოო | w44 | 444 | വവവ | ഉവവ | 999 | 999 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 7.5
9.5
9.5 | 9.5
9.5 | 12 | | 160
170
180 | 200
210
225 | 240
260
280 | 290
310
340 | 360
400
420 | 460
480
520 | 540
560
600 | 620
650
680 | 700
720
780 | 820
870
920 | 980
1030
1090 | 1150
1220
1280 | 1360
1420
1500 | 1580
1660
1750 | 1850
1950
2120 | 2240
2360
2500 | 1.1 | | 855 | 22 24 | 25
28
31 | 334 | 7844 | 50 | 57
63 | 63 | 171 | 82
85
92 | 103 | 112
118
122 | 132
136
140 | 145 | 111 | 111 | 1.1 | | 888 | 888 | 8438 | 22 29 29 29 29 29 29 29 29 29 29 29 29 2 | 888 | 844 | 888 | 825 | 100 | 118 | 129 | 155 | 888 | 200
212
218 | 230
243
272 | 280
308
308 | 11 | | 38 33 | 45
45 | 848 | 60
66
72 | 72
82
82 | 92 | 106 | 118
122
128 | 128
128
145 | 150
155
170 | 185 | 200
212
218 | 236
243
250 | 265
272
290 | 300 | 365
375
400 | 1.1 | | 14 4
46 | 22 22 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 | 60 67 74 | 75
82
90 | 104 | 118 | 134
148 | 150 | 165 | 195
200
212 | 220 | 258
272
280 | 308 325 325 | 345
355
375 | 400
412
462 | 475
500
530 | 1.1 | | 989 | 69 | 886 | 109 | 140
140
140
140 | 668 | 200
200
200
200
200 | 200
212
218 | 218
218
250 | 258
272
290 | 308
315
335 | 345
365
375 | 412
412
438 | 462
475
500 | 530
545
615 | 690 | 1.1 | |
75
80
80 | 95
100 | 109
122
136 | 136
150 | 9616 | 218
218
243 | 243
243
272 | 272
280
300 | 335 | 355
365
388
388 | 425
438
462 | 475
500
515 | 560
560
600 | 615 | 1.1.1 | 1.1.1 | 11 | | 0000 | 125
125
136 | 180 | 180
200
218 | 218
250
250 | 290
290
325 | 325
325
355 | 355
375
400 | 400
420
420 | 462
488
515 | 560
580
615 | 630
670
690 | 730 | 825
875
— | 111 | 1.1.1 | 11 | | | ==== | 1.5 | 2 2 2.1 | 3 3 3.1 | 444 | 446 | വവവ | യവവ | 999 | 6 7.5 | 7.5 | 7.5
7.5
9.5 | 9.5 | 1.1.1 | 1.1.1 | 1.1 | | | | 000 | 2,2,6 | w 4 4 | 440 | വവവ | 0 0 0 | 999 | 6 7.5 | 7.5
7.5
7.5 | 7.5 | 7.5 | 99.55 | 122 | 15 | 1.1 | The chamfer dimensions listed in this table do not necessarily apply to the following chamfers: (a) Chamfers of the grooves in outer rings that have snap ring grooves. (b) For thin section cylindrical roller bearings, the chamfers on side without rib and bearing bore (in case of an inner ring) or outer surface (in case of an outer ring). (c) For angular contact ball bearings, the chamfers between the front face and bore (in case of an inner ring) or outer surface (in case of an outer ring). (d) Chamfers on inner rings of bearings with tapered bores. 2 Table 7. 1 Boundary Dimensions of Radial Bearings (except Tapered Roller Bearings) Units: mm | U | | | | | | ie s | 24 | = | | | | | | | | | | • | | | | |--------------------|--------------------------|---------------------|-------------------|---------------------------|-------------------|---------------------|-------|----------|-----|---|-------|---------------------|----------------|----------------------|--|--------------------|--------------------|--|----------------------|----------------------|----------------------| | | | | | | s 4 | Dimension
Series | 04~24 | (min.) | 11 | | | | 9:0 | 1.1 | == | 7: 1 5: | | | 2.2.2 | ωω4 | 444 | | | | | | | r Serie | Dimension
Series | 24 | В | 11 | | 1 1 1 | 111 | 141 | 16
19
24 | 33 | 36 | 143 | 53 | 944 | 77
88
86 | 888 | | 74 | 104 | N 4 | | | Diameter Series 4 | Dim | 8 | | П | I | 1 1 1 | 111 | 161 | 122 | 19 | 21 23 | 25
27 | 33 33 | 35
37
42 | 45
48
52 | 52 22 28 | | | | | | | Ī | | D | | 1.1 | I | 1.1.1 | 111 | 32 3 | 37
42
52 | 62 72 — | 80 06 | 100 | 120
130
140 | 150
160
180 | 190
200
210 | 225
240
250 | | | | | | | | Dimension
Series | 03~33 | in.) | П | I | 0.2 | 0.3 | 0.3 | 1.06 | -55 | 222 | - | 1.5 | 2.1 | 2.1 | ოოო | | | | | | | | Dimer | 83 | * (min.) | 11 | ı | 111 | 111 | 111 | 0.3 | 9.0
9.0
0.6 | 9.0
9.0
0.6 | 0.6 | | <u> </u> | 1.5 | 227 | | 633 | 3323 | N 33 | | | _ | | 33 | | 1.1 | l | _ | e 5 E | 5 5 9 | £ £ £ | 22.2
22.2
25 | 25.4
30
30.2 | 32
34.9
36.5 | 39.7
44.4
49.2 | 54
58.7
63.5 | 68.3
73 | 73
77.8
82.6 | | 623 | 43 | N 23 | | 223 | Series 3 | ries | 23 | | 11 | ı | 1 1 1 | = | 554 | 777 | 19 | 222 | 8338 | 848 | 248 | 883 | 45°E | | | | | | | Diameter Series | Dimension Series | 13 | В | 11 | ı | 1 1 1 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1 2 | | 32 | 13 | N 3 | | 213 | ä | Dimer | 83 | | 11 | ı | ۱ ا | 7 6 5 | o o 0 | 122 | 4 5 9 | <u>19 8 6</u> | 828 | 3272 | 883 | 4833 | 844 | | | | | | | | | 88 | | 11 | ı | 1.1.1 | 111 | 111 | 000 | 199 | 225 | 4 4 9 | 13 | 22
24
25 | 27
28
30 | 3833 | | | | | | | | | D | | 1.1 | I | 5 | 16
13
22 | 28
30 | 35
37
42 | 47
52
56 | 62
68
72 | 75
80
90 | 120 | 130
150 | 160
170
180 | 190
200
215 | | | | | | | | sion | 02~42 | n.) | 1.1 | ı | 0.15 | 000 | 0000 | 9:0 | 0.0 | | | | <u> </u> | 2 2 2 | 2.1 | | | | | | | | Dimension
Series | 82 (| r (min.) | 11 | ı | 1 1.0 | 0.15
0.15
0.2 | 0000 | 0000 | 0000 | 0.0 | 9.0 | 9.0 | | | 1.1.1. | | | | | | | | | 42 | | 11 | | 1 1 1 | 111 | 111 | 1 1 8 | 22.22 | 3823 | 888 | 888 | 22 22 22 | 888 | 8 7 8 | | 632 | 52 | N 32 | | 232 | 3s 2 | | 32 | | 11 | ı | ا ا م | 7 8 OI | 125 | 14.3
15.9
15.9 | 17.5
20.6
20.6 | 20.6
23
23.8 | 25
27
30.2 | 30.2
30.2
33.3 | 36.5
38.1
39.7 | 41.3
44.4
49.2 | 52.4
55.6
60.3 | | 622 | 42 | N 22 | | 222 | Diameter Series 2 | Dimension Series | 22 | | 11 | ı | 1 1 1 | 111 | 111 | 222 | £ € € | 8568 | 222 | 222 | 338 | 883 | 848 | | | | | | | Diamet | nensior | 12 | В | 11 | ı | 1 1 1 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | | | 25 | 12 | N 2 | | | | D. | 02 | | 11 | | 4 | യവവ | ~ ∞ ∞ | 601 | 2 4 4 | 19 9 9 | 12 12 12 | 19
20
21 | 23 24 | 25
26
28 | 34 33 33 | | | | | | | | | 82 | | 11 | | 2.5 | 6 8 4
5 5 | 0 2 2 | ~ ~ 8 | | 555 | 12 2 2 | 554 | 9 8 8 | 12 13 | 25 4 22 | | | | | | | | | D | | 1.1 | ı | 1 2 | 13 | 22
24
26 | 30
35
35 | 40
50 | 52
58
62 | 65
72
80 | 100 | 110
120
125 | 130
150 | 160
170
180 | | | | | | | | sion | 11~41 | (. | 1.1 | ı | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 222 | | | | | | | | Dimension
Series | 1 10 | r (min.) | 11 | ı | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | = | | | | | | 241 | | | 41 | | 11 | ı | 1.1.1 | 111 | 4 5 9 9 1 | 8 8 8 | 848 | 227 28 | 888 | 888 | 844 | 2222 | 888 | | | | NN 31 | | 231 | Series 1 | Series | 31 | | 1.1 | ı | 1 | 1 ~ 0 | 122 | 444 | ₹
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 2021 | 883 | 888 | 888 | 4333 | 25 25 | | | | _ | | | Diameter S | sion Se | 21 | В | 1.1 | ı | 111 | [∞] | e55 | 222 | 5179 | 9178 | 19
22 | 27 57 54 54 54 54 54 54 54 54 54 54 54 54 54 | 24
27
27 | 885 | 8888 | | | | | | | Dia | Dimension | 1 | | 11 | ı | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1 08 | | | | | | | | | 10 | | 11 | ı | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 21 | | | | | _ | - L | | | D | | 1.1 | I | 1.1.1 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 150
160
165 | | Ile-Row
I Brgs. | Double-Row
Ball Brgs. | ndrical
er Brgs. | le Roller
rgs. | Spherical Roller
Brgs. | | | q | | 0.6 | 0 | 2.5 | 4 12 9 | 7
8
9 | 121 | 20 27 | 25
28
30 | 32
40
40 | 45
50
55 | 992 | 75
80
85 | 90
100 | | Sing
Bal | Doul | Roll | Need | Spheri | 1 | əqwr | те Иг | og | - | ı | 3 5 | 4 5 9 | 8 6 | 010 | 03 | 02
08
06 |)32
07
08 | 110 | 13 13 | 15 | 18
20 | | 4 4 0 | വവവ | യവവ | 999 | 6
7.5
7.5 | 7.5
9.5
9.5 | 9.5
9.5 | 12 12 | 15 15 | 12 12 12 | 1 12 | 111 | 111 | 111 | 1.1 | |--------------------------|-------------------|----------------------------|--|--|-------------------|-------------------------|---------------------|----------------------|----------------------|----------------------|----------------------|------------------------|-------------------------|-------| | 108 | 128
132
138 | 142
145
150 | 155
160
180 | 190
206
224 | 236
250
265 | 280
300
315 | 325
335
345 | 365
375
400 | 412
438
450 | 475 | 111 | 111 | 111 | 1.1 | | 60
65
72 | 78
82
85 | 88
92
95 | 98
102
115 | 122
132
140 | 150
155
165 | 180 | 206
212
218 | 230
236
250 | 258
272
280 | 290 | 111 | 111 | 111 | 1.1 | | 260
280
310 | 340
360
380 | 400
420
440 | 460
480
540 | 580
620
670 | 710
750
800 | 850
900
950 | 980
1030
1060 | 1120
1150
1220 | 1280
1360
1420 | 1500 | 1.1.1 | 1.1.1 | 111 | 1.1 | | ოოო | 444 | 444 | വവവ | 002 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 9.5 | 9.5
12
12 | 12 51 2 | 555 | 500 | € E | 111 | 1.1 | | 33.1 | ω4 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1 | | 87.3
92.1
106 | 112
118
128 | 130
140
150 | 155
180
180 | 195
206
224 | 236
258
272 | 290
300
308 | 315
345
365 | 375
388
412 | 438
462
488 | 515
530
560 | 630
630
650 | 670
710 | 111 | 1.1 | | 1288 | 88
102
108 | 114
120
126 | 132
138
145 | 155
165
175 | 185
200
212 | 224
230
243 | 250
265
280 | 290
300
325 | 335
355
375 | 400
412
438 | 462
488
500 | 515
545 | 111 | 1.1 | | 53
62 | 66
70
75 | 88
88 | 92
97
106 | 114
123
132 | 140
155
165 | 170
175
185 | 190
200
212 | 218
230
243 | 258
272
280 | 300
308
325 | 355
375
388 | 400 | 111 | 1.1 | | 22 69 | 58
65
65 | 98
72
75 | 888 | 102 | 109
112
118 | 125
128
136 | 136
145
155 | 160 | 190
200
206 | 218
224
236 | 258
272
280 | 290
300 | 111 | 1.1 | | 37
44 | 48
50
— | 111 | 111 | 1.1.1 | 111 | 1.1.1 | 1.1.1 | 111 | 111 | 111 | 1.1.1 | 111 | 111 | 1.1 | | 260
260
260
260 | 320
320
320 | 380
380
380 | 420
460
460 | 240
240
280 | 620
670
710 | 750
780
820 | 850
950
950 | 1030
1090 | 1150
1220
1280 | 1360
1420
1500 | 1600
1700
1780 | 1850
1950
— | 111 | 1.1 | | 22.1 | ოოო | w44 | 444 | 400 | 0 2 2 | 999 | 7.5 | 7.5
7.5
9.5 | 9.5
12.9 | 12 12 | 5 5 5 | 15 | 111 | 1.1 | | <u> </u> | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 11 | | 888 | 100 | 21
14
14
17
18 | 021
198
188 | 200
218
218 | 243
258
280 | 290
300
315 | 335
345
365 | 388
412
450 |
475
488
515 | 545
560
615 | 615
650
670 | 710 | 111 | 1.1 | | 65.1
69.8
76 | 888 | 104
110
112 | 120
128
144 | 160
174
176 | 192
208
224 | 232
240
256 | 272
280
296 | 310
336
355 | 365
388
412 | 438
450
475 | 488
515
515 | 230 | 111 | 11 | | 2222 | 2882 | 888 | 28.89 | 21
13
13
13
13
13
13
13
13
13
13
13
14
14
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | 140
165
165 | 170
175
185 | 195
200
212 | 224
243
258 | 272
280
300 | 315
325
345 | 355
375
388 | 412
425
— | 111 | 1.1 | | 42 | 46
50
54 | 58
62
62 | 65
70
78 | 82 | 98
105
118 | 122
132
140 | 150
155
165 | 170
185
200 | 206
212
230 | 243
250
265 | 272
280
300 | 315
330 | 111 | 1.1 | | 9889 | 40
42
45 | 48
52
52 | 228 | 72
80
80 | 95
92 | 98
103 | 109
112
118 | 125
136
145 | 150
155
165 | 175
180
195 | 200
206
218 | 230 243 | 111 | 1.1 | | 1 88 7 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1 | | 190
200
215 | 230
250
270 | 290
310
320 | 340
400 | 440
500 | 540
580
620 | 650
680
720 | 760
790
830 | 870
920
980 | 1030
1090
1150 | 1220
1280
1360 | 1420
1500
1580 | 1660
1750
— | 111 | 1.1 | | 222 | 2.1 | 3.11 | ωω 4 | 440 | വവവ | യവവ | 6
7.5 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 9.5
9.5
9.5 | 9.5 | 525 | रुरु | 500 | | <u></u> 5 | 1.5 | 22.1 | ოოო | 444 | വവവ | യവവ | 999 | 6
7.5
7.5 | 7.5
7.5
7.5 | 7.5
9.5
9.5 | 9.5
12
12 | 122 | 111 | 11 | | 888 | 885 | 80
81
81 | 24
12
13
13
13
13
13
13
13
13
13
13
13
13
13 | 888 | 200
218
243 | 243
243
250 | 288
300
300 | 308
325
335 | 355
375
400 | 412
438
475 | 475
500
515 | 545
580
600 | 630
670
710 | 750 | | 888 | 288 | 888 | 4
1
1
2
1
2
1
2
1 | 2
4
4
8 | 091
178
190 | 20
197
200
200 | 224
226
240 | 248
264
272 | 280
300
315 | 336
345
365 | 375
400
412 | 438
475 | 475
500
530 | 280 | | 442 | 48
60
60 | 66
66
72 | 78
82
88 | 95
106
106 | 118
128
140 | 140
145
145 | 165
165
175 | 180
190
195 | 206
218
230 | 243
250
272 | 272
290
300 | 315
335
345 | 365
388
400 | 425 | | 8833 | 38
40
46 | 51
56 | 65
69 | 74
82
82 | 90
100
100 | 106
106
112 | 122
122
132 | 136
145
150 | 160
170
175 | 185
195
206 | 212
224
230 | 243
258
265 | 280
290
308 | 325 | | | | | | | | | | | | | | | 111 | | | | | | | | | | | | | | | | 1750
1850
1950 | | | | | | | | | | | | | | | | 1120
1180
1250 | | | 25
24 | 26
30 | 32
34
36 | 38
44
44 | 48
52
56 | 64
68 | 72
76
80 | 88
92 | 96
/500
/530 | /560
/600
/630 | /670
/710
/750 | /820 | /950
/1000
/1060 | /1120
/1180
/1250 | /1320 | | | | | | | | | | | | | | | | | /1500 1500 2300 Table 7. 2 Boundary Dimensions of | Tap
Ro
Br | ller | | | | | 329 | | | | | | 32 | 0 X | | | | 330 | | | | | 33 | 31 | | | |----------------------|--------------------------|--------------------------|---|------------------------|-------------------|----------------------|----------------------|----------------------|-------------------|-------------------|-------------------|-----------------|----------------------|-----------------|----------------|----------------------|----------------|-------------------|-------------------|-------------------|----------------|---------------------|--------------------|-------------------|-------------------| | | | | | | Diam | eter Se | ries 9 | | | | | | | Diam | eter Se | ries 0 | | | | | Di | ameter | Serie | s 1 | | | per | | | | Dim | nensio | n Serie | s 29 | | Cha
Dime | mfer | | Dime | nsion S | Series | Dime | nsion S | Series | Cha | mfer | | Dime | nsion S | Series | Cha
Dime | mfer | | Bore Number | d | | | Ι | | | II | | Cone | l . | | | 20 | | | 30 | | Cone | | | | 31 | | Cone | | | Bor | | D | В | С | T | В | С | T | r (1 | min.) | D | В | С | Т | В | С | T | <i>r</i> (1 | min.) | D | В | С | T | r (1 | min.) | | 00
01
02 | 10
12
15 | = | Ξ | _
_
_ | _
_ | _
_
_ | _
_
_ | = | _
_
_ | _
_
_ |
28
32 | —
11
12 | _
_
_ |
11
12 | —
13
14 | _
_
_ | —
13
14 | | 0.3
0.3 | <u>-</u> | Ξ | _
_
_ | _
_
_ | _
_
_ | _
_ | | 03
04
/22 | 17
20
22 | —
37
40 | 11
— |
 -
 - | 11.6
— | 12
12 | 9
9 | 12
12 | —
0.3
0.3 | 0.3
0.3 | 35
42
44 | 13
15
15 | —
12
11.5 | 13
15
15 | 15
17
— | _
_
_ | 15
17
— | 0.3
0.6
0.6 | 0.3
0.6
0.6 | _
_
_ | Ξ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | | 05
/28
06 | 25
28
30 | 42
45
47 | 11
—
11 |
 -
 - | 11.6
—
11.6 | 12
12
12 | 9
9
9 | 12
12
12 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 47
52
55 | 15
16
17 | 11.5
12
13 | 15
16
17 | 17
—
20 | 14
—
16 | 17
—
20 | 0.6
1
1 | 0.6
1
1 | _
_
_ | Ξ | _
_
_ | = | _
_
_ | _
_
_ | | /32
07
08 | 32
35
40 | 52
55
62 | —
13
14 |
 -
 - | 14
15 | 15
14
15 | 10
11.5
12 | 14
14
15 | 0.6
0.6
0.6 | 0.6
0.6
0.6 | 58
62
68 | 17
18
19 | 13
14
14.5 | 17
18
19 | 21
22 | —
17
18 | —
21
22 | 1
1
1 | 1
1
1 | —
—
75 | _
_
26 | _
_
_
20.5 | _
_
26 | —
—
1.5 | _
_
1.5 | | 09
10
11 | 45
50
55 | 68
72
80 | 14
14
16 |
 -
 - | 15
15
17 | 15
15
17 | 12
12
14 | 15
15
17 | 0.6
0.6
1 | 0.6
0.6
1 | 75
80
90 | 20
20
23 | 15.5
15.5
17.5 | 20
20
23 | 24
24
27 | 19
19
21 | 24
24
27 | 1
1
1.5 | 1
1
1.5 | 80
85
95 | 26
26
30 | 20.5
20
23 | 26
26
30 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | | 12
13
14 | 60
65
70 | 85
90
100 | 16
16
19 | _
_
_ | 17
17
20 | 17
17
20 | 14
14
16 | 17
17
20 | 1
1
1 | 1
1
1 | 95
100
110 | 23
23
25 | 17.5
17.5
19 | 23
23
25 | 27
27
31 | 21
21
25.5 | 27
27
31 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 100
110
120 | 30
34
37 | 23
26.5
29 | 30
34
37 | 1.5
1.5
2 | 1.5
1.5
1.5 | | 15
16
17 | 75
80
85 | 105
110
120 | 19
19
22 |
 -
 - | 20
20
23 | 20
20
23 | 16
16
18 | 20
20
23 | 1
1
1.5 | 1
1
1.5 | 115
125
130 | 25
29
29 | 19
22
22 | 25
29
29 | 31
36
36 | 25.5
29.5
29.5 | 31
36
36 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 125
130
140 | 37
37
41 | 29
29
32 | 37
37
41 | 2
2
2.5 | 1.5
1.5
2 | | 18
19
20 | 90
95
100 | 125
130
140 | 22
22
24 | = | 23
23
25 | 23
23
25 | 18
18
20 | 23
23
25 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 140
145
150 | 32
32
32 | 24
24
24 | 32
32
32 | 39
39
39 | 32.5
32.5
32.5 | 39
39
39 | 2
2
2 | 1.5
1.5
1.5 | 150
160
165 | 45
49
52 | 35
38
40 | 45
49
52 | 2.5
2.5
2.5 | 2
2
2 | | 21
22
24 | 105
110
120 | 145
150
165 | 24
24
27 |
 -
 | 25
25
29 | 25
25
29 | 20
20
23 | 25
25
29 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 160
170
180 | 35
38
38 | 26
29
29 | 35
38
38 | 43
47
48 | 34
37
38 | 43
47
48 | 2.5
2.5
2.5 | 2
2
2 | 175
180
200 | 56
56
62 | 44
43
48 | 56
56
62 | 2.5
2.5
2.5 | 2
2
2 | | 26
28
30 | 130
140
150 | 180
190
210 | 30
30
36 |
 -
 | 32
32
38 | 32
32
38 | 25
25
30 | 32
32
38 | 2
2
2.5 | 1.5
1.5
2 | 200
210
225 | 45
45
48 | 34
34
36 | 45
45
48 | 55
56
59 | 43
44
46 | 55
56
59 | 2.5
2.5
3 | 2
2
2.5 | _
_
_ | Ξ | _
_
_ |
 -
 - | _
_
_ | _
_
_ | | 32
34
36 | 160
170
180 | 220
230
250 | 36
36
42 |
 -
 - | 38
38
45 | 38
38
45 | 30
30
34 | 38
38
45 | 2.5
2.5
2.5 | 2
2
2 | 240
260
280 | 51
57
64 | 38
43
48 | 51
57
64 | = | _
_
_ | _ | 3
3
3 | 2.5
2.5
2.5 | _
_
_ | Ξ | _
_
_ | = | _
_
_ | _
_
_ | | 38
40
44 | 190
200
220 | 260
280
300 | 42
48
48 | <u>-</u>
 <u>-</u> | 45
51
51 | 45
51
51 | 34
39
39 | 45
51
51 | 2.5
3
3 | 2
2.5
2.5 | 290
310
340 | 64
70
76 | 48
53
57 | 64
70
76 | = | _
_
_ | = | 3
3
4 | 2.5
2.5
3 | _
_
_ | = | _
_
_ | _
_
_ | _
_
_ | _
_
_ | | 48
52
56 | 240
260
280 | 320
360
380 | 48
—
— | = | 51
— | 51
63.5
63.5 | 39
48
48 | 51
63.5
63.5 | 3 3 3 | 2.5
2.5
2.5 | 360
400
420 | 76
87
87 | 57
65
65 | 76
87
87 | _ | _
_
_ | = | 4
5
5 | 3
4
4 | _
_
_ | = | _
_
_ | _
_
_ | _
_
_ | _
_
_ | | 60
64
68
72 |
300
320
340
360 | 420
440
460
480 | ======================================= | _
_
_ | _
_
_ | 76
76
76
76 | 57
57
57
57 | 76
76
76
76 | 4
4
4
4 | 3
3
3 | 460
480
— | 100
100
— | 74
74
— | 100
100
— | _
_
_ | _
_
_
_ | | 5
5
— | 4
4
— | _
_
_
_ | = | _
_
_ |
 -
 -
 - | _
_
_ | _
_
_ | - | Remarks | 1. Other series not conforming to this table are also specified by ISO. | 2. In the Dimension Series of Diameter Series 9, Classification I is those specified by the old standard, Classification II is those specified by the ISO. | 2. Dimension Series not classified conform to dimensions (D, B, C, T) specified by ISO. | 3. The chamfer dimensions listed are the minimum permissible dimensions specified by ISO. They do not apply to - chamfers on the front face. #### **Tapered Roller Bearings** | Units: | mm | | |-------------------|----------------|----------------|-------------------------|-------------------|-------------------|-------------------------|------------------|------------------|----------------|-------------------|-------------------|-------------------|------------------|----------------|----------------|-------------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------------|-------------|-------------------|--------------------------|----------------------| | | 31 | 02 | | | 322 | | | | 332 | | | | 303 | 3 or 31 |)3D | | | 313 | | | | 323 | | | Tapi
Ro
Br | | | | | | | Di | amete | r Serie | s 2 | | | | | | | | | | Diam | eter Se | eries 3 | | | | | | | | | | Di | mensi | on | Di | imensi | ion | Di | imensi | on | Cha | mfer | | Di | mensi | on Ser | ies | Di | mensi | on | Di | imensi | on | Cha | mfer | |)er | | | s | eries (| 12 | S | eries 2 | 22 | 9 | eries 3 | 12 | Cone | | | | 0 | 3 | | S | eries 1 | 13 | S | eries 2 | 23 | | Cup | d | Bore Number | | D | | | | | | Ī | Ť | 11100 | _ | | | D | | | Ĭ | | | 01100 | | | | | | | и | ore [| | D | В | С | T | В | С | T | В | С | Т | % (1 | min.) | D | В | С | C (1) | Т | В | С | Т | В | С | T | r (| min.) | | ā | | 30
32
35 | 9
10
11 | 9
10 | 9.7
10.75
11.75 | 14
14
14 | _
_
_ | 14.7
14.75
14.75 |
 -
 - | _
_
_ | _
_
_ | 0.6
0.6
0.6 | 0.6
0.6
0.6 | 35
37
42 | 11
12
13 | _
11 | _
_
_ | 11.9
12.9
14.25 | _ | _
_
_ | _
_
_ | 17
17
17 | _
_
14 | 17.9
17.9
18.25 | 0.6
1 | 0.6
1
1 | 10
12
15 | 00
01
02 | | 40
47
50 | 12
14
14 | 11
12
12 | 13.25
15.25
15.25 | 16
18
18 | 14
15
15 | 17.25
19.25
19.25 |
 -
 - | _
_
_ | _
_ | 1
1
1 | 1
1
1 | 47
52
56 | 14
15
16 | 12
13
14 | _
_
_ | 15.25
16.25
17.25 | _
_
_ | _
_
_ | _
_
_ | 19
21
21 | 16
18
18 | 20.25
22.25
22.25 | 1.5 | 1
1.5
1.5 | 17
20
22 | 03
04
/22 | | 52
58
62 | 15
16
16 | 13
14
14 | 16.25
17.25
17.25 | 18
19
20 | 15
16
17 | 19.25
20.25
21.25 | 22
24
25 | 18
19
19.5 | 22
24
25 | 1
1
1 | 1
1
1 | 62
68
72 | 17
18
19 | 15
15
16 | 13
14
14 | 18.25
19.75
20.75 | = | = | = | 24
24
27 | 20
20
23 | 25.25
25.75
28.75 | 1.5 | 1.5
1.5
1.5 | 25
28
30 | 05
/28
06 | | 65
72
80 | 17
17
18 | 15
15
16 | 18.25
18.25
19.75 | 21
23
23 | 18
19
19 | 22.25
24.25
24.75 | 26
28
32 | 20.5
22
25 | 26
28
32 | 1
1.5
1.5 | 1
1.5
1.5 | 75
80
90 | 20
21
23 | 17
18
20 | 15
15
17 | 21.75
22.75
25.25 | _ | _
_
_ | _
_
_ | 28
31
33 | 24
25
27 | 29.75
32.75
35.25 | 2 | 1.5
1.5
1.5 | 32
35
40 | /32
07
08 | | 85
90
100 | 19
20
21 | 16
17
18 | 20.75
21.75
22.75 | 23
23
25 | 19
19
21 | 24.75
24.75
26.75 | 32
32
35 | 25
24.5
27 | 32
32
35 | 1.5
1.5
2 | 1.5
1.5
1.5 | 100
110
120 | 25
27
29 | 22
23
25 | 18
19
21 | 27.25
29.25
31.5 | = | = | _
_
_ | 36
40
43 | 30
33
35 | 38.25
42.25
45.5 | | 1.5
2
2 | 45
50
55 | 09
10
11 | | 110
120
125 | 22
23
24 | 19
20
21 | 23.75
24.75
26.25 | 28
31
31 | 24
27
27 | 29.75
32.75
33.25 | 38
41
41 | 29
32
32 | 38
41
41 | 2
2
2 | 1.5
1.5
1.5 | 130
140
150 | 31
33
35 | 26
28
30 | 22
23
25 | 33.5
36
38 | = | = | | 46
48
51 | 37
39
42 | 48.5
51
54 | 3 3 3 | 2.5
2.5
2.5 | 60
65
70 | 12
13
14 | | 130
140
150 | 25
26
28 | 22
22
24 | 27.25
28.25
30.5 | 31
33
36 | 27
28
30 | 33.25
35.25
38.5 | 41
46
49 | 31
35
37 | 41
46
49 | 2
2.5
2.5 | 1.5
2
2 | 160
170
180 | 37
39
41 | 31
33
34 | 26
27
28 | 40
42.5
44.5 | = | = | | 55
58
60 | 45
48
49 | 58
61.5
63.5 | 3
3
4 | 2.5
2.5
3 | 75
80
85 | 15
16
17 | | 160
170
180 | 30
32
34 | 26
27
29 | 32.5
34.5
37 | 40
43
46 | 34
37
39 | 42.5
45.5
49 | 55
58
63 | 42
44
48 | 55
58
63 | 2.5
3
3 | 2
2.5
2.5 | 190
200
215 | 43
45
47 | 36
38
39 | 30
32
— | 46.5
49.5
51.5 | —
—
51 | —
—
35 | —
—
56.5 | 64
67
73 | 53
55
60 | 67.5
71.5
77.5 | 4
4
4 | 3 3 3 | 90
95
100 | 18
19
20 | | 190
200
215 | 36
38
40 | 30
32
34 | 39
41
43.5 | 50
53
58 | 43
46
50 | 53
56
61.5 | 68
— | 52
—
— | 68
— | 3 3 3 | 2.5
2.5
2.5 | 225
240
260 | 49
50
55 | 41
42
46 | _
_
_ | 53.5
54.5
59.5 | 53
57
62 | 36
38
42 | 58
63
68 | 77
80
86 | 63
65
69 | 81.5
84.5
90.5 | 4
4
4 | 3 3 3 | 105
110
120 | 21
22
24 | | 230
250
270 | 40
42
45 | 34
36
38 | 43.75
45.75
49 | 64
68
73 | 54
58
60 | 67.75
71.75
77 | = | _ | = | 4
4
4 | 3 3 3 | 280
300
320 | 58
62
65 | 49
53
55 | = | 63.75
67.75
72 | 66
70
75 | 44
47
50 | 72
77
82 | 93
102
108 | 78
85
90 | 98.75
107.75
114 | | 4
4
4 | 130
140
150 | 26
28
30 | | 290
310
320 | 48
52
52 | 40
43
43 | 52
57
57 | 80
86
86 | 67
71
71 | 84
91
91 |
 -
 - | | _
_
_ | 4
5
5 | 3
4
4 | 340
360
380 | 68
72
75 | 58
62
64 | _
_
_ | 75
80
83 | 79
84
88 |
 -
 - | 87
92
97 | 114
120
126 | 95
100
106 | 121
127
134 | 5
5
5 | 4
4
4 | 160
170
180 | 32
34
36 | | 340
360
400 | 55
58
65 | 46
48
54 | 60
64
72 | 92
98
108 | 75
82
90 | 97
104
114 |
 -
 - | | _ | 5
5
5 | 4
4
4 | 400
420
460 | 78
80
88 | 65
67
73 | _
_
_ | 86
89
97 | 92
97
106 |
 -
 - | 101
107
117 | 132
138
145 | 109
115
122 | 140
146
154 | 6
6 | 5
5
5 | 190
200
220 | 38
40
44 | | 440
480
500 | 72
80
80 | 60
67
67 | 79
89
89 | 120
130
130 | 100
106
106 | 127
137
137 |
 -
 - | | _ | 5
6
6 | 4
5
5 | 500
540
580 | 95
102
108 | 80
85
90 | _ | 105
113
119 | 114
123
132 |
 -
 | 125
135
145 | 155
165
175 | 132
136
145 | 165
176
187 | 6
6
6 | 5
6
6 | 240
260
280 | 48
52
56 | | 540
580
— | 85
92
— | 71
75
— | 96
104
— | 140
150
— | 115
125
— | 149
159
— | _
_
_
_ | _
_
_ | _
_
_ | 6
6
— | 5
5
— | _
_
_ | _
_
_ | | _
_
_ | _
_
_
_ | _
_
_
_ | _
_
_ | | | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 300
320
340
360 | 60
64
68
72 | Note (1) Regarding steep-slope bearing 303D, in DIN, the one corresponding to 303D of JIS is numbered 313. For bearings with bore diameters larger than 100 mm, those of dimension series 13 are numbered 313. Table 7. 3 Boundary Dimensions of | Thrust B | Ball Brgs. | | | | | | | | | 511 | | | | | 512 | | 522 | | | | |--------------------|--------------------|-------------------|----------------|-------------|----------------|-------------------|-------------------|----------------|----------------|----------------|-------------------|-------------------|----------------|----------------|----------------|------------------|-------------------|----------------|-------------------|------------------------| | Spherica
Roller | al Thrust
Brgs. | | | | | | | | | | | | | 292 | | | | | | | | | | | Diam | neter Se | ries 0 | | | Diam | neter Se | ries 1 | | | | | Dian | neter Se | ries 2 | | | | | per | | | Dime | ension S | Series | | | Dime | ension S | Series | | | | [| Dimensi | on Serie | S | | | | | Bore Number | d | n | 70 | 90 | 10 | A6 (:) | D | 71 | 91 | 11 | 46 () | n | 72 | 92 | 12 | 22 | 2 | 2 | M (!) | 26 (i) | | Bor | | D | | T | | γ (min.) | D | | T | | ∦ (min.) | D | | , | Γ | | Central | Washer | (min.) | \mathcal{V}_1 (min.) | | | | | | 1 | | | | | 1 | | | | | · | | | d_2 | В | | | | 4
6
8 | 4
6
8 | 12
16
18 | 4
5
5 | _
_
_ | 6
7
7 | 0.3
0.3
0.3 | _
_
_ |
= | _
_
_ | _
_
_ | _
_
_ | 16
20
22 | 6
6
6 | = | 8
9
9 | _
_
_ | _
 | = | 0.3
0.3
0.3 | _
_
_ | | 00
01
02 | 10
12
15 | 20
22
26 | 5
5
5 | _
_
_ | 7
7
7 | 0.3
0.3
0.3 | 24
26
28 | 6
6
6 | _
_
_ | 9
9
9 | 0.3
0.3
0.3 | 26
28
32 | 7
7
8 | _
_
_ | 11
11
12 | _
_
22 | _
_
10 | _
_
5 | 0.6
0.6
0.6 |

0.3 | | 03
04
05 | 17
20
25 | 28
32
37 | 5
6
6 | _
_
_ | 7
8
8 | 0.3
0.3
0.3 | 30
35
42 | 6
7
8 | _
_
_ | 9
10
11 | 0.3
0.3
0.6 | 35
40
47 | 8
9
10 | _
_
_ | 12
14
15 | 26
28 | 15
20 | 6
7 | 0.6
0.6
0.6 |
0.3
0.3 | | 06
07
08 | 30
35
40 | 42
47
52 | 6
6
6 | _
_
_ | 8
8
9 | 0.3
0.3
0.3 | 47
52
60 | 8
8
9 | _
_
_ | 11
12
13 | 0.6
0.6
0.6 | 52
62
68 | 10
12
13 | _ | 16
18
19 | 29
34
36 | 25
30
30 | 7
8
9 | 0.6
1
1 | 0.3
0.3
0.6 | | 09
10
11 | 45
50
55 | 60
65
70 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 65
70
78 | 9
9
10 | _
_
_ | 14
14
16 | 0.6
0.6
0.6 | 73
78
90 | 13
13
16 | _
_
21 | 20
22
25 | 37
39
45 | 35
40
45 | 9
9
10 | 1
1
1 | 0.6
0.6
0.6 | | 12
13
14 | 60
65
70 | 75
80
85 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 85
90
95 | 11
11
11 | _
_
_ | 17
18
18 | 1
1
1 | 95
100
105 | 16
16
16 | 21
21
21 | 26
27
27 | 46
47
47 | 50
55
55 | 10
10
10 | 1
1
1 | 0.6
0.6
1 | | 15
16
17 | 75
80
85 | 90
95
100 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 100
105
110 | 11
11
11 | _
_
_ | 19
19
19 | 1
1
1 | 110
115
125 | 16
16
18 | 21
21
24 | 27
28
31 | 47
48
55 | 60
65
70 | 10
10
12 | 1
1
1 | 1
1
1 | | 18
20
22 | 90
100
110 | 105
120
130 | 7
9
9 | _
_
_ | 10
14
14 | 0.3
0.6
0.6 | 120
135
145 | 14
16
16 | 21
21 | 22
25
25 | 1
1
1 | 135
150
160 | 20
23
23 | 27
30
30 | 35
38
38 | 62
67
67 | 75
85
95 | 14
15
15 | 1.1
1.1
1.1 | 1
1
1 | | 24
26
28 | 120
130
140 | 140
150
160 | 9
9
9 | _
_
_ | 14
14
14 | 0.6
0.6
0.6 | 155
170
180 | 16
18
18 | 21
24
24 | 25
30
31 | 1
1
1 | 170
190
200 | 23
27
27 | 30
36
36 | 39
45
46 | 68
80
81 | 100
110
120 | 15
18
18 | 1.1
1.5
1.5 | 1.1
1.1
1.1 | | 30
32
34 | 150
160
170 | 170
180
190 | 9
9
9 | _
_
_ | 14
14
14 | 0.6
0.6
0.6 | 190
200
215 | 18
18
20 | 24
24
27 | 31
31
34 | 1
1
1.1 | 215
225
240 | 29
29
32 | 39
39
42 | 50
51
55 | 89
90
97 | 130
140
150 | 20
20
21 | 1.5
1.5
1.5 | 1.1
1.1
1.1 | | 36
38
40 | 180
190
200 | 200
215
225 | 9
11
11 | _
_
_ | 14
17
17 | 0.6
1
1 | 225
240
250 | 20
23
23 | 27
30
30 | 34
37
37 | 1.1
1.1
1.1 | 250
270
280 | 32
36
36 | 42
48
48 | 56
62
62 | 98
109
109 | 150
160
170 | 21
24
24 | 1.5
2
2 | 2
2
2 | | 44
48
52 | 220
240
260 | 250
270
290 | 14
14
14 | _
_
_ | 22
22
22 | 1
1
1 | 270
300
320 | 23
27
27 | 30
36
36 | 37
45
45 | 1.1
1.5
1.5 | 300
340
360 | 36
45
45 | 48
60
60 | 63
78
79 | 110
—
— | 190
— | 24
—
— | 2
2.1
2.1 | 2
— | | 56
60
64 | 280
300
320 | 310
340
360 | 14
18
18 | 24
24 | 22
30
30 | 1 1 1 | 350
380
400 | 32
36
36 | 42
48
48 | 53
62
63 | 1.5
2
2 | 380
420
440 | 45
54
54 | 60
73
73 | 80
95
95 |

 |

 | _
_
_ | 2.1
3
3 |

 | Dimension Series 22, 23, and 24 are double direction bearings. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearing tables for Thrust Bearings). #### Thrust Bearings (Flat Seats) — 1 — | Un | its: mm | l | |---|-------------------|----------------|------------------|-------------------|-------------------|-------------------|----------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------| | | | | | 513 | | 523 | | | | | | | 514 | | 524 | | | | | | | Thrus
Br | st Ball
as. | | | | | 293 | | | | | | | | | 294 | | | | | | | | | | | al Thrust | | | | | | Diam | neter Se | ries 3 | | | | | | | Diam | eter Se | ries 4 | | | | Diam | neter Se | ries 5 | 1101101 | Digo. | | | | | D | imensi | on Seri | es | | | | | | С | imensi | on Serie | es | | | | | Dimension | | | ja | | | | 73 | 93 | 13 | 23 | | 3 | 1 | | | 74 | 94 | 14 | 24 | 2 | и
И | - | | | Series
95 | | | Bore Number | | | D | 75 | 00 | 10 | 20 | | | * (min.) | γ_1 (min.) | D | 74 | 54 | 14 | 24 | | | ∤ (min.) | γ_1 (min.) | D | - 55 | ∤ (min.) | d | ore N | | | | | | Т | | - | Washer | - | | | | | Т | | Central | | | | | T | | | ω. | | | | | | | | d_2 | В | | | | | | | | d_2 | В | | | | | | | | | | 20
24
26 | 7
8
8 | _
_
_ | 11
12
12 | | -
 - | = | 0.6
0.6
0.6 | _
_
_ | _
_
_ | = | _
_
_ Ξ | _
_
_ | 4
6
8 | 4
6
8 | | | 30
32
37 | 9
9
10 | _
_
_ | 14
14
15 | | _
_
_ | = | 0.6
0.6
0.6 | _
_
_ | _
_
_ | = | _ | _
_
_ = | _
_
_ | 10
12
15 | 00
01
02 | | | 40
47
52 | 10
12
12 | = | 16
18
18 | _
_
34 | _
_
20 | _
_
8 | 0.6
1
1 | _
_
_
0.3 | —
—
60 | _
_
16 | _
_
21 | _
_
24 | —
—
45 | _
_
15 | _
_
11 | _
_
1 | _
_
0.6 | 52
60
73 | 21
24
29 | 1
1
1.1 | 17
20
25 | 03
04
05 | | | 60
68
78 | 14
15
17 | _
_
22 | 21
24
26 | 38
44
49 | 25
30
30 | 9
10
12 | 1
1
1 | 0.3
0.3
0.6 | 70
80
90 | 18
20
23 | 24
27
30 | 28
32
36 | 52
59
65 | 20
25
30 | 12
14
15 | 1
1.1
1.1 | 0.6
0.6
0.6 | 85
100
110 | 34
39
42 | 1.1
1.1
1.5 | 30
35
40 | 06
07
08 | | | 85
95
05 | 18
20
23 | 24
27
30 | 28
31
35 | 52
58
64 | 35
40
45 | 12
14
15 | 1
1.1
1.1 | 0.6
0.6
0.6 | 100
110
120 | 25
27
29 | 34
36
39 | 39
43
48 | 72
78
87 | 35
40
45 | 17
18
20 | 1.1
1.5
1.5 | 0.6
0.6
0.6 | 120
135
150 | 45
51
58 | 2
2
2.1 | 45
50
55 | 09
10
11 | | 1 | 10
15
25 | 23
23
25 | 30
30
34 | 35
36
40 | 64
65
72 | 50
55
55 | 15
15
16 | 1.1
1.1
1.1 | 0.6
0.6
1 | 130
140
150 | 32
34
36 | 42
45
48 | 51
56
60 | 93
101
107 | 50
50
55 | 21
23
24 | 1.5
2
2 | 0.6
1
1 | 160
170
180 | 60
63
67 | 2.1
2.1
3 | 60
65
70 | 12
13
14 | | 1 | 35
40
50 | 27
27
29 | 36
36
39 | 44
44
49 | 79
79
87 | 60
65
70 | 18
18
19 | 1.5
1.5
1.5 | 1
1
1 | 160
170
180 | 38
41
42 | 51
54
58 | 65
68
72 | 115
120
128 | 60
65
65 | 26
27
29 | 2
2.1
2.1 | 1
1
1.1 | 190
200
215 | 69
73
78 | 3
3
4 | 75
80
85 | 15
16
17 | | 1 | 55
70
90 | 29
32
36 | 39
42
48 | 50
55
63 | 88
97
110 | 75
85
95 | 19
21
24 | 1.5
1.5
2 | 1
1
1 | 190
210
230 | 45
50
54 | 60
67
73 | 77
85
95 | 135
150
166 | 70
80
90 | 30
33
37 | 2.1
3
3 | 1.1
1.1
1.1 | 225
250
270 | 82
90
95 | 4
4
5 | 90
100
110 | 18
20
22 | | 2 | 110
225
240 | 41
42
45 | 54
58
60 | 70
75
80 | 123
130
140 | 100
110
120 | 27
30
31 | 2.1
2.1
2.1 | 1.1
1.1
1.1 | 250
270
280 | 58
63
63 | 78
85
85 | 102
110
112 | 177
192
196 | 95
100
110 | 40
42
44 | 4
4
4 | 1.5
2
2 | 300
320
340 | 109
115
122 | 5
5
5 | 120
130
140 | 24
26
28 | | 2 | 50
70
80 | 45
50
50 | 60
67
67 | 80
87
87 | 140
153
153 | 130
140
150 | 31
33
33 | 2.1
3
3 | 1.1
1.1
1.1 | 300
320
340 | 67
73
78 | 90
95
103 | 120
130
135 | 209
226
236 | 120
130
135 | 46
50
50 | 4
5
5 | 2
2
2.1 | 360
380
400 | 125
132
140 | 6
6
6 | 150
160
170 | 30
32
34 | | 3 | 00
20
40 | 54
58
63 | 73
78
85 | 95
105
110 | 165
183
192 | 150
160
170 | 37
40
42 | 3
4
4 | 2
2
2 | 360
380
400 | 82
85
90 | 109
115
122 | 140
150
155 | 245
— | 140
— | 52
— | 5
5
5 | 3 — | 420
440
460 | 145
150
155 | 6
6
7.5 |
180
190
200 | 36
38
40 | | 3 | 60
80
20 | 63
63
73 | 85
85
95 | 112
112
130 | _
_
_ | _
_
_ | _
_
_ | 4
4
5 | _
_
_ | 420
440
480 | 90
90
100 | 122
122
132 | 160
160
175 | = | _
_
_ | _
_
_ | 6
6
6 | _
_
_ | 500
540
580 | 170
180
190 | 7.5
7.5
9.5 | 220
240
260 | 44
48
52 | | 4 | 40
80
00 | 73
82
82 | 95
109
109 | 130
140
140 | _
_
_ | _
_
_ | _
_
_ | 5
5
5 | _
_
_ | 520
540
580 | 109
109
118 | 145
145
155 | 190
190
205 | _
_
_ | _
_
_ | _
_
_ | 6
6
7.5 | _
_
_ | 620
670
710 | 206
224
236 | 9.5
9.5
9.5 | 280
300
320 | 56
60
64 | A 46 A 47 Table 7. 3 Boundary Dimensions of | Thrust B | all Brgs. | | | | | | | | | 511 | | | | | 512 | | 522 | | | | |----------------------------------|------------------------------|------------------------------|-------------|------------------|--------------------------|------------------|------------------------------|------------------|------------------|--------------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------------| | Spherica
Roller | al Thrust
Brgs. | | | | | | | | | | | | | 292 | | | | | | | | | | | Diam | neter Sei | ries 0 | | | Diam | neter Se | ries 1 | | | | | Diam | eter Se | ries 2 | | | | | iber | | | Dime | ension S | eries | | | Dime | ension S | Series | | | | [| Dimensio | on Serie | S | | | | | Bore Number | d | D^{-1} | 70 | 90 | 10 | 46 (!) | D | 71 | 91 | 11 | M (!) | D | 72 | 92 | 12 | 22 | 2 | 2 | 00 (!) | 26 (!) | | Bor | | D | | T | | γ (min.) | D | | T | | 火 (min.) | D | | , | Г | | Central | Washer | / (min.) | \mathcal{V}_1 (min.) | | | | | | | | | | | , | | | | | | | | d_2 | В | | | | 68 | 340 | 380 | 18 | 24 | 30 | 1 | 420 | 36 | 48 | 64 | 2 | 460 | 54 | 73 | 96 | _ | | - | 3 | _ | | 72 | 360 | 400 | 18 | 24 | 30 | 1 | 440 | 36 | 48 | 65 | 2 | 500 | 63 | 85 | 110 | _ | | - | 4 | _ | | 76 | 380 | 420 | 18 | 24 | 30 | 1 | 460 | 36 | 48 | 65 | 2 | 520 | 63 | 85 | 112 | _ | | - | 4 | _ | | 80 | 400 | 440 | 18 | 24 | 30 | 1 | 480 | 36 | 48 | 65 | 2 | 540 | 63 | 85 | 112 | _ | _ | _ | 4 | | | 84 | 420 | 460 | 18 | 24 | 30 | 1 | 500 | 36 | 48 | 65 | 2 | 580 | 73 | 95 | 130 | _ | _ | _ | 5 | | | 88 | 440 | 480 | 18 | 24 | 30 | 1 | 540 | 45 | 60 | 80 | 2.1 | 600 | 73 | 95 | 130 | _ | _ | _ | 5 | | | 92 | 460 | 500 | 18 | 24 | 30 | 1 | 560 | 45 | 60 | 80 | 2.1 | 620 | 73 | 95 | 130 | _ | _ | _ | 5 | | | 96 | 480 | 520 | 18 | 24 | 30 | 1 | 580 | 45 | 60 | 80 | 2.1 | 650 | 78 | 103 | 135 | _ | _ | _ | 5 | | | /500 | 500 | 540 | 18 | 24 | 30 | 1 | 600 | 45 | 60 | 80 | 2.1 | 670 | 78 | 103 | 135 | _ | _ | _ | 5 | | | /530 | 530 | 580 | 23 | 30 | 38 | 1.1 | 640 | 50 | 67 | 85 | 3 3 3 | 710 | 82 | 109 | 140 | _ | _ | _ | 5 | _ | | /560 | 560 | 610 | 23 | 30 | 38 | 1.1 | 670 | 50 | 67 | 85 | | 750 | 85 | 115 | 150 | _ | _ | _ | 5 | _ | | /600 | 600 | 650 | 23 | 30 | 38 | 1.1 | 710 | 50 | 67 | 85 | | 800 | 90 | 122 | 160 | _ | _ | _ | 5 | _ | | /630 | 630 | 680 | 23 | 30 | 38 | 1.1 | 750 | 54 | 73 | 95 | 3 | 850 | 100 | 132 | 175 | _ | _ | _ | 6 | _ | | /670 | 670 | 730 | 27 | 36 | 45 | 1.5 | 800 | 58 | 78 | 105 | 4 | 900 | 103 | 140 | 180 | _ | _ | _ | 6 | _ | | /710 | 710 | 780 | 32 | 42 | 53 | 1.5 | 850 | 63 | 85 | 112 | 4 | 950 | 109 | 145 | 190 | _ | _ | _ | 6 | _ | | /750 | 750 | 820 | 32 | 42 | 53 | 1.5 | 900 | 67 | 90 | 120 | 4 | 1000 | 112 | 150 | 195 | _ | _ | _ | 6 | | | /800 | 800 | 870 | 32 | 42 | 53 | 1.5 | 950 | 67 | 90 | 120 | 4 | 1060 | 118 | 155 | 205 | _ | _ | _ | 7.5 | | | /850 | 850 | 920 | 32 | 42 | 53 | 1.5 | 1000 | 67 | 90 | 120 | 4 | 1120 | 122 | 160 | 212 | _ | _ | _ | 7.5 | | | /900 | 900 | 980 | 36 | 48 | 63 | 2 | 1060 | 73 | 95 | 130 | 5 | 1180 | 125 | 170 | 220 | _ | _ | _ | 7.5 | | | /950 | 950 | 1030 | 36 | 48 | 63 | 2 | 1120 | 78 | 103 | 135 | 5 | 1250 | 136 | 180 | 236 | _ | _ | _ | 7.5 | | | /1000 | 1000 | 1090 | 41 | 54 | 70 | 2.1 | 1180 | 82 | 109 | 140 | 5 | 1320 | 145 | 190 | 250 | _ | _ | _ | 9.5 | | | /1060 | 1060 | 1150 | 41 | 54 | 70 | 2.1 | 1250 | 85 | 115 | 150 | 5 | 1400 | 155 | 206 | 265 | _ | _ | _ | 9.5 | | | /1120 | 1120 | 1220 | 45 | 60 | 80 | 2.1 | 1320 | 90 | 122 | 160 | 5 | 1460 | — | 206 | — | _ | _ | _ | 9.5 | | | /1180 | 1180 | 1280 | 45 | 60 | 80 | 2.1 | 1400 | 100 | 132 | 175 | 6 | 1520 | — | 206 | — | _ | _ | _ | 9.5 | | | /1250 | 1250 | 1360 | 50 | 67 | 85 | 3 | 1460 | _ | _ | 175 | 6 | 1610 | _ | 216 | _ | _ | _ | _ | 9.5 | _ | | /1320 | 1320 | 1440 | — | — | 95 | 3 | 1540 | _ | _ | 175 | 6 | 1700 | _ | 228 | _ | _ | _ | _ | 9.5 | _ | | /1400 | 1400 | 1520 | — | — | 95 | 3 | 1630 | _ | _ | 180 | 6 | 1790 | _ | 234 | _ | _ | _ | _ | 12 | _ | | /1500 | 1500 | 1630 | | _ | 105 | 4 | 1750 | _ | _ | 195 | 6 | 1920 | _ | 252 | _ | _ | _ | _ | 12 | _ | | /1600 | 1600 | 1730 | | _ | 105 | 4 | 1850 | _ | _ | 195 | 6 | 2040 | _ | 264 | _ | _ | _ | _ | 15 | _ | | /1700 | 1700 | 1840 | | _ | 112 | 4 | 1970 | _ | _ | 212 | 7.5 | 2160 | _ | 276 | _ | _ | _ | _ | 15 | _ | | /1800 | 1800 | 1950 | | _ | 120 | 4 | 2080 | _ | _ | 220 | 7.5 | 2280 | _ | 288 | _ | _ | _ | _ | 15 | _ | | /1900 | 1900 | 2060 | | _ | 130 | 5 | 2180 | _ | _ | 220 | 7.5 | — | _ | — | _ | _ | _ | _ | — | _ | | /2000 | 2000 | 2160 | | _ | 130 | 5 | 2300 | _ | _ | 236 | 7.5 | — | _ | — | _ | _ | _ | _ | — | _ | | /2120
/2240
/2360
/2500 | 2120
2240
2360
2500 | 2300
2430
2550
2700 | _
_
_ | _
_
_
_ | 140
150
150
160 | 5
5
5
5 | 2430
2570
2700
2850 | _
_
_
_ | _
_
_
_ | 243
258
265
272 | 7.5
9.5
9.5
9.5 | _
_
_
_ - Remarks Dimension Series 22, 23, and 24 are double direction bearings. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearings tables for Thrust Bearings). #### Thrust Bearings (Flat Seats) — 2 — | | | | ` | | , | | | | | | | | | | | | | | | Un | its: mm | 1 | |--------------|-------------------|------------|------------|----------|---------|-------|----------------|--------------|--------------|-------------------|-------------------|-------------------|----------|---------|-------|-------------------|--------------|--------------|---------------------|----------|-------------------|--------------------| | | | | 513 | | 523 | | | | | | | 514 | | 524 | | | | | | | | st Ball
gs. | | | | 293 | | | | | | | | | 294 | | | | | | | | | | Spheric
Roller | al Thrust
Brgs. | | | | | Diam | eter Se | ries 3 | | | | | | | Diam | eter Se | ries 4 | | | | Diam | neter Se | ries 5 | | | | | | D | imensi | on Serie | es | | | | | | | imensi | on Serie | es | | | | | Dimension
Series | | |)er | | | 73 | 93 | 13 | 23 | 2 | :3 | | | | 74 | 94 | 14 | 24 | 2 | 4 | | | | 95 | | d | Bore Number | | D | | | | | Central | Washe | * (min.) | r_1 (min.) | D | | | | | Central | Washe | * (min.) | r_1 (min.) | D | | 1 (min.) | | Bore | | | | | T | | d_2 | В | | | | | | T | | d_2 | В | | | | T | | | | | 540 | 90 | 122 | 160 | _ | _ | _ | 5 | _ | 620 | 125 | 170 | 220 | _ | _ | _ | 7.5 | _ | 750 | 243 | 12 | 340 | 68 | | 560
600 | 90
100 | 122 | 160
175 | _ | _ | _ | 5 | _ | 640
670 | 125
132 | 170
175 | 220
224 | _ | _ | = | 7.5
7.5 | _ | 780
820 | 250
265 | 12 | 360
380 | 72
76 | | 620 | 100 | 132 | 175 | | | | 6 | | 710 | 140 | 185 | 243 | | | | 7.5 | | 850 | 272 | 12 | 400 | 80 | | 650
680 | 100
103
109 | 140
145 | 180
190 | _ | | _ | 6 | _ | 730
780 | 140
140
155 | 185
185
206 | 243
243
265 | = | _ | | 7.5
7.5
9.5 | = | 900
950 | 290
308 | 15
15 | 420
440 | 84
88 | | | | | | | | | | | | | | | | | | | _ | | | | | | | 710
730 | 112
112 | 150
150 | 195
195 | _ | _ | _ | 6 | _ | 800
850 | 155
165 | 206
224 | 265
290 | _ | _ | = | 9.5
9.5 | _ | 980
1000 | 315
315 | 15
15 | 460
480 | 92
96 | | 750 | 112 | 150 | 195 | _ | _ | _ | 6 | - | 870 | 165 | 224 | 290 | _ | _ | _ | 9.5 | _ | 1060 | 335 | 15 | 500 | /500 | | 800
850 | 122
132 | 160
175 | 212
224 | _ | _ | _ | 7.5
7.5 | _ | 920
980 | 175
190 | 236
250 | 308
335 | _ | _ | _ | 9.5
12 | _ | 1090
1150 | 335
355 | 15
15 | 530
560 | /530
/560 | | 900 | 136 | 180 | 236 | _ | _ | _ | 7.5 | - | 1030 | 195 | 258 | 335 | _ | _ | - | 12 | _ | 1220 | 375 | 15 | 600 | /600 | | 950
1000 | 145
150 | 190
200 | 250
258 | _ | _ | _ | 9.5
9.5 | _ | 1090
1150 | 206
218 | 280
290 | 365
375 | _ | _ | _ | 12
15 | _ | 1280
1320 | 388
388 | 15
15 | 630
670 | /630
/670 | | 1060 | 160 | 212 | 272 | _ | - | - | 9.5 | - | 1220 | 230 | 308 | 400 | _ | _ | - | 15 | _ | 1400 | 412 | 15 | 710 | /710 | | 1120 | 165 | 224 | 290 | _ | _ | _ | 9.5 | _ | 1280 | 236 | 315 | 412 | _ | _ | _ | 15 | _ | = | _ | _ | 750 | /750
/800 | | 1180
1250 | 170
180 | 230
243 | 300
315 | _ | _ | = | 9.5
12 | _ | 1360
1440 | 250
— | 335
354 | 438 | _ | _ | _ | 15
15 | _ | _ | = | _ | 800
850 | /850 | | 1320 | 190 | 250 | 335 | _ | _ | _ | 12 | _ | 1520 | _ | 372 | _ | _ | _ | _ | 15 | _ | _ | _ | _ | 900 | /900 | | 1400
1460 | 200 | 272
276 | 355 | _ | _ | _ | 12
12 | _ | 1600
1670 | _ | 390
402 | _ | _ | _ | _ | 15
15 | _ | _ | = | _ | 950
1000 | /950
/1000 | | 1540 | _ | 288 | _ | _ | _ | _ | 15 | _ | 1770 | _ | 426 | _ | _ | _ | _ | 15 | _ | _ | _ | _ | 1060 | /1060 | | 1630
1710 | _ | 306
318 | _ | _ | _ | _ | 15
15 | _ | 1860
1950 | _ | 444
462 |
_ | _ | _ | = | 15
19 | _ | _ | = | _ | 1120
1180 | /1120
/1180 | | 1800 | | 330 | | | | | 19 | | 2050 | | 480 | | | | | 10 | | | | | 1250 | /1250 | | 1900
2000 | _ | 348
360 | _ | _ | _ | _ | 19
19
19 | _ | 2160
2280 | Ξ | 505
530 | _ | _ | _ | = | 19
19
19 | = | Ξ | Ξ | = | 1320
1400 | /1320 | | | | | | | | | | | 2200 | | 300 | | | | | 13 | | | | | | | | 2140
2270 | _ | 384
402 | _ | _ | _ | _ | 19
19 | _ | _ | = | _ | _ | _ | _ | = | _ | _ | _ | = | _ | 1500
1600 | /1500 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | 1700 | /1700 | | _ | _ | _ | _ | _ | _ | = | _ | _ | _ | = | _ | _ | _ | _ | = | _ | _ | _ | _ | _ | 1800
1900 | /1800
/1900 | | _ | _ | _ | _ | _ | _ | _ | - | - | _ | - | _ | _ | _ | _ | - | _ | _ | _ | - | _ | 2000 | /2000 | | Ξ | = | _ | _ | _ | = | _ | _ | _ | _ | = | _ | _ | _ | _ | = | _ | _ | = | = | _ | 2120
2240 | /2120
/2240 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | = | _ | _ | _ | _ | = | _ | _ | Ξ | Ξ | = | 2360
2500 | /2360
/2500 | A 48 A 49 # Table 7. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (1) Bearings of Dimension Series 18 and 19 | Арр | licable Bear | ings | | | | Snap F | Ring Groove | | | | | |------------------------|-------------------|--------------------------|----------------------------------|----------------------------------|------------------------|------------------------|---------------------|----------------------|--------------------------|--------------------------|--------------------------| | | J | | Snap Rin | g Groove | 5 | Snap Ring Gr | oove Positio | on | Snap Rin | g Groove | Radius of | | (| d | D | | neter | | Bearing Dim | | es | | dth | Bottom
Corners | | Dimensi | on Series | D | I | O_1 | | 18 | 1 | 9 | ' | b | r_0 | | 18 | 19 | | max. | min. | max. | min. | max. | min. | max. | min. | max. | | _ | 10
12
15 | 22
24
28 | 20.8
22.8
26.7 | 20.5
22.5
26.4 | _ | _ | 1.05
1.05
1.3 | 0.9
0.9
1.15 | 1.05
1.05
1.2 | 0.8
0.8
0.95 | 0.2
0.2
0.25 | | 20
22 | 17
—
— | 30
32
34 | 28.7
30.7
32.7 | 28.4
30.4
32.4 | 1.3
1.3 | —
1.15
1.15 | 1.3
—
— | 1.15
—
— | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 25
—
28 | 20
22
— | 37
39
40 | 35.7
37.7
38.7 | 35.4
37.4
38.4 | 1.3
—
1.3 | 1.15
—
1.15 | 1.7
1.7
— | 1.55
1.55
— | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 30
32
— | 25
—
28 | 42
44
45 | 40.7
42.7
43.7 | 40.4
42.4
43.4 | 1.3
1.3
— | 1.15
1.15
— | 1.7
—
1.7 | 1.55
—
1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 35
40
— | 30
32
35 | 47
52
55 | 45.7
50.7
53.7 | 45.4
50.4
53.4 | 1.3
1.3
— | 1.15
1.15
— | 1.7
1.7
1.7 | 1.55
1.55
1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 45
—
50 | 40
— | 58
62
65 | 56.7
60.7
63.7 | 56.4
60.3
63.3 | 1.3
—
1.3 | 1.15
—
1.15 | 1.7
— |
1.55
 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 55
60 | 45
50
— | 68
72
78 | 66.7
70.7
76.2 | 66.3
70.3
75.8 | 1.7
1.7 |
1.55
1.55 | 1.7
1.7
— | 1.55
1.55
— | 1.2
1.2
1.6 | 0.95
0.95
1.3 | 0.25
0.25
0.4 | | 65
70 | 55
60
65 | 80
85
90 | 77.9
82.9
87.9 | 77.5
82.5
87.5 | 1.7
1.7 |
1.55
1.55 | 2.1
2.1
2.1 | 1.9
1.9
1.9 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 75
80
— | 70
75 | 95
100
105 | 92.9
97.9
102.6 | 92.5
97.5
102.1 | 1.7
1.7
— | 1.55
1.55
— | 2.5
2.5 |
2.3
2.3 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 85
90
95 | 80
—
85 | 110
115
120 | 107.6
112.6
117.6 | 107.1
112.1
117.1 | 2.1
2.1
2.1 | 1.9
1.9
1.9 | 2.5
—
3.3 | 2.3
—
3.1 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 100
105
110 | 90
95
100 | 125
130
140 | 122.6
127.6
137.6 | 122.1
127.1
137.1 | 2.1
2.1
2.5 | 1.9
1.9
2.3 | 3.3
3.3
3.3 | 3.1
3.1
3.1 | 1.6
1.6
2.2 | 1.3
1.3
1.9 | 0.4
0.4
0.6 | | 120
130 | 105
110
120 | 145
150
165 | 142.6
147.6
161.8 | 142.1
147.1
161.3 | 2.5
3.3 | 2.3
3.1 | 3.3
3.3
3.7 | 3.1
3.1
3.5 | 2.2
2.2
2.2 | 1.9
1.9
1.9 | 0.6
0.6
0.6 | | 140
—
150
160 | 130
140
— | 175
180
190
200 | 171.8
176.8
186.8
196.8 | 171.3
176.3
186.3
196.3 | 3.3
—
3.3
3.3 | 3.1
—
3.1
3.1 | 3.7
3.7
— | 3.5
3.5
— | 2.2
2.2
2.2
2.2 | 1.9
1.9
1.9
1.9 | 0.6
0.6
0.6
0.6 | For all others exceeding 47mm, use 0.5mm chamfer. Units: mm | | | Locati | ng Snap Rin | g | | | Side Cover | |------------------------------|------|--------------------|-------------|-------|---------|---|---| | Locating Snap
Ring Number | Hei | Sectional ight e | | kness | fitted | by of snap ring I in groove eference) Snap Ring Outside Diameter D_2 | Stepped Bore Diameter (Reference) $D_{\rm X}$ | | | max. | min. | max. | min. | approx. | max. | min. | | NR 1022 | 2.0 | 1.85 | 0.7 | 0.6 | 2 | 24.8 | 25.5 | | NR 1024 | 2.0 | 1.85 | 0.7 | 0.6 | 2 | 26.8 | 27.5 | | NR 1028 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 30.8 | 31.5 | | NR 1030 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 32.8 | 33.5 | | NR 1032 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 34.8 | 35.5 | | NR 1034 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 36.8 | 37.5 | | NR 1037 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 39.8 | 40.5 | | NR 1039 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 41.8 | 42.5 | | NR 1040 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 42.8 | 43.5 | | NR 1042 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 44.8 | 45.5 | | NR 1044 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 46.8 | 47.5 | | NR 1045 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 47.8 | 48.5 | | NR 1047 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 49.8 | 50.5 | | NR 1052 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 54.8 | 55.5 | | NR 1055 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 57.8 | 58.5 | | NR 1058 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 60.8 | 61.5 | | NR 1062 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 64.8 | 65.5 | | NR 1065 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 67.8 | 68.5 | | NR 1068 | 2.05 | 1.9 | 0.85 | 0.75 | 5 | 70.8 | 72 | | NR 1072 | 2.05 | 1.9 | 0.85 | 0.75 | 5 | 74.8 | 76 | | NR 1078 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 82.7 | 84 | | NR 1080 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 84.4 | 86 | | NR 1085 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 89.4 | 91 | | NR 1090 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 94.4 | 96 | | NR 1095 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 99.4 | 101 | | NR 1100 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 104.4 | 106 | | NR 1105 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 110.7 | 112 | | NR 1110 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 115.7 | 117 | | NR 1115 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 120.7 | 122 | | NR 1120 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 125.7 | 127 | | NR 1125 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 130.7 | 132 | | NR 1130 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 135.7 | 137 | | NR 1140 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 145.7 | 147 | | NR 1145 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 150.7 | 152 | | NR 1150 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 155.7 | 157 | | NR 1165 | 4.85 | 4.7 | 1.7 | 1.6 | 7 | 171.5 | 173 | | NR 1175 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 181.5 | 183 | | NR 1180 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 186.5 | 188 | | NR 1190 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 196.5 | 198 | | NR 1200 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 206.5 | 208 | Table 7. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (2) Bearing of Diameter Series 0, 2, 3, and 4 | | Appli | cable Bea | rings | | | | | Snap Ri | ng Groove | | | | | |-------------------|-------------------|----------------|----------------|-------------------|----------------------------|----------------------------|----------------------|--------------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------| | | (| d | | | Dia | ng Groove
meter | | ap Ring Gr
a
Bearing Dia | 3 | | . Wi | ng Groove
idth | Radius
of
Bottom
Corners | | | Diamete | er Series | | D | | D_1 | | 0 | 2, 3 | 3, 4 | 1 | b | r_0 | | 0 | 2 | 3 | 4 | - | max. | min. | max. | min. | max. | min. | max. | min. | max. | | 10
12 | _ | _ | _ | 26
28 | 24.5
26.5 | 24.25
26.25 | 1.35
1.35 | 1.19
1.19 | _ | _ | 1.17
1.17 | 0.87
0.87 | 0.2
0.2 | | 15
17 | 10
12
15 | 9
—
10 | 8
9
— | 30
32
35 | 28.17
30.15
33.17 | 27.91
29.9
32.92 | 2.06
2.06 | 1.9
1.9 | 2.06
2.06
2.06 | 1.9
1.9
1.9 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | |

20 | 17
— | 12
—
15 | 10
—
12 | 37
40
42 | 34.77
38.1
39.75 | 34.52
37.85
39.5 |

2.06 |

1.9 | 2.06
2.06
2.06 | 1.9
1.9
1.9 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 22
25
— | | 17 | _
_ | 44
47
50 | 41.75
44.6
47.6 | 41.5
44.35
47.35 | 2.06
2.06 | 1.9
1.9 | 2.46
2.46 | 2.31
2.31 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 28
30
— | 25
— | 20
—
22 | 15
— | 52
55
56 | 49.73
52.6
53.6 | 49.48
52.35
53.35 | 2.06
2.08 | 1.9
1.88 | 2.46
—
2.46 | 2.31
—
2.31 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 32
35
— | 28
30
32 |
25
 | 17
— | 58
62
65 | 55.6
59.61
62.6 |
55.35
59.11
62.1 | 2.08
2.08
— | 1.88
1.88 | 2.46
3.28
3.28 | 2.31
3.07
3.07 | 1.65
2.2
2.2 | 1.35
1.9
1.9 | 0.4
0.6
0.6 | | 40
—
45 | 35
— | 28
30
32 | | 68
72
75 | 64.82
68.81
71.83 | 64.31
68.3
71.32 | 2.49
—
2.49 | 2.29
—
2.29 | 3.28
3.28
3.28 | 3.07
3.07
3.07 | 2.2
2.2
2.2 | 1.9
1.9
1.9 | 0.6
0.6
0.6 | | 50
—
55 | 40
45
50 | 35
—
40 | 25
—
30 | 80
85
90 | 76.81
81.81
86.79 | 76.3
81.31
86.28 | 2.49
—
2.87 | 2.29
—
2.67 | 3.28
3.28
3.28 | 3.07
3.07
3.07 | 2.2
2.2
3 | 1.9
1.9
2.7 | 0.6
0.6
0.6 | | 60
65
70 | 55
60 | 45
50 | 35
40 | 95
100
110 | 91.82
96.8
106.81 | 91.31
96.29
106.3 | 2.87
2.87
2.87 | 2.67
2.67
2.67 | 3.28
3.28 | 3.07
3.07 | 3
3
3 | 2.7
2.7
2.7 | 0.6
0.6
0.6 | | 75
—
80 | 65
70 | 55
— | 45
— | 115
120
125 | 111.81
115.21
120.22 | 111.3
114.71
119.71 | 2.87
—
2.87 | 2.67
—
2.67 | 4.06
4.06 | 3.86
3.86 | 3
3.4
3.4 | 2.7
3.1
3.1 | 0.6
0.6
0.6 | | 85
90
95 | 75
80
— | 60
65
— | 50
55
— | 130
140
145 | 125.22
135.23
140.23 | 124.71
134.72
139.73 | 2.87
3.71
3.71 | 2.67
3.45
3.45 | 4.06
4.9
— | 3.86
4.65
— | 3.4
3.4
3.4 | 3.1
3.1
3.1 | 0.6
0.6
0.6 | | 100
105
110 | 85
90
95 | 70
75
80 | 60
65
— | 150
160
170 | 145.24
155.22
163.65 | 144.73
154.71
163.14 | 3.71
3.71
3.71 | 3.45
3.45
3.45 | 4.9
4.9
5.69 | 4.65
4.65
5.44 | 3.4
3.4
3.8 | 3.1
3.1
3.5 | 0.6
0.6
0.6 | | 120
—
130 | 100
105
110 | 85
90
95 | 70
75
80 | 180
190
200 | 173.66
183.64
193.65 | 173.15
183.13
193.14 | 3.71
—
5.69 | 3.45
—
5.44 | 5.69
5.69
5.69 | 5.44
5.44
5.44 | 3.8
3.8
3.8 | 3.5
3.5
3.5 | 0.6
0.6
0.6 | Units: mm | | | Locat | ing Snap I | Ring | | | Side Cover | |------------------------------|------|-----------------|------------|--------|--------|---|---| | Locating Snap
Ring Number | Не | Sectional eight | Thio | ckness | fitted | ry of snap ring
d in groove
eference)
Snap Ring
Outside
Diameter D_2 | Stepped Bore
Diameter
(Reference) | | | max. | min. | max. | min. | | | min. | | NR 26(1) | 2.06 | 1.91 | 0.84 | 0.74 | 3 | 28.7 | 29.4 | | NR 28(1) | 2.06 | 1.91 | 0.84 | 0.74 | 3 | 30.7 | 31.4 | | NR 30 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 34.7 | 35.5 | | NR 32 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 36.7 | 37.5 | | NR 35 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 39.7 | 40.5 | | NR 37 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 41.3 | 42 | | NR 40 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 44.6 | 45.5 | | NR 42 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 46.3 | 47 | | NR 44 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 48.3 | 49 | | NR 47 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 52.7 | 53.5 | | NR 50 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 55.7 | 56.5 | | NR 52 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 57.9 | 58.5 | | NR 55 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 60.7 | 61.5 | | NR 56 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 61.7 | 62.5 | | NR 58 | 4.04 | 3.89 | 1.12 | 1.02 | 4 4 4 | 63.7 | 64.5 | | NR 62 | 4.04 | 3.89 | 1.7 | 1.6 | | 67.7 | 68.5 | | NR 65 | 4.04 | 3.89 | 1.7 | 1.6 | | 70.7 | 71.5 | | NR 68 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 74.6 | 76 | | NR 72 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 78.6 | 80 | | NR 75 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 81.6 | 83 | | NR 80 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 86.6 | 88 | | NR 85 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 91.6 | 93 | | NR 90 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 96.5 | 98 | | NR 95 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 101.6 | 103 | | NR 100 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 106.5 | 108 | | NR 110 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 116.6 | 118 | | NR 115 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 121.6 | 123 | | NR 120 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 129.7 | 131.5 | | NR 125 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 134.7 | 136.5 | | NR 130 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 139.7 | 141.5 | | NR 140 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 149.7 | 152 | | NR 145 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 154.7 | 157 | | NR 150 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 159.7 | 162 | | NR 160 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 169.7 | 172 | | NR 170 | 9.6 | 9.45 | 3.1 | 3 | 10 | 182.9 | 185 | | NR 180 | 9.6 | 9.45 | 3.1 | 3 | 10 | 192.9 | 195 | | NR 190 | 9.6 | 9.45 | 3.1 | 3 | 10 | 202.9 | 205 | | NR 200 | 9.6 | 9.45 | 3.1 | 3 | 10 | 212.9 | 215 | A 52 A 53 Note (1) The locating snap rings and snap ring grooves of these bearings are not specified by ISO. 1. The dimensions of these snap ring grooves are not applicable to bearings of dimension series 00, 82, and 83. 2. The minimum permissible chamfer dimension r_N on the snap-ring side of outer rings is 0.5mm. However, for bearings of diameter series 0 having outside diameters 35mm and below, it is 0.3mm. (Example 4) NU 3 18 M CM (Example 5) NN 3 0 17 K CC1 P4 Radial Clearance for Machined Brass Cage Bearing Bore 90mm **NU** Type Cylindrical Accuracy of ISO Class 4 Radial Clearance in Non-Interchangeable Cylindrical Roller Bearings **CC1** Diameter Series 3 Roller Bearing Electric-Motor Bearings CM #### 7.2 Formulation of Bearing Numbers Bearing numbers are alphanumeric combinations that indicate the bearing type, boundary dimensions, dimensional and running accuracies, internal clearance. and other related specifications. They consist of basic numbers and supplementary symbols. The boundary dimensions of commonly used bearings mostly conform to the organizational concept of ISO, and the bearing numbers of these standard bearings are specified by IIS B 1513 (Bearing Numbers for Rolling Bearings). Due to a need for more detailed classification, NSK uses auxiliary symbols other than those specified by IIS. Bearing numbers consist of a basic number and supplementary symbols. The basic number indicates the bearing series(type) and the width and diameter series as shown in Table 7.5. Basic numbers, Table 7. 5 Bearing Series Symbols | | | | | | ing control cymbolc | | | | | |-----------------|------------------------------|-----------------|------------------|---------------------|-----------------------------|------------------------------|-----------------|---|---------------------| | | | | Dimension | n Symbols | | | | Dimensio | n Symbols | | Bearing Type | Bearing
Series
Symbols | Type
Symbols | Width
Symbols | Diameter
Symbols | Bearing Type | Bearing
Series
Symbols | Type
Symbols | Width
Symbols
or
Height
Symbols | Diameter
Symbols | | | 68 | 6 | (1) | 8 | Double-Row | NNU49 | NNU | 4 | 9 | | Single-Row | 69 | 6 | (1) | 9 | Cylindrical | NN30 | NN | 3 | 0 | | Deep Groove | 60 | 6 | (1) | 0 | Roller Bearings | 141400 | 1414 | | | | Ball Bearings | 62 | 6 | (0) | 2 | | NA48 | NA | 4 | 0 | | | 63 | 6 | (0) | 3 | Needle Roller | NA49 | NA
NA | 4 | 8 | | | 70 | 7 | (1) | | Bearings | NA59 | NA | 5 | 9 | | Single-Row | 79
70 | 7
7 | (1)
(1) | 9 | Dearings | NA69 | NA | 6 | 9 | | Angular Contact | 70
72 | 7 | (0) | 2 | | | | | | | Ball Bearings | 72 | 7 | (0) | 3 | | 329 | 3 | 2 | 9 | | | | , | (0) | | | 329 | 3 | 2 | 0 | | | 12 | 1 | (0) | 2 | | 330 | 3 | 3 | 0 | | Self-Aligning | 13 | 1 | (0) | 3 | | 331 | 3 | 3 | 1 | | Ball Bearings | 22 | (1) | 2 | 2 | Tapered Roller | 302 | 3 | 0 | 2 | | | 23 | (1) | 2 | 3 | Bearings | 302 | | | | | | NU10 | NU | 1 | 0 | | 322 | 3 | 2 | 2 2 | | | NU2 | NU | (0) | 2 | | 332 | 3 | 3 | 2 | | | NU22 | NU | 2 | 2 | | 303 | 3 | 0 | 3 | | | NU3 | NU | (0) | 3 | | 323 | 3 | 2 | 3 | | | NU23 | NU | 2 | 3 | | | | | | | | NU4 | NU | (0) | 4 | | 230 | 2 | 3 | 0 | | | NJ2 | NJ | (0) | 2 | | 231 | 2 | 3 | 1 | | | NJ22 | NJ | 2 | 2 | Spherical | 222 | 2 | 2 | 2 | | | NJ3 | NJ | (0) | 3 | Roller | | | | | | | NJ23 | NJ | 2 | 3 | Bearings | 232 | 2 | 3 | 2 | | Single-Row | NJ4 | NJ | (0) | 4 | | 213 (1) | 2 | 0 | 3 | | Cylindrical | | | . , | | | 223 | 2 | 2 | 3 | | Roller | NUP2 | NUP | (0) | 2 | | 511 | 5 | 1 | 1 | | Bearings | NUP22 | NUP | 2 | 2 | | 512 | 5 | 1 | 2 | | ŭ | NUP3 | NUP | (0) | 3 | | 513 | 5 | 1 1 | 3 | | | NUP23 | NUP | 2 | 3 | Thrust Ball | 514 | 5 | 1 | 4 | | | NUP4 | NUP | (0) | 4 | Bearings with | 514 | J | ' | + | | | N10 | N | 1 | 0 | Flat Seats | 522 | 5 | 2 | 2 | | | N2 | N | (0) | 2 | | 523 | 5 | 2 | 3 | | | N3 | N | (0) | 3 | | 524 | 5 | 2 | 4 | | | N4 | N | (0) | 4 | | | | | | | | NF2 | NF | (0) | 2 | Spherical | 292 | 2 | 9 | 2 | | | NF3 | NF
NF | (0)
(0) | 3 | Thrust Roller | 293 | 2 | 9 | 3 | | | NF4 | NF
NF | (0) | 4 | Bearings | 294 | 2 | 9 | 4 | | | | | | | | | | | | | Note (1) Bea | arına Series Sı | vmhol 213 | should lo | nically he 2 | 03. but customarily it is r | numbered 213 | | | | Note (1) Bearing Series Symbol 213 should logically be 203, but customarily it is numbered 213. **Remarks** Numbers in () in the column of width symbols are usually omitted from the bearing number. A 54 A 55 Table 7. 6 Formulation of | | | | Bas | ic Numbers | 3 | | | | | | | | | | |---|---|--|----------------------------------|---------------------------------|--------|---|----------------|--|--------|--|--------|-------------------------|-----------|--| | • | | ing Series
nbols (1) | Bore | e
Number | | ntact Angle
Symbol | Interr | nal Design Symbol | Ma | terial Symbol | Cag | e Symbol | Sea | nal Features
Is, Shields
Symbol | | | Symbol | Meaning | Symbol | Meaning | Symbo | Meaning | Symbol | Meaning | Symbol | Meaning | Symbol | Meaning | Symbol | | | | 68
69
60 | Single-
Row Deep
Groove Ball
Bearings | 1 2 3 | Bearing 1mm
2
3 | | ngular
ontact Ball
earings
Standard
Contact Angle | A | Internal Design
Differs from
Standard One
Smaller Diameter | g | Case-Hardened
Steel Used in
Rings, Rolling
Elements | М | Machined
Brass Cage | Z
ZS | Shield
on One
Side
Only | | | :
70
72
73
: | Single-Row
Angular
Contact Ball
Bearings | 9 | :
:
9
10 | A5 | of 30° Standard Contact Angle of 25° | J | of Outer Ring Raceway, Contact Angle, and Outer Ring Width of Tapered Roller Bearings Conform to ISO 355 | h | Stainless Steel
Used in Rings,
Rolling Elements | W | Pressed
Steel Cage | ZZ
ZZS | Shields
on Both
Sides | | | 12
13
22
: | Self-
Aligning Ball
Bearings
Cylindrical | 01
02
03 | 12
15
17 | В | Standard
Contact Angle
of 40° | | | | Troiling Elomonia | Т | Synthetic
Resin Cage | DU | Contact
Rubber Seal
on One Side
Only | | | NJ 2
N 3
NN 30 | Roller
Bearings | /22
/28
/32 | 22
28
32 | С | Standard
Contact Angle
of 15° | (F
E | or High Capacity
Bearings | | | v | Without | DDU | Contact
Rubber
Seals on
Both Sides | | | NA48
NA49
NA69
:
320
322
323
: | Needle
Roller
Bearings
Tapered
Roller
Bearings
(2) | 04(3)
05
06
 | 20
25
30
:
:
440 | | Tapered
Roller
Bearings Contact Angle
Less than 17°
Contact Angle | CA
CD
EA | Spherical Roller
Bearings | | | | Cage | v | Non-
Contact
Rubber Seal
on One Side
Only
Non-
Contact | | | 230
222
223
:
511
512
513 | Spherical
Roller
Bearings
Thrust Ball
Bearing with
Flat Seats | 92
96
/500
/530
/560 | 460
480
500
530
560 | D | Contact Angle
about 28° | E | Béarings
Spherical Thrust
Roller Bearings | | | | | | Rubber
Seals on
Both Sides | | | :
292
293
294
: | Thrust
Spherical
Roller
Bearings | /2 360
/2 500 | 2 360
2 500 | | | | | | | | | | | | | HR(4) | High Capacity
Tapered Rolle
Bearings, and | er | | | | | | | | | | | | | | | Symbols | and Nu | mbers Conf | orm to | JIS(5) | | | NSK | Symbol | | | NS | K Symbol | | | | | | | | Marked on Bea | ırings | | | | | t Marked
Bearings | | | | | | . () | | 0 1 0 | | | | | | | , 0.1 | | | | - Notes (1) Bearing Series Symbols conform to Table 7.5. (2) For basic numbers of tapered roller bearings in ISO's new series, refer to Page B111. (3) For Bearing Bore Numbers 04 through 96, five times the bore number gives the bore size (mm) (except double-direction thrust ball bearings). (4) HR is prefix to bearing series symbols and it is NSK's original prefix. #### **Bearing Numbers** | Αι | ıxiliary Syn | nbols | | | | | | | | | | | | | | |-----|--|---|---------------------------------|---------------|-----------------------------|---|--|-------------------------------|-----------------------------|-----------|--|------------|--------------------------------------|---------|-------------------------------| | | ol for Design | | ngement
/mbol | Inter | | Clearance Symbol load Symbol | | rance Class
Symbol | Sį | рe | Special
cification
symbol | | er or Sleeve
Symbol | Grea | se Symbol | | | f Rings
Meaning | Symbol | Meaning | Symbol | Mea | aning (radial clearance) | Symbol | Meaning | Symb | nl | Meaning | Symbol | Meaning | Symbol | Meaning | | K | Tapered
Bore of
Inner Ring | DB | | | | Clearance Less
than C2
Clearance Less | , | ISO Normal | /B | ea
rea | arings ated for nensional | + K | Bearings
with Outer
Ring | AS2 | SHELL
ALVANIA
GREASE S2 | | | , . , | DF | Face-to-
Face
Arrangement | Omitted
C3 | Radial | CN Clearance Clearance Greater than CN | P6 | ISO Class 6 | | ta | bilization /
Working | +L | Spacers Bearings with Inner Ring | ENS | ENS GREASE | | K30 | Tapered Bore of Inner Ring (Taper 1:12) DF Face-to-Face Arrangement Dinner Ring (Taper 1:30) Tapered Bore of Inner Ring (Taper 1:30) DF Face-to-Face Arrangement Dinner Ring (Taper 1:30) DT Tandem Arrangement CC CC Dinner Ring (Taper 1:30) Notch or Lubricating Groove in Ring United Bulleting CC CC CC Dinner Ring Croove in Outside Surface and Holes in Outer Ring Groove in Outer Ring Courter Courte | Clearance Greater
than C3
Clearance Greater | P6X
P5 | ISO Class 6X | X28 | | Temperature
Lower than
150 °C
Working | +KL | Spacers Bearings with Both | | NS HI-LUBE MULTEMP PS | | | | | | E | Notch or | | | CC2 | geab | than CC2
Clearance Less | P4 | ISO Class 4 | Λ20 | | Temperature
Lower than
200 °C | | Inner and
Outer Ring
Spacers | 132 | No. 2 | | | Groove in | | | CC3 | n-Interchan
rical Roller | Normal Clearance
Clearance Greater | P2 | ISO Class 2 | X29 | | Working
Temperature
Lower than
250 °C | H
AH | Adapter
Designation
Withdrawal | | | | E4 | Groove in | | | | . = | than CC3
Clearance Greater | Tap | MA(7)
pered
ler bearing | | | pherical \ | HJ | Sleeve
Designation
Thrust | | | | | Holes in | | | | all
Brgs. | Clearance Less than | | Class 4 | S11 | \E | doller
Bearings
Dimensional
Stabilizing | | Collar
Designation | | | | N | Groove in | | | MC3
MC4 | Extra | Normal Clearance
Clearance Greater | PN2 | Class 2 | | | Treatment
Working
Temperature
Lower than
200°C | | | | | | NR | Groove with
Snap Ring | | | | Fo
and Mi | than MC4
Clearance Greater | PN3 | Class 3 | | | 200 C | | | | | | | | | | СМ | | rance in Deep Groove
Bearings for Electric
ors | PN0 | Class 0 | | | | | | | | | | | | | CT
CM | Clea
Roll
Mot | rance in Cylindrical
er Bearings for Electric
ors | | | | | | | | | | | | | | | | Ball Be | d of Angular Contact)
aring
ra light Preload | | | | | | | | | | | | | | | L
M
H | Med | nt Preload
dium Preload
vy Preload | | | | | | | | | | | S | rtially the
ame as
JIS(5) | | ame as
IIS(5) | NSK S | Symbo | Partially the
same as JIS(5)/
BAS(6) | San | ne as JIS(5) | | | NSK Sym | nbol, Pai | rtially the same | as JIS(| 5) | | | ntae (5) | IIC. I | ananaa- | | | ple, Marked on Bearing | IS | | | _ | | | Not Marked | on Bear | ings | - Notes (5) JIS: Japanese Industrial Standards. (6) BAS: The Japan Bearing Industrial Association Standard. (7) ABMA: The American Bearing Manufacturers Association. A 56 A 57 ### 8. BEARING TOLERANCES #### 8.1 Bearing Tolerance Standards The tolerances for the boundary dimensions and running accuracy of rolling bearings are specified by ISO 492/199/582 (Accuracies of Rolling Bearings). Tolerances are specified for the following items: Regarding bearing accuracy classes, besides ISO normal accuracy, as the accuracy improves there are Class 6X (for tapered roller bearings). Class 6. Class 5, Class 4, and Class 2, with Class 2 being the highest in ISO. The applicable accuracy classes for each bearing type and the correspondence of these classes are shown in Table 8.1. Table 8. 1 Bearing Types and Tolerance Classes | | Bearing | Types | | Applica | able Tolerance (| Classes | | Applicable
Tables | Reference
Pages | |----------------------------------|---------------------------------|----------------------------|----------------------|-----------------------|-----------------------
----------------------|-----------------------|----------------------|--------------------| | | Deep Groove Ba | all Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | | | | | Angular Contac | t Ball Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | | | | | Self-Aligning Ba | all Bearings | Normal | Class 6
equivalent | Class 5
equivalent | _ | _ | Table | A60 | | | Cylindrical Roll | er Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | 8.2 | to A63 | | | Needle Roller B
(solid type) | earings | Normal | Class 6 | Class 5 | Class 4 | _ | | | | : | Spherical Rolle | Bearings | Normal | Class 6 | Class 5 | _ | _ | | | | | Tapered | Metric
Design | Normal
Class 6X | _ | Class 5 | Class 4 | _ | Table
8.3 | A64
to A67 | | | Roller
Bearings | Inch Design | ANSI/ABMA
CLASS 4 | ANSI/ABMA
CLASS 2 | ANSI/ABMA
CLASS 3 | ANSI/ABMA
CLASS 0 | ANSI/ABMA
CLASS 00 | Table
8.4 | A68
and A69 | | | Magneto Bearin | gs | Normal | Class 6 | Class 5 | _ | _ | Table
8.5 | A70
and A71 | | | Thrust Ball Bea | rings | Normal | Class 6 | Class 5 | Class 4 | _ | Table
8.4 | A72
to A74 | | - | Thrust Spherica | l Roller Bearings | Normal | _ | _ | _ | _ | Table
8.7 | A75 | | S | JIS | (1) | Class 0 | Class 6 | Class 5 | Class 4 | Class 2 | _ | _ | | ndard | DIN | [(2) | P0 | P6 | P5 | P4 | P2 | _ | _ | | Equivalent standards (Reference) | | Ball
Bearings | ABEC 1 | ABEC 3 | ABEC 5
(CLASS 5P) | ABEC 7
(CLASS 7P) | ABEC 9
(CLASS 9P) | Table
8.2 | A60
to A63 | | quival
(Re | ANSI/
ABMA(3) | Roller
Bearings | RBEC 1 | RBEC 3 | RBEC 5 | _ | _ | [Table]
8.8 | (A76
and A77) | | ш | | Tapered Roller
Bearings | CLASS 4 | CLASS 2 | CLASS 3 | CLASS 0 | CLASS 00 | Table 8.4 | (A68
and A69) | Notes (1) JIS: Japanese Industrial Standards (2) DIN: Deutsch Industrie Norm (3) ANSI/ABMA: The American Bearing Manufacturers Association Remarks The permissible limit of chamfer dimensions shall conform to Table 8.9 (Page A78), and the tolerances and permissible tapered bore diameters shall conform to Table 8.10 (Page A80). (Reference) Rough definitions of the items listed for Running Accuracy and their measuring methods are shown in Fig. 8.1, and they are described in detail in ISO 5593 (Rolling Bearings-Vocabulary) and JIS B 1515 (Rolling Bearings-Tolerances) and elsewhere. #### Supplementary Table | Running
Accuracy | Inner
Ring | Outer
Ring | Dial
Gauge | |---------------------|---|----------------------------|---------------| | K_{ia} | Rotating | Stationary | А | | K_{ea} | Stationary | Rotating | Α | | S_{ia} | Rotating | Stationary | B_1 | | S_{ea} | Stationary | Rotating | B_2 | | S_d | Rotating | Stationary | С | | S_D | _ | Rotating | D | | S_i , $S_{ m e}$ | Only the shaft
or central wash
rotated. | or housing
ner is to be | E | | | | | | Fig. 8.1 Measuring Methods for Running Accuracy (summarized) #### **Symbols for Boundary Dimensions and Running Accuracy** | d | Brg | pore | aia., | non | nınaı | | |---|-----|------|-------|-----|-------|--| | | | | | | | | Deviation of a single bore dia. Single plane mean bore dia. deviation Bore dia. Variation in a single radial plane Mean bore dia. Variation BInner ring width, nominal Deviation of a single inner ring width Δ_{Bs} Inner ring width variation Radial runout of assembles brg inner ring K_{ia} inner ring reference face (backface, where applicable) runout with bore Assembled brg inner ring face (back face) runout with raceway S_i , S_e Raceway to backface thickness variation of thrust brg TBrg width, nominal Deviation of the actual brg width Brg outside dia., nominal Deviation of a single outside dia. Single plane mean outside dia. Deviation V_{Dp} Outside dia. Variation in a single radial Mean outside dia. Variation COuter ring width, nominal Deviation of a single outer ring width Δ_{Cs} Outer ring width variation $K_{\rm ea}$ Radial runout of assembled brg outer ring Variation of brg outside surface generatrix inclination with outer ring reference face (backface) Assembled brg outer ring face (backface) runout with raceway A 59 Table 8. 2 Tolerances for Radial Bearings Table 8. 2. 1 Tolerances for Inner Rings and | Nominal | Bore Diameter | | | | | 4 | dmp (2) | | | | | | Δ | ds (2) | | |-------------------------|--------------------------|------------------|------------------------------|-------------|--------------------------|------------------|--------------------------|-------------|--------------------------|-------------|----------------------|------------------|-------------------------------------|-------------|----------------------| | | d
(mm) | N | ormal | C | lass 6 | С | lass 5 | C | lass 4 | C | Class 2 | Dia
S | ass 4
ameter
eries
2, 3, 4 | С | lass 2 | | over | incl. | high | low | 0.6(1)
2.5
10 | 2.5
10
18 | 0
0
0 | - 8
- 8
- 8 | 0
0
0 | - 7
- 7
- 7 | 0
0
0 | - 5
- 5
- 5 | 0
0
0 | - 4
- 4
- 4 | 0
0
0 | -2.5
-2.5
-2.5 | 0
0
0 | - 4
- 4
- 4 | 0
0
0 | -2.5
-2.5
-2.5 | | 18
30
50 | 30
50
80 | 0
0
0 | - 10
- 12
- 15 | 0
0
0 | - 8
-10
-12 | 0
0
0 | - 6
- 8
- 9 | 0
0
0 | - 5
- 6
- 7 | 0
0
0 | -2.5
-2.5
-4 | 0
0
0 | - 5
- 6
- 7 | 0
0
0 | -2.5
-2.5
-4 | | 80
120
150
180 | 120
150
180
250 | 0
0
0
0 | - 20
- 25
- 25
- 30 | 0
0
0 | -15
-18
-18
-22 | 0
0
0
0 | -10
-13
-13
-15 | 0
0
0 | - 8
-10
-10
-12 | 0
0
0 | -5
-7
-7
-8 | 0
0
0
0 | - 8
-10
-10
-12 | 0
0
0 | -5
-7
-7
-8 | | 250
315
400 | 315
400
500 | 0
0
0 | - 35
- 40
- 45 | 0 0 | -25
-30
-35 | 0 0 | -18
-23
- | _ | | _ | | _ | | _ | _
_
_ | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 0 - | -40
-
- | = | _ | _
_
_ | _ | _ | _ | _ | | _ | | | 1 000
1 250
1 600 | 1 250
1 600
2 000 | 0
0
0 | -125
-160
-200 | _
_
_ | -
-
- |
 -
 - | <u>-</u>
- | _
_
_ | -
-
- | _
_
_ | _
 | _
_
_ | <u>-</u>
- | _
_
_ | _
_
_ | | | | | | Δ_{E} | $_{ m Bs}$ (or $arDelta$ | Cs)(3) | | | | | | | V_{\perp} | $_{B\mathrm{s}}$ (or ${\it V}$ | _{Cs}) | | |------------------|----------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|----------------------|----------------------|--------------------------------|-------------------|--------------------| | | | Single | Bearing | | | | Co | mbine | d Bearing: | S (4) | | Inner Ri
Outer Ri | ing (or
ing) (3) | | Inner Rin | g | | | Jormal
Class 6 | | lass 5
lass 4 | C | lass 2 | | ormal
lass 6 | | lass 5
lass 4 | C | lass 2 | Normal | Class
6 | Class
5 | Class
4 | Clas
2 | | high | low | max. | max. | max. | max. | ma | | 0
0
0 | - 40
- 120
- 120 | 0
0
0 | - 40
- 40
- 80 | 0
0
0 | - 40
- 40
- 80 | _
0
0 |
-250
-250 | 0
0
0 | -250
-250
-250 | 0
0
0 | -250
-250
-250 | 12
15
20 | 12
15
20 | 5
5
5 | 2.5
2.5
2.5 | 1.
1.
1. | | 0
0
0 | - 120
- 120
- 150 | 0
0
0 | -120
-120
-150 | 0
0
0 | -120
-120
-150 | 0
0
0 | -250
-250
-380 | 0
0
0 | -250
-250
-250 | 0 0 0 | -250
-250
-250 | 20
20
25 | 20
20
25 | 5
5
6 | 2.5
3
4 | 1.
1.
1. | | 0
0
0
0 | - 200
- 250
- 250
- 300 | 0
0
0
0 | -200
-250
-250
-300 | 0
0
0
0 | -200
-250
-250
-300 | 0
0
0
0 | -380
-500
-500
-500 | 0
0
0
0 | -380
-380
-380
-500 | 0
0
0
0 | -380
-380
-380
-500 | 25
30
30
30 | 25
30
30
30 | 7
8
8
10 | 4
5
5
6 | 2.
2.
4
5 | | 0
0
0 | - 350
- 400
- 450 | 0 0 - | -350
-400
- | _
_
_ | _
_
_ | 0
0
— | -500
-630
- | 0
0
— | -500
-630
- | <u>-</u> | _
_
_ | 35
40
50 | 35
40
45 | 13
15
— | _
_
_ | -
- | | 0
0
0 | - 500
- 750
-1 000 | _
_
_ | | _
_
_ | | = | | = | | - | | 60
70
80 | 50
-
- | -
- | _
_
_ | -
 - | | 0 0 | -1 250
-1 600
-2 000 | _
_
_ | | _
_
_ | _ | _ | _ | = | _ | = | _ | 100
120
140 | -
-
- | = | _
_
_ | -
 - | #### **Notes** (1) 0.6mm is included in the group. - (2) Applicable to bearings with cylindrical bores. (3) Tolerance for width deviation and tolerance limits for the width variation of the outer ring should be the same bearing. Tolerances for the width variation of the outer ring of Class 5, 4, and 2 are shown in Table 8.2.2. (4) Applicable to individual rings manufactured for combined bearings. (5) Applicable to ball bearings such as deep groove ball bearings, angular contact ball bearings, etc. #### (excluding Tapered Roller Bearings) Widths of Outer Rings | | | | | | $V_{d\mathrm{p}}$ (2) | | | | | | | | V_{dr} | _{np} (2) | | | |----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|---------------------|---------------------|------------------|--------------------|----------------------|----------------------|------------------|-------------------|------------------------|--| | | Norma | 1 | | Class 6 | ; | Cla
 ss 5 | Cla | ss 4 | Class 2 | | | | | | | | Dia | meter Se | eries | Dia | meter Se | eries | | neter
ries | | neter
ries | Diameter
Series | Normal | Class
6 | Class
5 | Class
4 | Class
2 | | | 9 | 0, 1 | 2, 3, 4 | 9 | 0, 1 | 2, 3, 4 | 9 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 0,1,2,3,4 | | | - | _ | _ | | | | max. | | | max. | | m | ax. | m | ax. | max. | max. | max. | max. | max. | max. | | | 10
10
10 | 8
8
8 | 6
6
6 | 9
9
9 | 7
7
7 | 5
5
5 | 5
5
5 | 4
4
4 | 4
4
4 | 3
3
3 | 2.5
2.5
2.5 | 6
6
6 | 5
5
5 | 3
3
3 | 2
2
2 | 1.5
1.5
1.5 | | | 13
15
19 | 10
12
19 | 8
9
11 | 10
13
15 | 8
10
15 | 6
8
9 | 6
8
9 | 5
6
7 | 5
6
7 | 4
5
5 | 2.5
2.5
4 | 8
9
11 | 6
8
9 | 3
4
5 | 2.5
3
3.5 | 1.5
1.5
2 | | | 25
31
31
38 | 25
31
31
38 | 15
19
19
23 | 19
23
23
28 | 19
23
23
28 | 11
14
14
17 | 10
13
13
15 | 8
10
10
12 | 8
10
10
12 | 6
8
8
9 | 5
7
7
8 | 15
19
19
23 | 11
14
14
17 | 5
7
7
8 | 4
5
5
6 | 2.5
3.5
3.5
4 | | | 44
50
56 | 44
50
56 | 26
30
34 | 31
38
44 | 31
38
44 | 19
23
26 | 18
23
— | 14
18
— | = | _
_
_ | _
_
_ | 26
30
34 | 19
23
26 | 9
12
— | _
_
_ | _
_
_ | | | 63 | 63 | 38 | 50 | 50 | 30 | - | - | - | _ | _ | 38 | 30 | - | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Units: µm | O11110 1 pt111 | | | | | | | | | | | | |---|-------------------|---------------------|---------------------|----------------------|------------------|---------------------|----------------------|-------------------|-------------------|----------------------|----------------------| | Nominal Bore Diameter | | S _{ia} (5) | | | S_d | | | | K_{ia} | | | | d
(mm) | Class 2 | Class 4 | Class 5 | Class 2 | Class 4 | Class 5 | Class 2 | Class 4 | Class 5 | Class 6 | Normal | | over incl. | max. | 0.6(1) 2.5
2.5 10
10 18 | 1.5
1.5
1.5 | 3
3
3 | 7
7
7 | 1.5
1.5
1.5 | 3
3
3 | 7
7
7 | 1.5
1.5
1.5 | 2.5
2.5
2.5 | 4
4
4 | 5
6
7 | 10
10
10 | | 18 30
30 50
50 80 | 2.5
2.5
2.5 | 4
4
5 | 8
8
8 | 1.5
1.5
1.5 | 4
4
5 | 8
8
8 | 2.5
2.5
2.5 | 3
4
4 | 4
5
5 | 8
10
10 | 13
15
20 | | 80 120
120 150
150 180
180 250 | 2.5
2.5
5 | 5
7
7
8 | 9
10
10
13 | 2.5
2.5
4
5 | 5
6
6
7 | 9
10
10
11 | 2.5
2.5
5
5 | 5
6
6
8 | 6
8
8
10 | 13
18
18
20 | 25
30
30
40 | | 250 315
315 400
400 500 | _
_
_ | _
_
_ | 15
20
— | _
_
_ | _
_
_ | 13
15
— | | _
 | 13
15
— | 25
30
35 | 50
60
65 | | 500 630
630 800
800 1 000 | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
 | _
_
_ | _
 | _
_
_ | 40
_
_ | 70
80
90 | | 1 000 1 250
1 250 1 600
1 600 2 000 | _
_
_ 100
120
140 | Remarks 1. The cylindrical bore diameter "no-go side" tolerance limit (high) specified in this table does not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. 2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively. Table 8. 2 Tolerances for Radial Bearings Table 8. 2. 2 Tolerances | Nominal Ou | tside | | | | | Δ | <i>D</i> mp | | | | | | Δ | l_{Ds} | | |----------------------------------|----------------------------------|------------------|------------------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|------------------|-----------------------|-------------|------------------------------------|------------------|-----------------------| | Diamete
D
(mm) | er | N | ormal | Cl | ass 6 | Cl | ass 5 | Cl | ass 4 | С | lass 2 | Dia
S | ass 4
meter
eries
2, 3, 4 | C | lass 2 | | over | incl. | high | low | 2.5(¹)
6
18 | 6
18
30 | 0
0
0 | - 8
- 8
- 9 | 0
0
0 | - 7
- 7
- 8 | 0
0
0 | - 5
- 5
- 6 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 2.5
- 2.5
- 4 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 2.5
- 2.5
- 4 | | 30
50
80 | 50
80
120 | 0
0
0 | - 11
- 13
- 15 | 0
0
0 | - 9
-11
-13 | 0
0
0 | - 7
- 9
-10 | 0
0
0 | - 6
- 7
- 8 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 6
- 7
- 8 | 0
0
0 | - 4
- 4
- 5 | | 120
150
180 | 150
180
250 | 0
0
0 | - 18
- 25
- 30 | 0
0
0 | -15
-18
-20 | 0
0
0 | -11
-13
-15 | 0
0
0 | - 9
-10
-11 | 0
0
0 | - 5
- 7
- 8 | 0
0
0 | - 9
-10
-11 | 0
0
0 | - 5
- 7
- 8 | | 250
315
400 | 315
400
500 | | | 0
0
0 | -25
-28
-33 | 0
0
0 | -18
-20
-23 | 0
0
— | -13
-15
- | 0 0 - | - 8
-10
- | 0 0 | -13
-15
- | 0
0
— | - 8
-10
- | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 0
0
0 | -38
-45
-60 | 0 0 | -28
-35
- | _
_
_ | _
_
_ | -
-
- | | _ | _
_
_ | _
_
_ | = | | 1 000
1 250
1 600
2 000 | 1 250
1 600
2 000
2 500 | 0
0
0
0 | -125
-160
-200
-250 | -
-
- | _
_
_ | _
_
_ | _
_
_ | -
-
- | _
_
_ | -
-
-
- | _
_
_ | _
_
_ | _
_
_ | _
_
_
_ | _
_
_ | Notes (1) 2.5mm is included in the group. - (2) Applicable only when a locating snap ring is not used. (3) Applicable to ball bearings such as deep groove ball bearings and angular contact ball bearings. (4) The tolerances for outer ring width variation of bearings of Classes Normal and 6 are shown in Table 8.2.1. Remarks 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. 2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively. #### (excluding Tapered Roller Bearings) for Outer Rings | | | | | | V_{Dp} (| [2] | | | | | | | | V | Dmp (2) | | | | |-----------------|-----------------|----------------|--------------------|----------------|----------------|----------------|--------------------|----------------|----------------|---------------|---------------|--------------------|----------------|----------------|---------------|---------------|-----------------|---| | | Nori | nal | | | Cla | ss 6 | | Cla | ss 5 | Cla | ss 4 | Class 2 | | | | | | | | C | Dpen Type | 9 | Shielded
Sealed | С | pen Typ | ре | Shielded
Sealed | Open | Туре | Open | Туре | Open Type | N | Class | Class | Class | Class | ı | | | Diameter | Series | , | | Diamete | | | Diar
Se | neter
ries | Dian
Se | neter
ries | Diameter
Series | Normal | 6 | 5 | 4 | 2 | ı | | 9 | 0, 1 | 2, 3, 4 | 2, 3, 4 | 9 | 0, 1 | 2, 3, 4 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 0,1,2,3,4 | | | | | | ı | | | ma | х. | | | m | ax. | | m | ax. | m | ax. | max. | max. | max. | max. | max. | max. | | | 10
10
12 | 8
8
9 | 6
6
7 | 10
10
12 | 9
9
10 | 7
7
8 | 5
5
6 | 9
9
10 | 5
5
6 | 4
4
5 | 4
4
5 | 3
3
4 | 2.5
2.5
4 | 6
6
7 | 5
5
6 | 3
3
3 | 2
2
2.5 | 1.5
1.5
2 | | | 14
16
19 | 11
13
19 | 8
10
11 | 16
20
26 | | | | 7
9
10 | 5
7
8 | 6
7
8 | 5
5
6 | 4
4
5 | 8
10
11 | 7
8
10 | 4
5
5 | 3
3.5
4 | 2
2
2.5 | | | | 23
31
38 | 23
31
38 | 14
19
23 | 30
38
- | 19
23
25 | 19
23
25 | 11
14
15 | 25
30
— | 11
13
15 | 8
10
11 | 9
10
11 | 7
8
8 | 5
7
8 | 14
19
23 | 11
14
15 | 6
7
8 | 5
5
6 | 2.5
3.5
4 | | | 44
50
56 | 44
50
56 | 26
30
34 | -
 -
 - | 31
35
41 | 31
35
41 | 19
21
25 | _
_
_ | 18
20
23 | 14
15
17 | 13
15
— | 10
11
— | 8
10
— | 26
30
34 | 19
21
25 | 9
10
12 | 7
8
— | 4
5
— | | | 63
94
125 | 63
94
125 | 38
55
75 | -
 -
 - | 48
56
75 | 48
56
75 | 29
34
45 | _ | 28
35
— | 21
26
— | _
_
_ | = | _
_
_ | 38
55
75 | 29
34
45 | 14
18
— | _
_
_ | -
-
- | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ı | | = | | - | - | = | - | = | _ | _ | | | | _ | = | = | = | | _ | ı | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Units : $\mu\,m$ | | | | K_{ea} | | | | S_D | | | S ea (3) | | | V_{Cs} (4) | | . Nominal (| Nutside | |----------------------|-----|----------------|-------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|-------------------|----------------------------------|----------------------------------| | rn | nal | Class
6 | Class
5 | Class
4 | Class
2 | Diame
D
(mn | eter | | ax | ۲. |
max. over | incl. | | 15
15
15 | 5 | 8
8
9 | 5
5
6 | 3
3
4 | 1.5
1.5
2.5 | 8
8
8 | 4
4
4 | 1.5
1.5
1.5 | 8
8
8 | 5
5
5 | 1.5
1.5
2.5 | 5
5
5 | 2.5
2.5
2.5 | 1.5
1.5
1.5 | 2.5 (¹)
6
18 | 6
18
30 | | 20
25
35 | 5 | 10
13
18 | 7
8
10 | 5
5
6 | 2.5
4
5 | 8
8
9 | 4
4
5 | 1.5
1.5
2.5 | 8
10
11 | 5
5
6 | 2.5
4
5 | 5
6
8 | 2.5
3
4 | 1.5
1.5
2.5 | 30
50
80 | 50
80
120 | | 40
45
50 | 5 | 20
23
25 | 11
13
15 | 7
8
10 | 5
5
7 | 10
10
11 | 5
5
7 | 2.5
2.5
4 | 13
14
15 | 7
8
10 | 5
5
7 | 8
8
10 | 5
5
7 | 2.5
2.5
4 | 120
150
180 | 150
180
250 | | 60
70
80 | | 30
35
40 | 18
20
23 | 11
13
— | 7
8
— | 13
13
15 | 8
10
– | 5
7
— | 18
20
23 | 10
13
— | 7
8
— | 11
13
15 | 7
8
— | 5
7
— | 250
315
400 | 315
400
500 | | 00
20
40 | | 50
60
75 | 25
30
— | _ | _
_
_ | 18
20
— | = | _
_
_ | 25
30
— | _
_
_ | _
_
_ | 18
20
— | _
_
_ | _
_
_ | 500
630
800 | 630
800
1 000 | | 60
90
20
50 | | _
_
_ | -
-
-
- 1 000
1 250
1 600
2 000 | 1 250
1 600
2 000
2 500 | A 62 A 63 Table 8. 3 Tolerances for Metric Design Tapered Roller Bearings Table 8. 3. 1 Tolerances for Inner Ring Bore Diameter and Running Accuracy | Nomina
Diam | | | | Δ | dmp | | | 4 | $\mathcal{L}_{d\mathrm{s}}$ | | V | dp | | | V_a | <i>l</i> mp | | |-------------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-----------------------------|--------------------|----------------|---------------|--------------|--------------------|---------------|---------------|-------------| | (mi | | | rmal
ss 6X | | ass 6
ass 5 | Cl | ass 4 | Cl | ass 4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | | over | incl. | high | low | high | low | high | low | high | low | max. | 10
18
30 | 18
30
50 | 0
0
0 | - 8
-10
-12 | 0
0
0 | - 7
- 8
-10 | 0
0
0 | - 5
- 6
- 8 | 0
0
0 | - 5
- 6
- 8 | 8
10
12 | 7
8
10 | 5
6
8 | 4
5
6 | 6
8
9 | 5
6
8 | 5
5
5 | 4
4
5 | | 50
80
120 | 80
120
180 | 0
0
0 | -15
-20
-25 | 0
0
0 | -12
-15
-18 | 0
0
0 | - 9
-10
-13 | 0
0
0 | - 9
-10
-13 | 15
20
25 | 12
15
18 | 9
11
14 | 7
8
10 | 11
15
19 | 9
11
14 | 6
8
9 | 5
5
7 | | 180
250
315 | 250
315
400 | 0
0
0 | -30
-35
-40 | 0
0
0 | -22
-25
-30 | 0
0
0 | -15
-18
-23 | 0
0
0 | -15
-18
-23 | 30
35
40 | 22
-
- | 17
-
- | 11
-
- | 23
26
30 | 16
-
- | 11
-
- | 8
-
- | | 400
500
630 | 500
630
800 | 0
0
0 | -45
-50
-75 | 0
0
0 | -35
-40
-60 | 0
_
_ | -27
-
- | 0
-
- | -27
-
- | _
_
_ | | _
_
_ | _
_
_ | _
_
_ | _
_
_ | -
 -
 - | | | | | ma | | | |---|---|----|-----|----| | п | G | ш | 111 | 19 | | | | | | | - The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Some of these tolerances conform to the NSK Standard. Table 8. 3. 2 Tolerances for Outer Ring Outside Diameter and Running Accuracy | No | | l Outside
neter | | | Δ | Dmp | | | 4 | $1_{D m s}$ | | V | <i>D</i> p | | | V_{I} | Этр | | |----|-----|--------------------|------|-----------------|------|----------------|---------|-----|------|-------------|--------------------|------------|------------|------------|--------------------|------------|------------|------------| | | _ | D
nm) | | ormal
ass 6X | | ass 6
ass 5 | Class 4 | | Cl | ass 4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | | 0 | ver | incl. | high | low | high | 0 0 | | | high | low | max. | | 18 | 30 | 0 | - 9 | 0 | - 8 | 0 | - 6 | 0 | - 6 | 9 | 8 | 6 | 5 | 7 | 6 | 5 | 4 | | | 30 | 50 | 0 | - 11 | 0 | - 9 | 0 | - 7 | 0 | - 7 | 11 | 9 | 7 | 5 | 8 | 7 | 5 | 5 | | | 50 | 80 | 0 | - 13 | 0 | -11 | 0 | - 9 | 0 | - 9 | 13 | 11 | 8 | 7 | 10 | 8 | 6 | 5 | | | 80 | 120 | 0 | - 15 | 0 | -13 | 0 | -10 | 0 | -10 | 15 | 13 | 10 | 8 | 11 | 10 | 7 | 5 | | | 120 | 150 | 0 | - 18 | 0 | -15 | 0 | -11 | 0 | -11 | 18 | 15 | 11 | 8 | 14 | 11 | 8 | 6 | | | 150 | 180 | 0 | - 25 | 0 | -18 | 0 | -13 | 0 | -13 | 25 | 18 | 14 | 10 | 19 | 14 | 9 | 7 | | 2 | 180 | 250 | 0 | - 30 | 0 | -20 | 0 | -15 | 0 | -15 | 30 | 20 | 15 | 11 | 23 | 15 | 10 | 8 | | | 250 | 315 | 0 | - 35 | 0 | -25 | 0 | -18 | 0 | -18 | 35 | 25 | 19 | 14 | 26 | 19 | 13 | 9 | | | 315 | 400 | 0 | - 40 | 0 | -28 | 0 | -20 | 0 | -20 | 40 | 28 | 22 | 15 | 30 | 21 | 14 | 10 | | 5 | 100 | 500 | 0 | - 45 | 0 | -33 | 0 | -23 | 0 | -23 | 45 | _ | _ | _ | 34 | _ | _ | _ | | | 500 | 630 | 0 | - 50 | 0 | -38 | 0 | -28 | 0 | -28 | 50 | _ | _ | _ | 38 | _ | _ | _ | | | 530 | 800 | 0 | - 75 | 0 | -45 | — | - | — | - | — | _ | _ | _ | - | _ | _ | _ | | 8 | 300 | 1 000 | 0 | -100 | 0 | -60 | - | - | _ | - | _ | - | _ | - | _ | - | _ | _ | - Remarks 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension *r* (max.) from the ring face. 2. Some of these tolerances conform to the NSK Standard. | | | | | | Units : μ | ιm | |----------|-------|-------|-------|-------|-----------|-------| | | K | ia | | S | d | S ia | | Normal | Class | Class | Class | Class | Class | Class | | Class 6X | 6 | 5 | 4 | 5 | 4 | 4 | | max. | 15 | 7 | 3.5 | 2.5 | 7 | 3 | 3 | | 18 | 8 | 4 | 3 | 8 | 4 | 4 | | 20 | 10 | 5 | 4 | 8 | 4 | 4 | | 25 | 10 | 5 | 4 | 8 | 5 | 4 | | 30 | 13 | 6 | 5 | 9 | 5 | 5 | | 35 | 18 | 8 | 6 | 10 | 6 | 7 | | 50 | 20 | 10 | 8 | 11 | 7 | 8 | | 60 | 25 | 13 | 10 | 13 | 8 | 10 | | 70 | 30 | 15 | 12 | 15 | 10 | 14 | | 70 | 35 | 18 | 14 | 19 | 13 | 17 | | 85 | 40 | 20 | - | 22 | - | — | | 100 | 45 | 22 | - | 27 | - | — | | | K | ea | | s | D | S ea | |----------|-------|-------|-------|-------|-------|-------| | Normal | Class | Class | Class | Class | Class | Class | | Class 6X | 6 | 5 | 4 | 5 | 4 | 4 | | max. | 18 | 9 | 6 | 4 | 8 | 4 | 5 | | 20 | 10 | 7 | 5 | 8 | 4 | 5 | | 25 | 13 | 8 | 5 | 8 | 4 | 5 | | 35 | 18 | 10 | 6 | 9 | 5 | 6 | | 40 | 20 | 11 | 7 | 10 | 5 | 7 | | 45 | 23 | 13 | 8 | 10 | 5 | 8 | | 50 | 25 | 15 | 10 | 11 | 7 | 10 | | 60 | 30 | 18 | 11 | 13 | 8 | 10 | | 70 | 35 | 20 | 13 | 13 | 10 | 13 | | 80 | 40 | 23 | 15 | 15 | 11 | 15 | | 100 | 50 | 25 | 18 | 18 | 13 | 18 | | 120 | 60 | 30 | — | 20 | — | — | | 120 | 75 | 35 | _ | 23 | _ | _ | Table 8. 3 Tolerances for Metric Design Table 8. 3. 3 Tolerances for Width, Overall Bearing Width, | N | omina
Diam | al Bore
ieter | | | 4 | 1 _{Bs} | | | | | 4 | ∆ _{C s} | | | | | Δ_T | s | | | |---|-------------------|-------------------|-------------|----------------------|-------------|-------------------|-------------|----------------------|-------------|----------------------|-------------|----------------------|-------------|----------------------|----------------------|----------------------|----------------------|-------------|----------------------|----------------------| | | (mi | | | ormal
ass 6 | Cla | ss 6X | | ass 5
ass 4 | | ormal
lass 6 | Cl | ass 6X | | lass 5
lass 4 | | rmal
ıss 6 | Class | 6X | | iss 5
iss 4 | | (| over | incl. | high | low | high | n low | high | low | high | low | high | low | | | 10
18
30 | 18
30
50 | 0
0
0 | -120
-120
-120 | 0
0
0 | -50
-50
-50 | 0
0
0 | -200
-200
-240 | 0
0
0 | -120
-120
-120 | 0
0
0 | -100
-100
-100 | 0
0
0 | -200
-200
-240 | +200
+200
+200 | 0
0
0 | +100
+100
+100 | 0
0
0 | +200
+200
+200 | -200
-200
-200 | | | 50
80
120 | 80
120
180 | 0
0
0 | -150
-200
-250 | 0
0
0 | -50
-50
-50 | 0
0
0 | -300
-400
-500 | 0
0
0 | -150
-200
-250 | 0 0 0 | -100
-100
-100 | 0 0 0 | -300
-400
-500 | +200
+200
+350 | 0
-200
-250 | +100
+100
+150 | 0
0
0 | +200
+200
+350 | -200
-200
-250 | | | 180
250
315 | 250
315
400 | 0
0
0 | -300
-350
-400 | 0
0
0 | -50
-50
-50 | 0 0 0 | -600
-700
-800 | 0
0
0 | -300
-350
-400 | 0 0 0 | -100
-100
-100 | 0 0 0 | -600
-700
-800 | +350
+350
+400 | -250
-250
-400 | +150
+200
+200 | 0
0
0 | +350
+350
+400 | -250
-250
-400 | | | 400
500
630 | 500
630
800 | 0
0
0 | -450
-500
-750 | _
_
_ | -
-
- | 0
0
0 | -800
-800
-800 | 0
0
0 | -450
-500
-750 | -
-
- | = | 0
0
0 | -800
-800
-800 | +400
+500
+600 | -400
-500
-600 | _
_
_ | -
-
- | +400
+500
+600 | -400
-500
-600 | **Remarks** The effective width of an inner ring with rollers T_1 is defined as the overall bearing width of an inner ring with rollers combined with a master outer ring. The effective width of an outer ring T_2 is defined as the overall bearing width of an outer ring combined with a master inner ring with rollers. **Tapered Roller Bearings** and Combined Bearing Width Units : $\mu\,m$ | R | | with Roller | s | Outer Ri | | ve Width D | eviation | |
Combined Bea
B 2s | aring Width $\mathcal{L}_{B\mathrm{4s}}$, | 4 | | nal Bore
meter | |------|------|-------------|------|----------|------|------------|----------|--------|-----------------------|--|--------|------|-------------------| | Nor | mal | Class | s 6X | Nor | mal | Clas | s 6X | | of double-
earings | All classes
bear | | | d
nm) | | high | low | over | incl. | | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 200 | - 200 | _ | _ | 10 | 18 | | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 200 | - 200 | _ | _ | 18 | 30 | | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 200 | - 200 | _ | _ | 30 | 50 | | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 300 | - 300 | + 300 | - 300 | 50 | 80 | | +100 | -100 | + 50 | 0 | +100 | -100 | + 50 | 0 | + 300 | - 300 | + 400 | - 400 | 80 | 120 | | +150 | -150 | + 50 | 0 | +200 | -100 | +100 | 0 | + 400 | - 400 | + 500 | - 500 | 120 | 180 | | +150 | -150 | + 50 | 0 | +200 | -100 | +100 | 0 | + 450 | - 450 | + 600 | - 600 | 180 | 250 | | +150 | -150 | +100 | 0 | +200 | -100 | +100 | 0 | + 550 | - 550 | + 700 | - 700 | 250 | 315 | | +200 | -200 | +100 | 0 | +200 | -200 | +100 | 0 | + 600 | - 600 | + 800 | - 800 | 315 | 400 | | - | - | - | - | - | - | - | - | + 700 | - 700 | + 900 | - 900 | 400 | 500 | | - | - | - | - | - | - | - | - | + 800 | - 800 | +1 000 | -1 000 | 500 | 630 | | - | - | - | - | - | - | - | - | +1 200 | -1 200 | +1 500 | -1 500 | 630 | 800 | ## Table 8. 4 Tolerances for Inch Design Tapered Roller Bearings (Refer to page A58 Table 8. 1 for the tolerance class "CLASS ** " that is the tolerance classes of ANSI/ABMA.) Table 8. 4. 1 Tolerances for Inner Ring Bore Diameter Units : $\mu\,m$ | | Nominal Bo | re Diameter \emph{l} | | | | Δ | ds | | | |--|--|--------------------------------------|-------------------------------|------------------------------|-------------|--------------------------|------------------|------------------|-------------| | over | | incl. | | CLAS | S 4, 2 | CLAS | S 3, 0 | CLAS | SS 00 | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | high | low | | _
76.200
266.700 | 3.0000
10.5000 | 76.200
266.700
304.800 | 3.0000
10.5000
12.0000 | + 13
+ 25
+ 25 | 0
0
0 | +13
+13
+13 | 0
0
0 | +8
+8
- | 0
0
— | | 304.800
609.600
914.400
1 219.200 | 12.0000
24.0000
36.0000
48.0000 | 609.600
914.400
1 219.200
— | 24.0000
36.0000
48.0000 | + 51
+ 76
+102
+127 | 0
0
0 | +25
+38
+51
+76 | 0
0
0
0 | _
_
_
_ | _
_
_ | | | Nominal Outs $\it I$ | `` | | | | Δ | Ds | | | |---------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|-------------|-------------------|-------------|---------------|-------------| | over | | incl. | | CLAS | S 4, 2 | CLAS | S 3, 0 | CLAS | SS 00 | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | high | low | | | _
10.5000
12.0000 | 266.700
304.800
609.600 | 10.5000
12.0000
24.0000 | + 25
+ 25
+ 51 | 0
0
0 | +13
+13
+25 | 0
0
0 | +8
+8
- | 0
0
— | | 609.600
914.400
1 219.200 | 24.0000
36.0000
48.0000 | 914.400
1 219.200
— | 36.0000
48.0000
— | + 76
+102
+127 | 0
0
0 | +38
+51
+76 | 0
0
0 | _
_
_ | = | Table 8. 4. 3 Tolerances for | | Nominal Bo | re Diameter d | | | | | | Δ | Ts . | | | | | |--------------------|--------------------|--------------------|-------------------|--------------|-------------------|--------------|-----------|----------------|--------------|---------------|--------------|--------------|--------------| | OV | er | in | cl. | CL | ASS 4 | CLA | SS 2 | <i>D</i> ≦508. | | SS 3
D>508 | .000 (mm) | CLAS | S 0, 00 | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | | _
101.600 | _
4.0000 | 101.600
304.800 | 4.0000
12.0000 | +203
+356 | 0
- 254 | +203
+203 | 0 | +203
+203 | -203
-203 | +203
+203 | -203
-203 | +203
+203 | -203
-203 | | 304.800
609.600 | 12.0000
24.0000 | 609.600 | 24.0000 | +381
+381 | -381
-381 | +381 | -381
- | +203
+381 | -203
-381 | +381
+381 | -381
-381 | _ | _ | and Radial Runout of Inner and Outer Rings Units : $\mu\,m$ | | | K_{ia} , K_{ea} | | | |----------------|----------------|---------------------|-------------|-------------| | CLASS 4 | CLASS 2 | CLASS 3 | CLASS 0 | CLASS 00 | | max. | max. | max. | max. | max. | | 51
51
51 | 38
38
38 | 8
8
18 | 4
4
— | 2
2
— | | 76
76
76 | 51
-
- | 51
76
76 | -
-
- | -
-
- | ## **Overall Width and Combined Width** Units : μm | | | | Dou | | arings (KBE T | ype) | | | | (KV | v Bearings
Type)
Δ_{C4s} | |--------------|--------------|--------------|-----------|--------------|-----------------|----------------|--------------|--------------|--------------|------------------|---------------------------------------| | CLA | SS 4 | CLAS | SS 2 | D≦508.0 | CLA
000 (mm) | SS 3
D>508. | 000 (mm) | CLAS | SS 0,00 | CLAS | SS 4, 3 | | high | low | | +406
+711 | 0
-508 | +406
+406 | 0
-203 | +406
+406 | -406
-406 | +406
+406 | -406
-406 | +406
+406 | -406
-406 | +1 524
+1 524 | -1 524
-1 524 | | +762
+762 | -762
-762 | +762
- | -762
- | +406
+762 | -406
-762 | +762
+762 | -762
-762 | _ | = | +1 524
+1 524 | -1 524
-1 524 | A 68 Table 8. 5 Tolerances Table 8. 5. 1 Tolerances for Inner Rings | Nomina
Diam | neter | | | Δ | dmp | | | | V_{dp} | | | $V_{d\mathrm{mp}}$ | | | $\it \Delta_{\it Bs}$ (or | ⊿ _{Cs}) (| 1) | |----------------|-------|------|------|------|------------|------|------------|--------|------------|------------|--------|--------------------|------------|------|---------------------------|---------------------|-------| | (mm) | | No | rmal | Cla | ass 6 | Cla | ass 5 | Normal | Class
6 | Class
5 | Normal | Class
6 | Class
5 | | rmal
ass 6 | Cla | ass 5 | | over | incl. | high | low | high | low | high | low | max. | max. | max. | max. | max. | max. | high | low | high | low | | 2.5 | 10 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 6 | 5 | 4 | 6 | 5 | 3 | 0 | -120 | 0 | - 40 | | 10 | 18 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 6 | 5 | 4 | 6 | 5 | 3 | 0 | -120 | 0 | - 80 | | 18 | 30 | 0 | -10 | 0 | -8 | 0 | -6 | 8 | 6 | 5 | 8 | 6 | 3 | 0 | -120 | 0 | -120 | Note (1) The width deviation and width variation of an outer ring is determined according to the inner ring of the same **Remarks** The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 8. 5. 2 Tolerances | Nominal
Diam | eter | | | Bearing S | eries E | | Δι | Omp | E | Bearing S | eries EN | I | | _ | $V_{D\mathrm{p}}$ | | |-----------------|--------|------|-----|-----------|---------|------|------|------|-----|-----------|------------|------|------------|--------|-------------------|------------| | | D (mm) | Norr | nal | Clas | s 6 | Clas | ss 5 | Nor | mal | Clas | s 6 | Clas | s 5 | Normal | Class
6 | Class
5 | | over | incl. | high | low | max. | max. | max. | | 6 | 18 | + 8 | 0 | +7 | 0 | +5 | 0 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 6 | 5 | 4 | | 18 | 30 | + 9 | 0 | +8 | 0 | +6 | 0 | 0 | - 9 | 0 | -8 | 0 | -6 | 7 | 6 | 5 | | 30 | 50 | +11 | 0 | +9 | 0 | +7 | 0 | 0 | -11 | 0 | -9 | 0 | - 7 | 8 | 7 | 5 | **Remarks** The outside diameter "no-go side" tolerances (low) do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. ## for Magneto Bearings and Width of Outer Rings | | | | | | | | | Un | its : μm | |---|-------------------|-----------------------|---------------------------|------|--------|----------|---------|---------|--------------| | | $V_{B{ m s}}$ (or | V _{Cs}) (1) | Δ | Ts | | K_{ia} | | S_d | $S_{\it ia}$ | | | Normal
Class 6 | Class 5 | Normal Class 6
Class 5 | | Normal | Class 6 | Class 5 | Class 5 | Class 5 | | | max. | max. | high low | | max. | max. | max. | max. | max. | | Ī | 15 | 5 | +120 | -120 | 10 | 6 | 4 | 7 | 7 | | | 20 | 5 | +120 | -120 | 10 | 7 | 4 | 7 | 7 | | | 20 | 5 | +120 | -120 | 13 | 8 | 4 | 8 | 8 | ## for Outer Rings | 10 | n oute | i iiiigs | | | | | Units : μ | ım | |----|--------|----------------|------------|--------|-------------------|------------|-----------------|------------| | | | $V_{D{ m mp}}$ | | | K_{ea} | | S _{ea} | S_D | | N | Vormal | Class
6 | Class
5 | Normal | Class
6 | Class
5 | Class
5 | Class
5 | | | max. | | 6 | 5 | 3 | 15 | 8 | 5 | 8 | 8 | | | 7 | 6 | 3 | 15 | 9 | 6 | 8 | 8 | | | 8 | 7 | 4 | 20 | 10 | 7 | 8 | 8 | Table 8. 6 Tolerances for Thrust Ball Bearings Table 8. 6. 1 Tolerances for Shaft Washer Bore Diameter and Running Accuracy Units : μm | | Nominal Bore Diameter d or d_2 (mm) | | $\Delta_{d ext{mp}}$ 0 | r ⊿ _{d2mp} | | | r ${V_d}_{ m 2p}$ | | $S_{\it i}$ or | S _e (1) | | |--------------|---|--------|--------------------------|---------------------|------|------------------------------|-------------------|----------|----------------|--------------------|------------| | (mm) | | Cla | rmal
ss 6
ss 5 | Cla | ss 4 | Normal
Class 6
Class 5 | Class
4 | Normal | Class
6 | Class
5 | Class
4 | | over | incl. | high | high low high low | | max. | max. | max. | max. | max. | max. | | | _ | 18 | 0 | - 8 | 0 | - 7 | 6 | 5 | 10 | 5 | 3 | 2 | | 18 | 30 | 0 | - 10 | 0 | - 8 | 8 | 6 | 10 | 5 | 3 | 2 | | 30 | 50 | 0 | - 12 | 0 | -10 | 9 | 8 | 10 | 6 | 3 | 2 | | 50 |
80 | 0 | - 15 | 0 | -12 | 11 | 9 | 10 | 7 | 4 | 3 | | 80 | 120 | 0 | - 20 | 0 | -15 | 15 | 11 | 15 | 8 | 4 | 3 | | 120 | 180 | 0 | - 25 | 0 | -18 | 19 | 14 | 15 | 9 | 5 | 4 | | 180 | 250 | 0 | - 30 | 0 | -22 | 23 | 17 | 20 | 10 | 5 | 4 | | 250 | 315 | 0 | - 35 | 0 | -25 | 26 | 19 | 25 | 13 | 7 | 5 | | 315 | 400 | 0 | - 40 | 0 | -30 | 30 | 23 | 30 | 15 | 7 | 5 | | 400 | 500 | 0 | - 45 | 0 | -35 | 34 | 26 | 30 | 18 | 9 | 6 | | 500 | 630 | 0 | - 50 | 0 | -40 | 38 | 30 | 35 | 21 | 11 | 7 | | 630 | 800 | 0 | - 75 | 0 | -50 | - | — | 40 | 25 | 13 | 8 | | 800
1 000 | 1 000
1 250 | 0
0 | -100
-125 | <u>-</u> | = | _ | <u>-</u> | 45
50 | 30
35 | 15
18 | _ | Note (1) For double-direction bearings, the thickness variation doesn't depend on the bore diameter d_2 , but on d for single-direction bearings with the same D in the same diameter series. The thickness variation of housing washers, $S_{\rm e}$, applies only to flat-seat thrust bearings. Table 8. 6. 2 Tolerances for Outside Diameter of Housing Washers and Aligning Seat Washers Units : μm | Nominal Outside D
Bearing or Ali
Seat Wash | gning
er | | Flat Se | ⊿
at Type | Dmp | Aligni
Wash | ng Seat
er Type | V | Dр | Outside
Dev | Geat Washer
Diameter
iation
D 3s | |--|-------------------------|-------------------------|------------------------|--------------|-------------|----------------|--------------------|------------------------------|-------------|----------------|---| | D or D_3 (mm) | 3 | Cla | rmal
ıss 6
ıss 5 | Cla | iss 4 | | rmal
ss 6 | Normal
Class 6
Class 5 | Class 4 | | rmal
ss 6 | | over | incl. | incl. high low high low | | high | low | max. | max. | high | low | | | | 10 | 18 | 0 | - 11 | 0 | - 7 | 0 | - 17 | 8 | 5 | 0 | - 25 | | 18 | 30 | 0 | - 13 | 0 | - 8 | 0 | - 20 | 10 | 6 | 0 | - 30 | | 30 | 50 | 0 | - 16 | 0 | - 9 | 0 | - 24 | 12 | 7 | 0 | - 35 | | 50 | 80 | 0 | - 19 | 0 | -11 | 0 | - 29 | 14 | 8 | 0 | - 45 | | 80 | 120 | 0 | - 22 | 0 | -13 | 0 | - 33 | 17 | 10 | 0 | - 60 | | 120 | 180 | 0 | - 25 | 0 | -15 | 0 | - 38 | 19 | 11 | 0 | - 75 | | 180 | 250 | 0 | - 30 | 0 | -20 | 0 | - 45 | 23 | 15 | 0 | - 90 | | 250 | 315 | 0 | - 35 | 0 | -25 | 0 | - 53 | 26 | 19 | 0 | -105 | | 315 | 400 | 0 | - 40 | 0 | -28 | 0 | - 60 | 30 | 21 | 0 | -120 | | 400 | 500 | 0 | - 45 | 0 | -33 | 0 | - 68 | 34 | 25 | 0 | -135 | | 500 | 630 | 0 | - 50 | 0 | -38 | 0 | - 75 | 38 | 29 | 0 | -180 | | 630 | 800 | 0 | - 75 | 0 | -45 | 0 | -113 | 55 | 34 | 0 | -225 | | 800
1 000
1 250 | 1 000
1 250
1 600 | 0
0
0 | -100
-125
-160 | _
_
_ | _
_
_ | _
_
_ | = | 75
—
— | _
_
_ | _
_
_ | Ξ | Table 8. 6. 3 Tolerances for Thrust Ball Bearing Height and Central Washer Height Units: um | | | | | | | | | | | | | | | | | μΠ | |---|------------------|-------------------|-------------------|-------------------------|----------------------|----------------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------|------------------------------| | ı | Nomin | al Bore | | Flat Se | at Type | | Ali | gning Seat | Washer | Туре | Wit | h Aligning | Seat Wa | sher | | Deviation | | | | neter | ΔI_{Ts} (| or Δ $_{T2s}$ | Δ | T1s | Δ_{T3s} | or Δ $_{T6s}$ | Δ | T5s | $\Delta_{T_{48}}$ | or Δ $_{T88}$ | Δ | T7s | | al Washer
I _{Bs} | | | <i>d</i>
(m | (1)
m) | | l, Class 6
, Class 4 | | , | | rmal
ass 6 | | rmal
ss 6 | | rmal
ss 6 | Noi
Cla | rmal
ss 6 | | l, Class 6
, Class 4 | | | over | incl. | high | low | high | low | high | high low | | low | high | low | high | low | high | low | | | _
30
50 | 30
50
80 | 0
0
0 | - 75
-100
-125 | + 50
+ 75
+100 | -150
-200
-250 | 0
0
0 | - 75
-100
-125 | + 50
+ 75
+100 | -150
-200
-250 | + 50
+ 50
+ 75 | - 75
-100
-125 | +150
+175
+250 | -150
-200
-250 | 0
0
0 | - 50
- 75
-100 | | | 80
120
180 | 120
180
250 | 0
0
0 | -150
-175
-200 | +125
+150
+175 | -300
-350
-400 | 0
0
0 | -150
-175
-200 | +125
+150
+175 | -300
-350
-400 | + 75
+100
+100 | -150
-175
-200 | +275
+350
+375 | -300
-350
-400 | 0
0
0 | -125
-150
-175 | | | 250
315 | 315
400 | 0
0 | -225
-300 | +200
+250 | -450
-600 | 0
0 | -225
-300 | +200
+250 | -450
-600 | +125
+150 | -225
-275 | +450
+550 | -450
-550 | 0 | -200
-250 | **Note** (1) For double-direction bearings, its classification depends on d for single-direction bearings with the same D in the same diameter series. **Remarks** Δ_{T_s} in the table is the deviation in the respective heights T in figures below. Table 8. 7 Tolerances for Thrust Spherical Roller Bearings Table 8. 7. 1 Tolerances for Bore Diameters of Shaft Rings and Height (Class Normal) Units: µm | | Nominal Bore
Diameter | | | | | Reference | | | |------------------------|--------------------------|-------------|-------------------|----------------|----------------|----------------------|----------------------|--| | Diameter $d \pmod{mm}$ | | Δ | <i>I</i> mp | V_{dp} | S_d | Δ_{Ts} | | | | over | incl. | high | low | max. | max. | high | low | | | 50
80
120 | 80
120
180 | 0
0
0 | -15
-20
-25 | 11
15
19 | 25
25
30 | +150
+200
+250 | -150
-200
-250 | | | 180
250
315 | 250
315
400 | 0
0
0 | -30
-35
-40 | 23
26
30 | 30
35
40 | +300
+350
+400 | -300
-350
-400 | | | 400 | 500 | 0 | -45 | 34 | 45 | +450 | -450 | | **Remarks** The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 8. 7. 2 Tolerances for Housing Ring Diameter (Class Normal) | | | Ur | iits : μm | | | | |---------------------|-------|------------------------|-----------|--|--|--| | Nominal Outs I (m | | $\it \Delta_{\it Dmp}$ | | | | | | over | incl. | high | low | | | | | 120 | 180 | 0 | - 25 | | | | | 180 | 250 | 0 | - 30 | | | | | 250 | 315 | 0 | - 35 | | | | | 315 | 400 | 0 | - 40 | | | | | 400 | 500 | 0 | - 45 | | | | | 500 | 630 | 0 | - 50 | | | | | 630 | 800 | 0 | - 75 | | | | | 800 | 1 000 | | -100 | | | | ## Remarks The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 8. 8 Tolerances of ## CLASS 5P, CLASS 7P, and CLASS 9P ## (1) Tolerances for Inner Rings | | Nominal
Bore
Diameter
d
(mm) | | Δ_{dmp} | | | $\it \Delta_{ds}$ | | | V_{dp} | | V_{dmp} | | _ | $1_{B\mathrm{s}}$ | | | |--|--|-------|----------------------|--------------|----------|-------------------|----------------------|--------------|----------|------|----------------------|----------|----------------------|-------------------|------------|----------------------------| | | | | CLASS 5P
CLASS 7P | | CLASS 9P | | CLASS 5P
CLASS 7P | | CLASS 9P | | CLASS 5P
CLASS 7P | CLASS 9P | CLASS 5P
CLASS 7P | CLASS 9P | CLA
CLA | LSS 5P
LSS 7P
LSS 9P | | | over | incl. | high | low | high | low | high | low | high | low | max. | max. | max. | max. | high | low | | | - | 10 | 0 | - 5.1 | 0 | -2.5 | 0 | - 5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | | | 10 | 18 | 0 | - 5.1 | 0 | - 2.5 | 0 | - 5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | | | 18 | 30 | 0 | - 5.1 | 0 | - 2.5 | 0 | - 5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | Note (1) Applicable to bearings for which the axial clearance (preload) is to be adjusted by combining two selected bearings. Remarks For the CLASS 3P and the tolerances of Metric design Instrument Ball Bearings, it is advisable to consult NSK. ## (2) Tolerances for | | Nominal
Outside | | $\it \Delta_{Dmp}$ | | | $\it \Delta_{Ds}$ | | | | V_{Dp} | | | $V_{D\mathrm{mp}}$ | | | | | |--------------------------|--------------------|----------|--------------------|----------|--------------|----------------------------|--------------|------|--------------|----------------------|--------------------|-------------|--------------------|--------------------|-------------|------|------| | Outside
Diameter
D | | CLASS 5P | | | | CLASS 5P
CLASS 7P CLASS | | | SS 9P | CLASS 5P
CLASS 7P | | CLASS
9P | | SS 5P
SS 7P | CLASS
9P | | | | (mm | (mm) CLASS 7P | | | CLASS 9P | | Open Shielded Sealed | | Open | | Open | Shielded
Sealed | Open | Open | Shielded
Sealed | Open | | | | over | incl. | high | low | max. | max. | max. | max. | max. | max. | | _ | 18 | 0 | - 5.1 | 0 | - 2.5 | 0 | - 5.1 | +1 | - 6.1 | 0 | - 2.5 | 2.5 | 5.1 | 1.3 | 2.5 | 5.1 | 1.3 | | 18 | 30 | 0 | - 5.1 | 0 | -3.8 | 0 | - 5.1 | +1 | - 6.1 | 0 | -3.8 | 2.5 | 5.1 | 2 | 2.5 | 5.1 | 2 | | 30 | 50 | 0 | -5.1 | 0 | -3.8 | 0 | -5.1 | +1 | -6.1 | 0 | -3.8 | 2.5 | 5.1 | 2 | 2.5 | 5.1 | 2 | Notes (1) Applicable to flange width variation for flanged bearings. (2) Applicable to flange back face. ## Instrument Ball Bearings (Inch design) ## (ANSI/ABMA Equivalent) ## and Width of Outer Rings | ш | n | ite | • | 11 | -1 | |---|---|-----|---|----|----| | (or | (or Δ_{C_S}) V_{B_S} | | $K_{i\mathrm{a}}$ | | | S_{ia} | | | S_{d} | | | | | |------|--------------------------------|-------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------
-------------|-------------|-------------|-------------| | CL | ASS 5P
ASS 7P
ASS 9P | CLASS
5P | CLASS
7P | CLASS
9P | | high | low | max. | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | | 0 | - 400 | 5.1 | 2.5 | 1.3 | 3.8 | 3.8 | 2.5 | 7.6 | 3.8 | 1.3 | 7.6 | 3.8 | 1.3 | ## **Outer Rings** Units: μm | | V _{Cs} (1) | | | S_D | | | $K_{ m ea}$ | | S ea | | | Deviation of Flange Outside | | Flange Outside | | Flange Outside Diameter $\Delta_{D 18}$ | | Flange Outside | | | | | | Flange Outside | | Flange Outside | | Deviation of Flange Width | | Flange
Backface
Runout | |-------|---------------------|-------|-------|-------|-------|-------|-------------|-------|-------|-------|-------|-----------------------------|------------------|---|-------|---|--|----------------|--|--|--|--|--|----------------|--|----------------|--|---------------------------|--|------------------------------| | CLASS | i | with
Raceway
(2) S _{ea1} | | | | | | | | | | | | | | | | | | 5P | 7P | 9P | | ASS 5P
ASS 7P | CLASS 5P
CLASS 7P | | | | | | | | | | | | | | | | | | max. high | low | high | low | max. | | | | | | | | | | | | | | | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 3.8 | 1.3 | 7.6 | 5.1 | 1.3 | 0 | -25.4 | 0 | -50.8 | 7.6 | | | | | | | | | | | | | | | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 3.8 | 2.5 | 7.6 | 5.1 | 2.5 | 0 | -25.4 | 0 | -50.8 | 7.6 | | | | | | | | | | | | | | | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 5.1 | 2.5 | 7.6 | 5.1 | 2.5 | 0 | -25.4 | 0 | -50.8 | 7.6 | | | | | | | | | | | | | | | ${m r}$: Chamfer Dimension of Inner/Outer Ring r_1 : Chamfer Dimension of Inner/Outer Ring (Front Side) or of Central Washer of Thrust Ball Bearings **Remarks** The precise shape of chamfer surfaces has not been specified but its profile in the axial plane shall not intersect an arc of radius r (min.) or r_1 (min.) touching the side face of an inner ring or central washer and bore surface, or the side face of an outer ring and outside surface. Table 8. 9 Chamfer Dimension Limits (for Metric Design Bearings) Table 8. 9. 1 Chamfer Dimension Limits for Radial Bearings (excluding Tapered Roller Bearings) Units: mm | Permissible | | | Darmiccih | le Chamfer | Reference | |--|-----------------|-----------------|----------------------------------|---|---| | Chamfer Dimension for Inner/ Outer Rings **(min.) or | Nomin
Dian | neter | Dimens
Inner/Ou
r (max.) o | sion for
ter Rings
r \mathcal{Y}_1 (max.) | Corner
Radius of
Shaft or
Housing γ_a | | \mathcal{Y}_1 (min.) | over | incl. | Radial
Direction | Axial
Direction | max. | | 0.05 | - | - | 0.1 | 0.2 | 0.05 | | 0.08
0.1 | _ | _ | 0.16
0.2 | 0.3
0.4 | 0.08
0.1 | | | | | | | | | 0.15
0.2 | _ | _ | 0.3
0.5 | 0.6
0.8 | 0.15
0.2 | | 0.3 | -
40 | 40
— | 0.6
0.8 | 1
1 | 0.3 | | 0.6 | -
40 | 40
— | 1
1.3 | 2
2 | 0.6 | | 1 | –
50 | 50
— | 1.5
1.9 | 3
3 | 1 | | 1.1 | _
120 | 120
— | 2
2.5 | 3.5
4 | 1 | | 1.5 | _
120 | 120
— | 2.3
3 | 4
5 | 1.5 | | 2 | -
80
220 | 80
220
— | 3
3.5
3.8 | 4.5
5
6 | 2 | | 2.1 | _
280 | 280
— | 4
4.5 | 6.5
7 | 2 | | 2.5 | -
100
280 | 100
280
— | 3.8
4.5
5 | 6
6
7 | 2 | | 3 | _
280 | 280
— | 5
5.5 | 8
8 | 2.5 | | 4
5 | -
- | _
_ | 6.5
8 | 9
10 | 3
4 | | 6
7.5
9.5 | -
-
- | -
-
- | 10
12.5
15 | 13
17
19 | 5
6
8 | | 12
15
19 | -
-
- | -
-
- | 18
21
25 | 24
30
38 | 10
12
15 | **Remarks** For bearings with nominal widths less than 2mm, the value of r (max.) in the axial direction is the same as that in the radial direction. Table 8. 9. 2 Chamfer Dimension Limits for **Tapered Roller Bearings** Units: mm Reference | Permissible | Momina | Bore or | Parmiccih | le Chamfer | Reference | | | | | | | |--|------------------------|---|--|--------------------------------|--|--|--|--|--|--|--| | Chamfer
Dimension
for Inner/
Outer
Rings | Nominal | Outside
eter (1) | Dimensior
Outer
\$\mathcal{\mathcal{P}}(n)\$ | n for Inner/
Rings
nax.) | Corner
Radius of
Shaft or
Housing r_a | | | | | | | | | over | incl. | Radial
Direction | Axial
Direction | max. | | | | | | | | 0.15 | - | - | 0.3 | 0.6 | 0.15 | | | | | | | | 0.3 | -
40 | 40
— | 0.7
0.9 | 1.4
1.6 | 0.3 | | | | | | | | 0.6 | -
40 | 40
— | 1.1
1.3 | 1.7
2 | 0.6 | | | | | | | | 1 | –
50 | 50
— | 1.6
1.9 | 2.5
3 | 1 | | | | | | | | 1.5 | -
120
250 | 120
250
— | 2.3
2.8
3.5 | 3
3.5
4 | 1.5 | | | | | | | | 2 | -
120
250 | 120
250
— | 2.8
3.5
4 | 4
4.5
5 | 2 | | | | | | | | 2.5 | _
120
250 | 120
250
— | 3.5
4
4.5 | 5
5.5
6 | 2 | | | | | | | | 3 | -
120
250
400 | 120
250
400 | 4
4.5
5
5.5 | 5.5
6.5
7
7.5 | 2.5 | | | | | | | | 4 | -
120
250
400 | 120
250
400
— | 5
5.5
6
6.5 | 7
7.5
8
8.5 | 3 | | | | | | | | 5 | -
180 | 180
— | 6.5
7.5 | 8
9 | 4 | | | | | | | | 6 | -
180 | 180
— | 7.5
9 | 10
11 | 5 | | | | | | | | Note | (1) Inne | (1) Inner Rings are classified by d and Outer Rings | | | | | | | | | | **Note** (1) Inner Rings are classified by d and Outer Rings by D. Table 8. 9. 3 Chamfer Dimension Limits for Thrust Bearings Units: mm | | | Omto : mm | | | | | |--|--|--------------------------------------|--|--|--|--| | Permissible Chamfer | Permissible Chamfer
Dimension for Shaft | Reference | | | | | | Dimension for Shaft
(or Central)/Housing | (or Central)/Housing | Corner Radius of
Shaft or Housing | | | | | | Washers | Washers γ (max.) or γ (max.) | $\gamma_{\rm a}$ | | | | | | ${m \gamma}$ (min.) or ${m \gamma}_1$ (min.) | Radial or Axial Direction | max. | | | | | | 0.05 | 0.1 | 0.05 | | | | | | 0.08 | 0.16 | 0.08 | | | | | | 0.1 | 0.2 | 0.1 | | | | | | 0.15 | 0.3 | 0.15 | | | | | | 0.2 | 0.5 | 0.2 | | | | | | 0.3 | 0.8 | 0.3 | | | | | | 0.6 | 1.5 | 0.6 | | | | | | 1 | 2.2 | 1 | | | | | | 1.1 | 2.7 | 1 | | | | | | 1.5 | 3.5 | 1.5 | | | | | | 2 | 4 | 2 | | | | | | 2.1 | 4.5 | 2 | | | | | | 3 | 5.5 | 2.5 | | | | | | 4 | 6.5 | 3 | | | | | | 5 | 8 | 4 | | | | | | 6 | 10 | 5 | | | | | | 7.5 | 12.5 | 6 | | | | | | 9.5 | 15 | 8 | | | | | | 12 | 18 | 10 | | | | | | 15 | 21 | 12 | | | | | | 19 | 25 | 15 | | | | | | | | | | | | | A 78 A 79 Table 8.10 Tolerances for Tapered Bores (Class Normal) d: Nominal Bore Diameter d_1 : Theoretical Diameter of Larger End of Tapered Bore Taper 1:12 $d_1 = d + 1/12B$ Taper 1:30 $d_1 = d + /30B$ $\Delta_{ m dmp}$: Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Smaller End of Bore $\Delta_{ m dimp}$: Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Larger End of Bore V_{dp} : Bore diameter variation in a single radial plane \hat{B} : Nominal Inner Ring width α : Half of Taper Angle of Tapered Bore Taper 1 : 12 Units : $\mu\,m$ | Nominal Bore Diameter $d \pmod{mm}$ | | Δ_d | mp | Δ_{d1mp} - | V _{dp} (1) (2) | | |-------------------------------------|----------------|--------------|-----|-------------------|-------------------------|------| | over | incl. | high | low | high | low | max. | | 18 | 30 | +33 | 0 | +21 | 0 | 13 | | 30 | 50 | +39 | 0 | +25 | 0 | 16 | | 50 | 80 | +46 | 0 | +30 | 0 | 19 | | 80 | 120 | +54 | 0 | +35 | 0 | 22 | | 120 | 180 | +63 | 0 | +40 | 0 | 40 | | 180 | 250 | +72 | 0 | +46 | 0 | 46 | | 250 | 315 | +81 | 0 | +52 | 0 | 52 | | 315 | 400 | +89 | 0 | +57 | 0 | 57 | | 400 | 500 | +97 | 0 | +63 | 0 | 63 | | 500 | 630 | +110 | 0 | +70 | 0 | 70 | | 630 | 800 | +125 | 0 | +80 | 0 | — | | 800 | 1 000 | +140 | 0 | +90 | 0 | — | | 1 000
1 250 | 1 250
1 600 | +165
+195 | 0 | +105
+125 | 0 | | **Notes** (1) Applicable to all radial planes of tapered bores. (2) Not applicable to diameter series 7 and 8. Taper 1:30 | Units: µn | 1 | |-----------|---| |-----------|---| | Nominal Bore Diameter $d \pmod {\mathrm{mm}}$ | | $\it \Delta_{dmp}$ | | Δ_{d1mp} - | V _{dp} (1) (2) | | |---|-------------------|--------------------|-------------|-------------------|-------------------------|----------------| | over | incl. | high | low | high | low | max. | | 80
120
180 | 120
180
250 | +20
+25
+30 | 0
0
0 | +35
+40
+46 | 0
0
0 | 22
40
46 | | 250
315
400 | 315
400
500 | +35
+40
+45 | 0
0
0 | +52
+57
+63 | 0
0
0 | 52
57
63 | | 500 | 630 | +50 | 0 | +70 | 0 | 70 | Notes (1) Applicable to all radial planes of tapered bores. (2) Not applicable to diameter series 7 and 8. Remarks For a value exceeding 630 mm, please contact NSK. ## 8.2 Selection of Accuracy Classes For general applications, Class Normal tolerances are adequate in nearly all cases for satisfactory performance, but for the following applications, bearings having an accuracy class of 5,4 or higher are more suitable. For reference, in Table 8.11, examples of applications and appropriate tolerance classes are listed for various bearing requirements and operating conditions. Table 8. 11 Typical Tolerance
Classes for Specific Applications (Reference) | Bearing Requirement,
Operating Conditions | Examples of Applications | Tolerance Classes | | | | |--|---|--------------------|--|--|--| | | VTR Drum Spindles | P5 | | | | | | Magnetic Disk Spindles for Computers | P5, P4, P2 | | | | | | Machine-Tool Main Spindles | P5, P4, P2 | | | | | High running accuracy | Rotary Printing Presses | P5 | | | | | is required | Rotary Tables of Vertical Presses, etc. | P5, P4 | | | | | | Roll Necks of Cold Rolling
Mill Backup Rolls | Higher than P4 | | | | | | Slewing Bearings for Parabolic Antennas | Higher than P4 | | | | | | Dental Drills | CLASS 7P, CLASS 5P | | | | | | Gyroscopes | CLASS 7P, P4 | | | | | Extra high speed is | High Frequency Spindles | CLASS 7P, P4 | | | | | required | Superchargers | P5, P4 | | | | | | Centrifugal Separators | P5, P4 | | | | | | Main Shafts of Jet Engines | Higher than P4 | | | | | Low torque and low | Gyroscope Gimbals | CLASS 7P, P4 | | | | | torque variation are | Servomechanisms | CLASS 7P, CLASS 5P | | | | | required | Potentiometric Controllers | CLASS 7P | | | | A 80 A 81 ## 9. FITS AND INTERNAL CLEARANCES ## 9.1 Fits ## 9.1.1 Importance of Proper Fits In the case of a rolling bearing with the inner ring fitted to the shaft with only slight interference, a harmful circumferential slipping may occur between the inner ring and shaft. This slipping of the inner ring, which is called "creep", results in a circumferential displacement of the ring relative to the shaft if the interference fit is not sufficiently tight. When creep occurs, the fitted surfaces become abraded, causing wear and considerable damage to the shaft. Abnormal heating and vibration may also occur due to abrasive metallic particles entering the interior of the bearing. It is important to prevent creep by having sufficient interference to firmly secure that ring which rotates to either the shaft or housing. Creep cannot always be eliminated using only axial tightening through the bearing ring faces. Generally, it is not necessary, however, to provide interference for rings subjected only to stationary loads. Fits are sometimes made without any interference for either the inner or outer ring, to accommodate certain operating conditions, or to facilitate mounting and dismounting. In this case, to prevent damage to the fitting surfaces due to creep, lubrication of other applicable methods should be considered. ## 9.1.2 Selection of Fit ## (1) Load Conditions and Fit The proper fit may be selected from Table 9.1 based on the load and operating conditions. #### (2) Magnitude of Load and Interference The interference of the inner ring is slightly reduced by the bearing load; therefore, the loss of interference should be estimated using the following equations: $$\Delta d_{\rm F} = 0.08 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots (N)$$ $$\Delta d_{\rm F} = 0.25 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots {\rm \{kgf\}}$$... (9.1) where $\Delta d_{\rm F}$: Interference decrease of inner ring (mm) d: Bearing bore diameter (mm) B: Nominal inner ring width (mm) F_r : Radial load applied on bearing (N), {kgf} Table 9.1 Loading Conditions and Fits | Load Application | Bearing (| Operation | Load | Fitting | | | |--|---------------------------|---------------------------|------------------------------------|------------|------------|--| | Load Application | Inner Ring | Outer Ring | Conditions | Inner Ring | Outer Ring | | | To T | Rotating | Stationary | Rotating
Inner Ring
Load | | | | | Load Rotating Diagram of the control contro | Stationary | Rotating | Stationary
Outer Ring
Load | Tight Fit | Loose Fit | | | Load Stationary | Stationary | Rotating | Rotating
Outer Ring
Load | Loose Fit | Tight Fit | | | Coad Rotating | Rotating | Stationary | - Stationary
Inner Ring
Load | | | | | Direction of load indeterminate due to variation of direction or unbalanced load | Rotating or
Stationary | Rotating or
Stationary | Direction of Load
Indeterminate | Tight Fit | Tight Fit | | Therefore, the effective interference $\varDelta d$ should be larger than the interference given by Equation (9.1). However, in the case of heavy loads where the radial load exceeds 20% of the basic static load rating $C_{\rm or}$, under the operating condition, interference often becomes shortage. Therefore, interference should be estimated using Equation (9.2): $$\Delta d \ge 0.02 \frac{F_{\rm r}}{B} \times 10^{-3} \dots (N)$$ $\Delta d \ge 0.2 \frac{F_{\rm r}}{B} \times 10^{-3} \dots {\rm \{kgf\}}$ (9.2) where Δd : Effective interference (mm) $F_{\rm r}$: Radial load applied on bearing (N), {kgf} B: Nominal inner ring width (mm) #### (3) Interference Variation Caused by Temperature Difference between Bearing and Shaft or Housing The effective interference decreases due to the increasing bearing temperature during operation. If the temperature difference between the bearing and housing is ΔT (°C), then the temperature difference between the fitted surfaces of the shaft and inner ring is estimated to be about $(0.1 \text{--} 0.15) \Delta T$ in case that the shaft is cooled. The decrease in the interference of the inner ring due to this temperature difference $\Delta d_{\rm T}$ may be calculated using Equation (9.3): $$\Delta d_{\rm T} = (0.10 \text{ to } 0.15) \times \Delta T \cdot \alpha \cdot d$$ $= 0.0015 \Delta T \cdot d \times 10^{-3} \dots (9.3)$ where Δd_T : Decrease in interference of inner ring due to temperature difference (mm) Δ T: Temperature difference between bearing interior and surrounding parts (°C) α : Coefficient of linear expansion of bearing steel=12.5×10⁻⁶ (1/°C) d: Bearing nominal bore diameter (mm) In addition, depending on the temperature difference between the outer ring and housing, or difference in their coefficients of linear expansion, the interference may increase. ## (4) Effective Interference and Finish of Shaft and Since the roughness of fitted surfaces is reduced during fitting, the effective interference becomes less than the apparent interference. The amount of this interference decrease varies depending on the roughness of the surfaces and may be estimated using the following equations: For ground shafts $$\Delta d = \frac{d}{d+2} \Delta d_a \dots (9.4)$$ For machined shafts $$\Delta d = \frac{d}{d+3} \Delta d_a \dots (9.5)$$ where Δd : Effective interference (mm) Δd_a : Apparent interference (mm) d: Bearing nominal bore diameter (mm) According to Equations (9.4) and (9.5), the effective interference of bearings with a bore diameter of 30 to 150 mm is about 95% of the apparent interference. ## (5) Fitting Stress and Ring Expansion and Contraction When bearings are mounted with interference on a shaft or in a housing, the rings either expand or contract and stress is produced. Excessive interference may damage the bearings; therefore, as a general guide, the maximum interference should be kept under approximately 7/10 000 of the shaft diameter. The pressure between fitted surfaces, expansion or contraction of the rings, and circumferential stress may be calculated using the equations in Section 15.2, Fitting(1) (Pages A130 and A131). #### 9.1.3 Recommended Fits As described previously, many factors, such as the characteristics and magnitude of bearing load, temperature differences, means of bearing mounting and dismounting, must be considered when selecting the proper fit. If the housing is thin or the bearing is mounted on a hollow shaft, a tighter than usual fit is necessary. A split housing often deforms the bearing into an oval shape; therefore, a split housing should be avoided when a tight fit with the outer ring is required. The fits of both the inner and outer rings should be tight in applications where the
shaft is subjected to considerable vibration. The recommended fits for some common applications are shown in Table 9.2 to 9.7. In the case of unusual operating conditions, it is advisable to consult NSK. For the accuracy and surface finish of shafts and housings, please refer to Section 11.1 (Page A100). Table 9.2 Fits of Radial Bearings with Shafts | | | | S | haft Diameter (mm | n) | | | | | | |------------------------------|---|--|-----------------|--|--------------------------|-----------------------|---|--|--|--| | Load | Conditions | Examples | Ball Brgs | Cylindrical Roller
Brgs, Tapered
Roller Brgs | Spherical Roller
Brgs | Tolerance
of Shaft | Remarks | | | | | | | | Radial Bearings | with Cylindrical Bo | res | | | | | | | Rotating
Outer | Easy axial
displacement of
inner ring on shaft
desirable. | Wheels on
Stationary
Axles | | All Shaft Diameters | | g6 | Use g5 and h5 where accuracy is required. In case of large | | | | | Ring Load | Easy axial
displacement of
inner ring on shaft
unnecessary | Tension Pulleys
Rope Sheaves | | All Gliatt Diameters | | h6 | bearings, f6 can be
used to allow easy axial
movement. | | | | | | Light Loads | Electrical Home | <18 | _ | _ | js5 | | | | | | | or Variable | Appliances Pumps,
Blowers, Transport | 18 to 100 | <40 | _ | js6(j6) | | | | | | | Loads $(<0.06C_r(^1))$ | Vehicles, Precision
Machinery. | 100 to 200 | 40 to 140 | _ | k6 | | | | | | | (< 0.00C _r ()) | Machine Tools | _ | 140 to 200 | _ | m6 | | | | | | | Normal Loads (0.06 to 0.13 $C_{ m r}(^1)$) | General Bearing Applications, Medium and Large Motors(3), Turbines, Pumps, Engine Main Bearings, Gears, Woodworking Machines | <18 | _ | _ | js5 or js6 (j5 or j6) | | | | | | | | | 18 to 100 | <40 | <40 | k5 or k6 | k6 and m6 can be used for single-row tapered roller bearings and single-row angular contact ball bearings instead of k5 and m5. | | | | | Rotating Inner | | | 100 to 140 | 40 to 100 | 40 to 65 | m5 or m6 | | | | | | Ring Load or
Direction of | | | 140 to 200 | 100 to 140 | 65 to 100 | m6 | | | | | | Load | | | 200 to 280 | 140 to 200 | 100 to 140 | n6 | | | | | | Indeterminate | | | | 200 to 400 | 140 to 280 | р6 | | | | | | | | | _ | _ | 280 to 500 | r6 | | | | | | | | | _ | _ | over 500 | r7 | | | | | | | | Railway Axleboxes,
Industrial Vehicles. | _ | 50 to 140 | 50 to 100 | n6 | More than CN | | | | | | Heavy Loads
or Shock Loads | Traction Motors, | | 140 to 200 | 100 to 140 | р6 | bearing internal | | | | | | $(>0.13C_{\rm r}(^1))$ | Construction
Equipment, | _ | over 200 | 140 to 200 | r6 | clearance is necessary. | | | | | | | Crushers | _ | _ | 200 to 500 | r7 | | | | | | Axial Loads Only | | | | All Shaft Diameters | i | js6 (j6) | _ | | | | | | Radial Bearings with Tapered Bores and Sleeves | | | | | | | | | | | All Types of Loading | | General bearing
Applications,
Railway Axleboxes | | All Shaft Diameters | | h9/IT5(²) | IT5 and IT7 mean that
the deviation of the shaft
from its true geometric | | | | | Makes (| | Transmission Shafts,
Woodworking
Spindles | | All Gliait Diameters | | h10/IT7(²) | form, e. g. roundness and
cylindricity should be
within the tolerances of
IT5 and IT7 respectively. | | | | **Notes** (1) C_r represents the basic load rating of the bearing. (2) Refer to Appendix Table 11 on page C22 for the values of standard tolerance grades IT. (3) Refer to Tables 9.13.1 and 9.13.2 for the recommended fits of shafts used in electric motors for deep groove ball bearings with bore diameters ranging from 10 mm to 160 mm, and for cylindrical roller bearings with bore diameters ranging from 24 mm to 200 mm. Remarks This table is applicable only to solid steel shafts. Table 9.3 Fits of Thrust Bearings with Shafts | Load | Conditions | Examples | Shaft Diameter (mm) | Tolerance of Shaft | Remarks | |-----------------------------|-------------------------------|--------------------------|---------------------|--------------------|---------| | Central A | Axial Load Only | Main Shafts
of Lathes | All Shaft Diameters | h6 or
js6 (j6) | | | Combined | Stationary Inner
Ring Load | Cone Crushers | All Shaft Diameters | js6 (j6) | | | Radial and
Axial Loads | Rotating Inner Ring | Paper Pulp | <200 | k6 | _ | | (Spherical
Thrust Roller | Load or Direction
of Load | Refiners,
Plastic | 200 to 400 | m6 | | | Bearings) | Indeterminate | Extruders | over 400 | n6 | | Table 9.4 Fits of Radial Bearings with Housings | | Load Co | | Examples | Tolerances for
Housing Bores | Axial Displacement
of Outer Ring | Remarks | |-------------------|---------------------------------------|--|---|---------------------------------|-------------------------------------|--| | | | Heavy Loads on Bearing in
Thin-Walled Housing or
Heavy Shock Loads | Automotive Wheel Hubs
(Roller Bearings)
Crane Travelling Wheels | P7 | | | | | Rotating
Outer Ring | Normal or Heavy
Loads | Automotive Wheel Hubs
(Ball Bearings)
Vibrating Screens | N7 | - Impossible | | | Solid
Housings | Load | Light or Variable
Loads | Conveyor Rollers
Rope Sheaves
Tension Pulleys | M7 | IIIIpussible | _ | | | | Heavy Shock Loads | Traction Motors | | | | | | Direction of
Load
Indeterminate | Normal or Heavy
Loads | Pumps
Crankshaft Main
Bearings | K7 | Generally
Impossible | If axial displacement of
the outer ring is not
required. | | | muotommato | Normal or Light
Loads | Medium and Large
Motors(1) | JS7 (J7) | Possible | Axial displacement of
outer ring is
necessary. | | Solid or
Split | | Loads of All kinds | General Bearing
Applications,
Railway Axleboxes | Н7 | | | | Housings | | Normal or Light
Loads | Plummer Blocks | Н8 | Easily
possible | _ | | | Rotating
Inner Ring
Load | High Temperature Rise
of Inner Ring Through
Shaft | Paper Dryers | G7 | | | | | Luau | Accurate Running
Desirable under | Grinding Spindle Rear
Ball Bearings
High Speed Centrifugal
Compessor Free
Bearings | JS6 (J6) | Possible | _ | | Solid Housing | Direction of
Load
Indeterminate | Normal or Light
Loads | Grinding Spindle Front
Ball Bearings
High Speed Centrifugal
Compressor Fixed
Bearings | K6 | Generally
Impossible | For heavy loads,
interference fit tighter
than K is used.
When high accuracy is | | | Rotating | Accurate Running and
High Rigidity Desirable
under Variable Loads | Cylindrical Roller
Bearings for Machine
Tool Main Spindle | M6 or N6 | Impossible | required, very strict
tolerances should be
used for fitting. | | | Inner Ring
Load | Minimum noise is required. | Electrical Home
Appliances | Н6 | Easily
Possible | _ | Note (1) Refer to Tables 9.13.1 and 9.13.2 for the recommended fits of housing bores of deep groove ball bearings and cylindrical roller bearings for electric motors. Remarks 1. This table is applicable to cast iron and steel housings. For housings made of light alloys, the interference should be tighter than those in this table. 2. Refer to the introductory section of the bearing dimension tables (blue pages) for special fits such as drawn cup needle roller bearings. Table 9.5 Fits of Thrust Bearings with Housings | Load Conditions | | Bearing Types | Tolerances for
Housing Bores | Remarks | |--------------------|---------------------------------|--|----------------------------------|--| | | | Thrust Ball | Clearance over 0.25mm | For General Applications | | | | Bearings | H8 | When precision is required | | | Axial Loads Only | Spherical Thrust
Roller Bearings
Steep Angle
Tapered Roller
Bearings | Outer ring has radial clearance. | When radial loads are sustained by other bearings. | | Combined
Radial | Stationary Outer Ring Loads | Spherical Thrust | H7 or JS7 (J7) | _ | | and Axial | Rotating Outer Ring Loads or | Roller Bearings | K7 | Normal Loads | | Loads | Direction of Load Indeterminate | | M7 | Relatively Heavy Radial Loads | A 84 A 85 ## Table 9.6 Fits of Inch Design Tapered Roller Bearings with Shafts ## (1) Bearings of Precision Classes 4 and 2 Unite : u.m | (-) | Bouringo or r | outuron orac | | Units : µ m | | | | | | | | |------------------------------|-------------------|--------------|--------------|-----------------|---------|--|-----|------------------------------|------|---|--| | One | rating Conditions | | Nominal Bore | e Diameters d | | Bore Diameter Tolerances Δ_{ds} | | Shaft Diameter
Tolerances | | - Remarks | | | Ope | rating conditions | OV | er | inc | il. | | | | | Hemans | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | - | _ | 76.200 | 3.0000 | +13 | 0 | + 38 | + 25 | | | | _ | Normal Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | + 64 | + 38 | For bearings with $d \le 152.4$ mm, | | | s
s | Normai Loaus | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | +127 | + 76 | clearance is usually larger than CN. | | | g Ir | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +190 | +114 | | | | Rotating Inner
Ring Loads |
Heavy Loads | _ | | 76.200 | 3.0000 | +13 | 0 | + 64 | + 38 | In general, bearings with a clear- | | | 3ot | Shock Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | * | | ance larger than CN are used. | | | | High Speeds | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | * | | | | | | riigii opoodo | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +381 | +305 | interference is about 0.0005 d . | | | | | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 13 | 0 | The inner ring cannot be displaced axially. | | | <u>_</u> | | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | + 25 | 0 | When heavy or shock loads exist, the | | | ute | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | + 51 | 0 | figures in the above (Rotating inner ring | | | g O | Normal Loads | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | + 76 | 0 | loads, heavy or shock loads) apply. | | | Rotating Outer
Ring Loads | 틸립 without Shocks | _ | _ | 76.200 | 3.0000 | +13 | 0 | 0 | - 13 | | | | 3 d | | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | 0 | - 25 | The inner ring can be displaced | | | | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | 0 | - 51 | axially. | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | 0 | - 76 | | | ## (2) Bearings of Precision Classes 3 and 0 (1) Units : μm | One | rating Conditions | | Nominal Bore Diameters $oldsymbol{d}$ | | | | | Shaft Diameter
Tolerances | | - Remarks | | |------------------------------|----------------------------|---------|---------------------------------------|---------|---------|------|-----|------------------------------|-----|---------------------------------|--| | Ope | rating conditions | OV | er | in | incl. | | | | | Heiliaiks | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | Duratalan | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 30 | +18 | | | | _ | Precision
Machine-Tool | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | + 30 | +18 | | | | s ne | Main Spindles | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | + 64 | +38 | _ | | | g Ir | wan opinaloo | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +102 | +64 | | | | Rotating Inner
Ring Loads | Hannel anda | _ | | 76.200 | 3.0000 | +13 | 0 | _ | | | | | 30tg | Heavy Loads
Shock Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | _ | _ | A minimum interference of about | | | | High Speeds | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | _ | _ | 0.00025 d is used. | | | | " | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | _ | | | | | Rotating Outer
Ring Loads | Precision | _ | - | 76.200 | 3.0000 | +13 | 0 | + 30 | +18 | | | | g O | Machine-Tool | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | + 30 | +18 | | | | tatio | Main Spindles | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | + 64 | +38 | | | | 8.5 | a Spiridioo | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +102 | +64 | | | **Note** (1) For bearings with d greater than 304.8 mm, Class 0 does not exist. ## Table 9.7 Fits of Inch Design Tapered Roller Bearings with Housings ## (1) Bearings of Precision Classes 4 and 2 Units: µm | One | rating Conditions | Nominal Outside Diameters D | | | | | Outside Diameter Tolerances Δ_{Ds} | | ng Bore
neter
ances | - Remarks | | |------------------------------|--|-------------------------------|---------|---------|---------|------|---|------|---------------------------|------------------------------------|--| | Оро | rating conditions | ove | r | in | ol. | | | | | Homano | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | _ | | 76.200 | 3.0000 | +25 | 0 | + 76 | + 51 | | | | | Used either | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | + 76 | + 51 | The outer ring can be easily | | | | on free-end or | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | + 76 | + 51 | displaced axially. | | | g | fixed-end | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | +152 | +102 | diopidood dataily. | | | Rotating Inner Ring Loads | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +229 | +152 | | | | - Bi | | _ | | 76.200 | 3.0000 | +25 | 0 | + 25 | 0 | | | | ₩ | The outer ring position can be adjusted axially. | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | + 25 | 0 | The outer ring can be displaced | | | ner | | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | + 51 | 0 | axially. | | | 드 | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | + 76 | + 25 | waarj. | | | ţį | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +127 | + 51 | | | | ota | The euter ring | _ | | 76.200 | 3.0000 | +25 | 0 | - 13 | - 38 | | | | <u>~</u> | The outer ring position cannot | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | - 25 | - 51 | Generally, the outer ring is fixed | | | | be adjusted | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | - 25 | - 51 | axially. | | | | axially. | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | - 25 | - 76 | undiny. | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | - 25 | -102 | | | | ıter | Normal Loads | _ | | 76.200 | 3.0000 | +25 | 0 | - 13 | - 38 | | | | Rotating Outer
Ring Loads | The outer ring | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | - 25 | - 51 | | | | Eig
Log | position cannot | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | - 25 | - 51 | The outer ring is fixed axially. | | | otat | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | - 25 | - 76 | | | | 88 | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | - 25 | -102 | | | ## (2) Bearings of Precision Classes 3 and 0 (1) Units : µm | One | rating Conditions | Nominal Outside Diameters D | | | | | Outside Diameter Tolerances ΔI_{Ds} | | g Bore
neter
ances | - Remarks | | |------------------------------|-------------------|-------------------------------|---------|---------|---------|------|---|------|--------------------------|------------------------------------|--| | Opc | rating conditions | OV | er | ind | cl. | | | | | Homarko | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | - | _ | 152.400 | 6.0000 | +13 | 0 | +38 | +25 | | | | | Used on free- | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +38 | +25 | The outer ring can be easily | | | | end | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +64 | +38 | displaced axially. | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +89 | +51 | | | | Rotating Inner Ring Loads | | _ | _ | 152.400 | 6.0000 | +13 | 0 | +25 | +13 | | | | J C | Used on fixed- | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +25 | +13 | The outer ring can be displaced | | | ing. | end | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +51 | +25 | axially. | | | P. | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +76 | +38 | | | | Ĕ | The outer ring | _ | | 152.400 | 6.0000 | +13 | 0 | +13 | 0 | | | | пg | position can be | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +25 | 0 | Generally, the outer ring is fixed | | | tati | adjusted axially. | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +25 | 0 | axially. | | | B | ,, | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +38 | 0 | | | | | The outer ring | _ | _ | 152.400 | 6.0000 | +13 | 0 | 0 | -13 | | | | | position cannot | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | 0 | -25 | The outer ring is fixed axially. | | | | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | 0 | -25 | The cutof ring to those amany. | | | | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | 0 | -38 | | | | ıter | Normal Loads | _ | _ | 76.200 | 3.0000 | +13 | 0 | -13 | -25 | | | | 350 | The outer ring | 76.200 | 3.0000 | 152.400 | 6.0000 | +13 | 0 | -13 | -25 | | | | Rotating Outer
Ring Loads | position cannot | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | -13 | -38 | The outer ring is fixed axially. | | | ota | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | -13 | -38 | | | | <u></u> | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | -13 | -51 | | | **Note** (1) For bearings with D greater than 304.8 mm, Class 0 does not exist. A 86 A 87 ## 9.2 Bearing Internal Clearances ## 9.2.1 Internal Clearances and Their Standards The internal clearance in rolling bearings in operation greatly influences bearing performance including fatique life, vibration, noise, heat-generation, etc. Consequently, the selection of the proper internal clearance is one of the most important tasks when choosing a bearing after the type and size have been determined. This bearing internal clearance is the combined clearances between the inner/outer rings and rolling elements. The radial and axial clearances are defined as the total amount that one ring can be displaced relative to the other in the radial and axial directions respectively (Fig. 9.1). To obtain accurate measurements, the clearance is generally measured by applying a specified measuring load on the bearing: therefore, the measured clearance (sometimes called "measured clearance" to make a distinction) is always slightly larger than the theoretical internal clearance (called "geometrical clearance" for radial bearings) by the amount of elastic deformation caused by the measuring load. Therefore, the theoretical internal clearance may be obtained by correcting the measured clearance by the amount of elastic deformation. However, in the case of roller bearings this elastic deformation is negligibly small. Usually the clearance before mounting is the one specified as the theoretical internal clearance. In Table 9.8, reference table and page numbers are listed by bearing types. Table 9.8 Index for Radial Internal Clearances by Bearing Types | Вє | earing Types | Table
Number | Page
Number | |-----------------------------------|--|-----------------
----------------| | Deep Groove Ba | ıll Bearings | 9.9 | A89 | | Extra Small and | Miniature Ball Bearings | 9.10 | A89 | | Magneto Bearin | gs | 9.11 | A89 | | Self-Aligning Ba | III Bearings | 9.12 | A90 | | Deep Groove
Ball Bearings | - W. | 9.13.1 | A90 | | Cylindrical
Roller Bearings | For Motors | 9.13.2 | A90 | | Cylindrical
Roller Bearings | With Cylindrical Bores
With Cylindrical Bores
(Matched)
With Tapered Bores
(Matched) | 9.14 | A91 | | Spherical
Roller Bearings | With Cylindrical Bores
With Tapered Bores | 9.15 | A92 | | Double-Row and
Roller Bearings | d Combined Tapered | 9.15 | A93 | | Combined Angu
Bearings (1) | lar Contact Ball | 9.17 | A94 | | Four-Point Cont | act Ball Bearings (1) | 9.18 | A94 | Note (1) Values given are axial clearances. #### Table 9.9 Radial Internal Clearances in Deep Groove Ball Bearings Clearance Units: um | Diamet | | | | | | Ultai | ance | | | | | |---------------------|----------|-------------|--------------|-------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------| | d (mm | | С | 2 | С | N | С | 3 | С | 4 | С | 5 | | over | incl. | min. | max. | | 10 only
10
18 | 18
24 | 0
0
0 | 7
9
10 | 2
3
5 | 13
18
20 | 8
11
13 | 23
25
28 | 14
18
20 | 29
33
36 | 20
25
28 | 37
45
48 | | 24 | 30 | 1 | 11 | 5 | 20 | 13 | 28 | 23 | 41 | 30 | 53 | | 30 | 40 | 1 | 11 | 6 | 20 | 15 | 33 | 28 | 46 | 40 | 64 | | 40 | 50 | 1 | 11 | 6 | 23 | 18 | 36 | 30 | 51 | 45 | 73 | | 50 | 65 | 1 | 15 | 8 | 28 | 23 | 43 | 38 | 61 | 55 | 90 | | 65 | 80 | 1 | 15 | 10 | 30 | 25 | 51 | 46 | 71 | 65 | 105 | | 80 | 100 | 1 | 18 | 12 | 36 | 30 | 58 | 53 | 84 | 75 | 120 | | 100 | 120 | 2 | 20 | 15 | 41 | 36 | 66 | 61 | 97 | 90 | 140 | | 120 | 140 | 2 | 23 | 18 | 48 | 41 | 81 | 71 | 114 | 105 | 160 | | 140 | 160 | 2 | 23 | 18 | 53 | 46 | 91 | 81 | 130 | 120 | 180 | | 160 | 180 | 2 | 25 | 20 | 61 | 53 | 102 | 91 | 147 | 135 | 200 | | 180 | 200 | 2 | 30 | 25 | 71 | 63 | 117 | 107 | 163 | 150 | 230 | | 200 | 225 | 2 | 35 | 25 | 85 | 75 | 140 | 125 | 195 | 175 | 265 | | 225 | 250 | 2 | 40 | 30 | 95 | 85 | 160 | 145 | 225 | 205 | 300 | | 250 | 280 | 2 | 45 | 35 | 105 | 90 | 170 | 155 | 245 | 225 | 340 | | 280 | 315 | 2 | 55 | 40 | 115 | 100 | 190 | 175 | 270 | 245 | 370 | | 315 | 355 | 3 | 60 | 45 | 125 | 110 | 210 | 195 | 300 | 275 | 410 | | 355 | 400 | 3 | 70 | 55 | 145 | 130 | 240 | 225 | 340 | 315 | 460 | | 400 | 450 | 3 | 80 | 60 | 170 | 150 | 270 | 250 | 380 | 350 | 510 | | 450 | 500 | 3 | 90 | 70 | 190 | 170 | 300 | 280 | 420 | 390 | 570 | | 500 | 560 | 10 | 100 | 80 | 210 | 190 | 330 | 310 | 470 | 440 | 630 | | 560 | 630 | 10 | 110 | 90 | 230 | 210 | 360 | 340 | 520 | 490 | 690 | | 630 | 710 | 20 | 130 | 110 | 260 | 240 | 400 | 380 | 570 | 540 | 760 | | 710 | 800 | 20 | 140 | 120 | 290 | 270 | 450 | 430 | 630 | 600 | 840 | | Remarks | To ob | ain th | e mea | sured | l value | s, use | e the o | clearar | nce co | rrecti | | Nominal Bore radial clearance increase caused by the measuring load in the table below. For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for bearings near the maximum clearance range. Units: µm | Nominal I
Dia. d (n | | Meas
Lo | | | lial Cle
ount | arance | Correc | tion | |--------------------------|-----------------|-------------------|-------------|----------------------------|------------------|-------------|-------------|-------------| | over | incl. | (N) | au
{kgf} | C2 | CN | СЗ | C4 | C5 | | 10 (incl)
18
50 | 18
50
280 | 24.5
49
147 | | 3 to 4
4 to 5
6 to 8 | 4
5
8 | 4
6
9 | 4
6
9 | 4
6
9 | Remarks For values exceeding 280 mm, please contact NSK. Table 9.10 Radial Internal Clearances in Extra Small and Miniature Ball Bearings Unite : um | | | | | | | | | | UIIII | ιο . μ | 1111 | | |--------------------------|------|------|------|------|------|------|------|------|-------|--------|------|------| | Clear-
ance
Symbol | | C1 | M | C2 | М | СЗ | М | C4 | M | C5 | M | C6 | | | min. | max. | | Clear-
ance | 0 | 5 | 3 | 8 | 5 | 10 | 8 | 13 | 13 | 20 | 20 | 28 | Remarks 1. The standard clearance is MC3. 2. To obtain the measured value, add correction amount in the table below. Units: µm | Clearance
Symbol | MC1 | MC2 | МС3 | MC4 | МС5 | MC6 | |----------------------------------|-----|-----|-----|-----|-----|-----| | Clearance
Correction
Value | 1 | 1 | 1 | 1 | 2 | 2 | The measuring loads are as follows: For miniature ball bearings* 2.5N {0.25kgf} For extra small ball bearings* 4.4N {0.45kgf} *For their classification, refer to Table 1 on Page B 31. #### Table 9.11 Radial Internal Clearances in **Magneto Bearings** Units: um | Nomina Diam d (n | neter | Bearing
Series | Clea | rance | |--------------------|-------|-------------------|------|-------| | over | incl. | | min. | max. | | 2.5 | 20 | EN | 10 | 50 | | 2.5 | 30 | E | 30 | 60 | A 88 Table 9.12 Radial Internal Clearances in **Self-Aligning Ball Bearings** Units: $\mu\,m$ | Nomina | | | CI | earanc | e in Be | arings | with C | ylindri | cal Bo | es | | | C | learan | ce in B | earing | s with | Tapere | d Bore | S | | |-----------------|------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-------------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|------------------|------------------|-------------------| | Dia. <i>d</i> (| (mm) | (| 22 | C | N | C | 23 | C | 4 | C | 5 | (| 2 | C | N | C | 3 | C | 4 | | C5 | | over | incl. | min. | max. | 2.5
6
10 | 6
10
14 | 1
2
2 | 8
9
10 | 5
6
6 | 15
17
19 | 10
12
13 | 20
25
26 | 15
19
21 | 25
33
35 | 21
27
30 | 33
42
48 | <u> </u> | _ | = | _ | = | = | = | _ | = | = | | 14
18
24 | 18
24
30 | 3
4
5 | 12
14
16 | 8
10
11 | 21
23
24 | 15
17
19 | 28
30
35 | 23
25
29 | 37
39
46 | 32
34
40 | 50
52
58 | | 17
20 | 13
15 |
26
28 | 20
23 | —
33
39 | 28
33 | 42
50 | 37
44 |
55
62 | | 30
40
50 | 40
50
65 | 6
6
7 | 18
19
21 | 13
14
16 | 29
31
36 | 23
25
30 | 40
44
50 | 34
37
45 | 53
57
69 | 46
50
62 | 66
71
88 | 12
14
18 | 24
27
32 | 19
22
27 | 35
39
47 | 29
33
41 | 46
52
61 | 40
45
56 | 59
65
80 | 52
58
73 | 72
79
99 | | 65
80
100 | 80
100
120 | 8
9
10 | 24
27
31 | 18
22
25 | 40
48
56 | 35
42
50 | 60
70
83 | 54
64
75 | 83
96
114 | 76
89
105 | 108
124
145 | 23
29
35 | 39
47
56 | 35
42
50 | 57
68
81 | 50
62
75 | 75
90
108 | 69
84
100 | 98
116
139 | 91
109
130 | 123
144
170 | | 120
140 | 140
160 | 10
15 | 38
44 | 30
35 | 68
80 | 60
70 | 100
120 | 90
110 | 135
161 | 125
150 | 175
210 | 40
45 | 68
74 | 60
65 | 98
110 | 90
100 | 130
150 | 120
140 | 165
191 | 155
180 | 205
240 | ## Table 9.13 Radial Internal Clearances in **Bearings for Electric Motors** Table 9.13. 1 Deep Groove Ball Bearings for Electric Motors | | | | | Units | i:μm | |-------------|-------|------|-------|----------|--------------| | Nominal B | | Clea | rance | Rem | narks | | Dia. d (m | m) | С | M | Recomm | nended fit | | over | incl. | min. | max. | Shaft | Housing Bore | | 10 (incl) | 18 | 4 | 11 | js5 (j5) | | | 18 | 30 | 5 | 12 | | | | 30 | 50 | 9 | 17 | | H6, H7(1) | | | | | | k5 | or | | 50 | 80 | 12 | 22 | | JS6, JS7 | | 80 | 100 | 18 | 30 | | (J6, J7)(2) | | | | | | | 1 | | 100 | 120 | 18 | 30 | m5 | | | 120 | 160 | 24 | 38 | | | Notes (1) Applicable to outer rings that require movement in the axial direction. > (2) Applicable to outer rings that do not require movement in the axial direction. Remarks The radial clearance increase caused by the measuring load is equal to the correction amount for CN clearance in the remarks under Table 9.9. | Table 9.13.2 | Cylindrical Roller Bearings | |--------------|------------------------------------| | | for Electric Motors | Units: um | | | | | | | 0 | ιιο . μ π | |--------|-------|-----------|-----------|--------------|-------------|-------|-------------------------| | Nomina | | | Clear | rance | | F | Remarks | | Dia. d | (mm) | Interchan | geable CT | Non-Intercha | angeable CM | Reco | nmended Fit | | over | incl. | min. | max. | min. | max. | Shaft | Housing Bore | | 24 | 40 | 15 | 35 | 15 | 30 | k5 | | | 40 | 50 | 20 | 40 | 20 | 35 | | | | 50 | 65 | 25 | 45 | 25 | 40 | | | | 65 | 80 | 30 | 50 | 30 | 45 | | | | 80 | 100 | 35 | 60 | 35 | 55 | m5 | JS6, JS7
(J6, J7)(1) | | 100 | 120 | 35 | 65 | 35 | 60 | | or | | 120 | 140 | 40 | 70 | 40 | 65 | | K6, K7(2) | | 140 | 160 | 50 | 85 | 50 | 80 | | | | | | | | | | | | | 160 | 180 | 60 | 95 | 60 | 90 | n6 | | | 180 | 200 | 65 | 105 | 65 | 100 | | | Notes (1) Applicable to outer rings that require movement in the axial direction. (2) Applicable to outer rings that do not require movement in the axial direction. Table 9.14 Radial Internal Clearances in Cylindrical Roller Bearings and Solid-Type Needle Roller Bearings Units: µm | | omi
ore l | | | | | | ances
Cylind | | | | | | | | | Cleara | | Non-I | | | ole Bea | rings | | | |----|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------
----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | d | (m | m) | C | 2 | С | N | C | 3 | C | 4 | C | 5 | C | C1 | С | C2 | CC | (1) | C | C3 | C | C4 | C | C5 | | OV | er | incl. | min. | max. | | 0 | 10
24
30 | 0
0
0 | 25
25
25 | 20
20
20 | 45
45
45 | 35
35
35 | 60
60
60 | 50
50
50 | 75
75
75 | —
65
70 | 90
95 |
5
5 |
15
15 |
10
10 |
20
25 |
20
25 | —
30
35 | 35
40 | —
45
50 |
45
50 |
55
60 | —
65
70 | —
75
80 | | 4 | 0 | 40
50
65 | 5
5
10 | 30
35
40 | 25
30
40 | 50
60
70 | 45
50
60 | 70
80
90 | 60
70
80 | 85
100
110 | 80
95
110 | 105
125
140 | 5
5
5 | 15
18
20 | 12
15
15 | 25
30
35 | 25
30
35 | 40
45
50 | 45
50
55 | 55
65
75 | 55
65
75 | 70
80
90 | 80
95
110 | 95
110
130 | | | | 80
100
120 | 10
15
15 | 45
50
55 | 40
50
50 | 75
85
90 | 65
75
85 | 100
110
125 | 90
105
125 | 125
140
165 | 130
155
180 | 165
190
220 | 10
10
10 | 25
30
30 | 20
25
25 | 40
45
50 | 40
45
50 | 60
70
80 | 70
80
95 | 90
105
120 | 90
105
120 | 110
125
145 | 130
155
180 | 150
180
205 | | 14 | 0 | 140
160
180 | 15
20
25 | 60
70
75 | 60
70
75 | 105
120
125 | 100
115
120 | 145
165
170 | 145
165
170 | 190
215
220 | 200
225
250 | 245
275
300 | 10
10
10 | 35
35
40 | 30
35
35 | 60
65
75 | 60
65
75 | 90
100
110 | 105
115
125 | 135
150
165 | 135
150
165 | 160
180
200 | 200
225
250 | 230
260
285 | | 20 | 0 2 | 200
225
250 | 35
45
45 | 90
105
110 | 90
105
110 | 145
165
175 | 140
160
170 | 195
220
235 | 195
220
235 | 250
280
300 | 275
305
330 | 330
365
395 | 15
15
15 | 45
50
50 | 40
45
50 | 80
90
100 | 80
90
100 | 120
135
150 | 140
155
170 | 180
200
215 | 180
200
215 | 220
240
265 | 275
305
330 | 315
350
380 | | 28 | 0 : | 280
315
355 | 55
55
65 | 125
130
145 | 125
130
145 | 195
205
225 | 190
200
225 | 260
275
305 | 260
275
305 | 330
350
385 | 370
410
455 | 440
485
535 | 20
20
20 | 55
60
65 | 55
60
65 | 110
120
135 | 110
120
135 | 165
180
200 | 185
205
225 | 240
265
295 | 240
265
295 | 295
325
360 | 370
410
455 | 420
470
520 | | 40 | 0 4 | 400
450
500 | 100
110
110 | 190
210
220 | 190
210
220 | 280
310
330 | 280
310
330 | 370
410
440 | 370
410
440 | 460
510
550 | 510
565
625 | 600
665
735 | 25
25
25 | 75
85
95 | | 150
170
190 | 150
170
190 | 225
255
285 | 255
285
315 | 330
370
410 | 330
370
410 | 405
455
505 | 510
565
625 | 585
650
720 | Note (1) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings. Units: μm | | minal
e Dia. | | | | | Clearan | ices in N | on-Inter | changea | ble Bear | ings wit | h Tapere | d Bores | | | | | |-------------------|-------------------|----------------|----------------|------|------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | mm) | CC | 9 (1) | C | C0 | C | C1 | C | C2 | CC | (2) | C | C3 | C | C4 | C | C5 | | over | incl. | min. | max. | 10 | 24 | 5 | 10 | _ | — | 10 | 20 | 20 | 30 | 35 | 45 | 45 | 55 | 55 | 65 | 75 | 85 | | 24 | 30 | 5 | 10 | 8 | 15 | 10 | 25 | 25 | 35 | 40 | 50 | 50 | 60 | 60 | 70 | 80 | 95 | | 30 | 40 | 5 | 12 | 8 | 15 | 12 | 25 | 25 | 40 | 45 | 55 | 55 | 70 | 70 | 80 | 95 | 110 | | 40 | 50 | 5 | 15 | 10 | 20 | 15 | 30 | 30 | 45 | 50 | 65 | 65 | 80 | 80 | 95 | 110 | 125 | | 50 | 65 | 5 | 15 | 10 | 20 | 15 | 35 | 35 | 50 | 55 | 75 | 75 | 90 | 90 | 110 | 130 | 150 | | 65 | 80 | 10 | 20 | 15 | 30 | 20 | 40 | 40 | 60 | 70 | 90 | 90 | 110 | 110 | 130 | 150 | 170 | | 80 | 100 | 10 | 25 | 20 | 35 | 25 | 45 | 45 | 70 | 80 | 105 | 105 | 125 | 125 | 150 | 180 | 205 | | 100 | 120 | 10 | 25 | 20 | 35 | 25 | 50 | 50 | 80 | 95 | 120 | 120 | 145 | 145 | 170 | 205 | 230 | | 120 | 140 | 15 | 30 | 25 | 40 | 30 | 60 | 60 | 90 | 105 | 135 | 135 | 160 | 160 | 190 | 230 | 260 | | 140 | 160 | 15 | 35 | 30 | 50 | 35 | 65 | 65 | 100 | 115 | 150 | 150 | 180 | 180 | 215 | 260 | 295 | | 160 | 180 | 15 | 35 | 30 | 50 | 35 | 75 | 75 | 110 | 125 | 165 | 165 | 200 | 200 | 240 | 285 | 320 | | 180 | 200 | 20 | 40 | 30 | 50 | 40 | 80 | 80 | 120 | 140 | 180 | 180 | 220 | 220 | 260 | 315 | 355 | | 200 | 225 | 20 | 45 | 35 | 60 | 45 | 90 | 90 | 135 | 155 | 200 | 200 | 240 | 240 | 285 | 350 | 395 | | 225 | 250 | 25 | 50 | 40 | 65 | 50 | 100 | 100 | 150 | 170 | 215 | 215 | 265 | 265 | 315 | 380 | 430 | | 250 | 280 | 25 | 55 | 40 | 70 | 55 | 110 | 110 | 165 | 185 | 240 | 240 | 295 | 295 | 350 | 420 | 475 | | 280
315
355 | 315
355
400 | 30
30
35 | 60
65
75 | = | _ | 60
65
75 | 120
135
150 | 120
135
150 | 180
200
225 | 205
225
255 | 265
295
330 | 265
295
330 | 325
360
405 | 325
360
405 | 385
430
480 | 470
520
585 | 530
585
660 | | 400
450 | 450
500 | 40
45 | 85
95 | | = | 85
95 | 170
190 | 170
190 | 255
285 | 285
315 | 370
410 | 370
410 | 455
505 | 455
505 | 540
600 | 650
720 | 735
815 | (1) Clearance CC9 is applicable to cylindrical roller bearings with tapered bores in ISO Tolerance Classes 5 and 4. (2) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings. Table 9.15 Radial Internal Clearances in Spherical Roller Bearings Units: µm | Non | ninal
Dia. | | (| Cleara | nce in | Beari | ngs wit | th Cylin | drical B | ores | | | | Cle | arance i | in Beari | ngs wit | h Taper | ed Bore | S | | |-------|---------------|------|------|--------|--------|-------|---------|----------|----------|-------|-------|------|------|------|----------|----------|---------|---------|---------|-------|-------| | d (r | | C | 2 | С | N | (| C3 | C | 4 | C | 5 | C | 2 | (| CN | C | 3 | C | 4 | C | 5 | | over | incl. | min. | max. | 24 | 30 | 15 | 25 | 25 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | 20 | 30 | 30 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | | 30 | 40 | 15 | 30 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 25 | 35 | 35 | 50 | 50 | 65 | 65 | 85 | 85 | 105 | | 40 | 50 | 20 | 35 | 35 | 55 | 55 | 75 | 75 | 100 | 100 | 125 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 100 | 130 | | 50 | 65 | 20 | 40 | 40 | 65 | 65 | 90 | 90 | 120 | 120 | 150 | 40 | 55 | 55 | 75 | 75 | 95 | 95 | 120 | 120 | 160 | | 65 | 80 | 30 | 50 | 50 | 80 | 80 | 110 | 110 | 145 | 145 | 180 | 50 | 70 | 70 | 95 | 95 | 120 | 120 | 150 | 150 | 200 | | 80 | 100 | 35 | 60 | 60 | 100 | 100 | 135 | 135 | 180 | 180 | 225 | 55 | 80 | 80 | 110 | 110 | 140 | 140 | 180 | 180 | 230 | | 100 | 120 | 40 | 75 | 75 | 120 | 120 | 160 | 160 | 210 | 210 | 260 | 65 | 100 | 100 | 135 | 135 | 170 | 170 | 220 | 220 | 280 | | 120 | 140 | 50 | 95 | 95 | 145 | 145 | 190 | 190 | 240 | 240 | 300 | 80 | 120 | 120 | 160 | 160 | 200 | 200 | 260 | 260 | 330 | | 140 | 160 | 60 | 110 | 110 | 170 | 170 | 220 | 220 | 280 | 280 | 350 | 90 | 130 | 130 | 180 | 180 | 230 | 230 | 300 | 300 | 380 | | 160 | 180 | 65 | 120 | 120 | 180 | 180 | 240 | 240 | 310 | 310 | 390 | 100 | 140 | 140 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | | 180 | 200 | 70 | 130 | 130 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | 110 | 160 | 160 | 220 | 220 | 290 | 290 | 370 | 370 | 470 | | 200 | 225 | 80 | 140 | 140 | 220 | 220 | 290 | 290 | 380 | 380 | 470 | 120 | 180 | 180 | 250 | 250 | 320 | 320 | 410 | 410 | 520 | | 225 | 250 | 90 | 150 | 150 | 240 | 240 | 320 | 320 | 420 | 420 | 520 | 140 | 200 | 200 | 270 | 270 | 350 | 350 | 450 | 450 | 570 | | 250 | 280 | 100 | 170 | 170 | 260 | 260 | 350 | 350 | 460 | 460 | 570 | 150 | 220 | 220 | 300 | 300 | 390 | 390 | 490 | 490 | 620 | | 280 | 315 | 110 | 190 | 190 | 280 | 280 | 370 | 370 | 500 | 500 | 630 | 170 | 240 | 240 | 330 | 330 | 430 | 430 | 540 | 540 | 680 | | 315 | 355 | 120 | 200 | 200 | 310 | 310 | 410 | 410 | 550 | 550 | 690 | 190 | 270 | 270 | 360 | 360 | 470 | 470 | 590 | 590 | 740 | | 355 | 400 | 130 | 220 | 220 | 340 | 340 | 450 | 450 | 600 | 600 | 750 | 210 | 300 | 300 | 400 | 400 | 520 | 520 | 650 | 650 | 820 | | 400 | 450 | 140 | 240 | 240 | 370 | 370 | 500 | 500 | 660 | 660 | 820 | 230 | 330 | 330 | 440 | 440 | 570 | 570 | 720 | 720 | 910 | | 450 | 500 | 140 | 260 | 260 | 410 | 410 | 550 | 550 | 720 | 720 | 900 | 260 | 370 | 370 | 490 | 490 | 630 | 630 | 790 | 790 | 1 000 | | 500 | 560 | 150 | 280 | 280 | 440 | 440 | 600 | 600 | 780 | 780 | 1 000 | 290 | 410 | 410 | 540 | 540 | 680 | 680 | 870 | 870 | 1 100 | | 560 | 630 | 170 | 310 | 310 | 480 | 480 | 650 | 650 | 850 | 850 | 1 100 | 320 | 460 | 460 | 600 | 600 | 760 | 760 | 980 | 980 | 1 230 | | 630 | 710 | 190 | 350 | 350 | 530 | 530 | 700 | 700 | 920 | 920 | 1 190 | 350 | 510 | 510 | 670 | 670 | 850 | 850 | 1 090 | 1 090 | 1 360 | | 710 | 800 | 210 | 390 | 390 | 580 | 580 | 770 | 770 | 1 010 | 1 010 | 1 300 | 390 | 570 | 570 | 750 | 750 | 960 | 960 | 1 220 | 1 220 | 1 500 | | 800 | 900 | 230 | 430 | 430 | 650 | 650 | 860 | 860 | 1 120 | 1 120 | 1 440 | 440 | 640 | 640 | 840 |
840 | 1 070 | 1 070 | 1 370 | 1 370 | 1 690 | | 900 | 1 000 | 260 | 480 | 480 | 710 | 710 | 930 | 930 | 1 220 | 1 220 | 1 570 | 490 | 710 | 710 | 930 | 930 | 1 190 | 1 190 | 1 520 | 1 520 | 1 860 | | 1 000 | 1 120 | 290 | 530 | 530 | 780 | 780 | 1 020 | 1 020 | 1 330 | — | — | 530 | 770 | 770 | 1 030 | 1 030 | 1 300 | 1 300 | 1 670 | — | — | | 1 120 | 1 250 | 320 | 580 | 580 | 860 | 860 | 1 120 | 1 120 | 1 460 | — | — | 570 | 830 | 830 | 1 120 | 1 120 | 1 420 | 1 420 | 1 830 | — | — | | 1 250 | 1 400 | 350 | 640 | 640 | 950 | 950 | 1 240 | 1 240 | 1 620 | — | — | 620 | 910 | 910 | 1 230 | 1 230 | 1 560 | 1 560 | 2 000 | — | — | Table 9.16 Radial Internal Clearances in Double-Row and Combined Tapered Roller Bearings Units : $\mu\,m$ | | ndrical | | | | | | CI | earance | | | | | | |----------------------------|----------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | | red Bore | C | 21 | C | 2 | С | ^C N | C | 3 | C | 24 | С | 5 | | Nominal Bo
Dia. d (mn | | _ | _ | C | 1 | C | 22 | C | N | C | 23 | C | 24 | | over | incl. | min. | max. | | 18
24 | 18
24
30 | 0
0
0 | 10
10
10 | 10
10
10 | 20
20
20 | 20
20
20 | 30
30
30 | 35
35
40 | 45
45
50 | 50
50
50 | 60
60
60 | 65
65
70 | 75
75
80 | | 30 | 40 | 0 | 12 | 12 | 25 | 25 | 40 | 45 | 60 | 60 | 75 | 80 | 95 | | 40 | 50 | 0 | 15 | 15 | 30 | 30 | 45 | 50 | 65 | 65 | 80 | 95 | 110 | | 50 | 65 | 0 | 15 | 15 | 35 | 35 | 55 | 60 | 80 | 80 | 100 | 110 | 130 | | 65 | 80 | 0 | 20 | 20 | 40 | 40 | 60 | 70 | 90 | 90 | 110 | 130 | 150 | | 80 | 100 | 0 | 25 | 25 | 50 | 50 | 75 | 80 | 105 | 105 | 130 | 155 | 180 | | 100 | 120 | 5 | 30 | 30 | 55 | 55 | 80 | 90 | 115 | 120 | 145 | 180 | 210 | | 120 | 140 | 5 | 35 | 35 | 65 | 65 | 95 | 100 | 130 | 135 | 165 | 200 | 230 | | 140 | 160 | 10 | 40 | 40 | 70 | 70 | 100 | 110 | 140 | 150 | 180 | 220 | 260 | | 160 | 180 | 10 | 45 | 45 | 80 | 80 | 115 | 125 | 160 | 165 | 200 | 250 | 290 | | 180 | 200 | 10 | 50 | 50 | 90 | 90 | 130 | 140 | 180 | 180 | 220 | 280 | 320 | | 200 | 225 | 20 | 60 | 60 | 100 | 100 | 140 | 150 | 190 | 200 | 240 | 300 | 340 | | 225 | 250 | 20 | 65 | 65 | 110 | 110 | 155 | 165 | 210 | 220 | 270 | 330 | 380 | | 250 | 280 | 20 | 70 | 70 | 120 | 120 | 170 | 180 | 230 | 240 | 290 | 370 | 420 | | 280 | 315 | 30 | 80 | 80 | 130 | 130 | 180 | 190 | 240 | 260 | 310 | 410 | 460 | | 315 | 355 | 30 | 80 | 80 | 130 | 140 | 190 | 210 | 260 | 290 | 350 | 450 | 510 | | 355 | 400 | 40 | 90 | 90 | 140 | 150 | 200 | 220 | 280 | 330 | 390 | 510 | 570 | | 400 | 450 | 45 | 95 | 95 | 145 | 170 | 220 | 250 | 310 | 370 | 430 | 560 | 620 | | 450 | 500 | 50 | 100 | 100 | 150 | 190 | 240 | 280 | 340 | 410 | 470 | 620 | 680 | | 500 | 560 | 60 | 110 | 110 | 160 | 210 | 260 | 310 | 380 | 450 | 520 | 700 | 770 | | 560 | 630 | 70 | 120 | 120 | 170 | 230 | 290 | 350 | 420 | 500 | 570 | 780 | 850 | | 630 | 710 | 80 | 130 | 130 | 180 | 260 | 310 | 390 | 470 | 560 | 640 | 870 | 950 | | 710 | 800 | 90 | 140 | 150 | 200 | 290 | 340 | 430 | 510 | 630 | 710 | 980 | 1 060 | | 800 | 900 | 100 | 150 | 160 | 210 | 320 | 370 | 480 | 570 | 700 | 790 | 1 100 | 1 200 | | 900 | 1 000 | 120 | 170 | 180 | 230 | 360 | 410 | 540 | 630 | 780 | 870 | 1 200 | 1 300 | | 1 000 | 1 120 | 130 | 190 | 200 | 260 | 400 | 460 | 600 | 700 | _ | = | _ | _ | | 1 120 | 1 250 | 150 | 210 | 220 | 280 | 450 | 510 | 670 | 770 | _ | | _ | _ | | 1 250 | 1 400 | 170 | 240 | 250 | 320 | 500 | 570 | 750 | 870 | _ | | _ | _ | **Remarks** Axial internal clearance $\Delta_a = \Delta_r \cot \alpha = \frac{1.5}{e} \Delta_r$ where Δ_r : Radial internal clearance α : Contact angle e: Constant (Listed in bearing tables) A 92 Table 9.17 Axial Internal Clearances in Combined Angular Contact Ball Bearings (Measured Clearance) Units: u.m. | Nomin | al Bore | | Axial Intern | | | | | al Clearance | | | | | | |-------|---------|------|--------------|-----------|-----------|------|------|-------------------|------|------|------|------|------| | Diam | eter. | | | Contact / | Angle 30° | | | Contact Angle 40° | | | | | | | d (r | nm) | C | N | C | 3 | C | 24 | C | N | C | 3 | (| 24 | | over | incl. | min. | max. | | | 10 | 9 | 29 | 29 | 49 | 49 | 69 | 6 | 26 | 26 | 46 | 46 | 66 | | 10 | 18 | 10 | 30 | 30 | 50 | 50 | 70 | 7 | 27 | 27 | 47 | 47 | 67 | | 18 | 24 | 19 | 39 | 39 | 59 | 59 | 79 | 13 | 33 | 33 | 53 | 53 | 73 | | 24 | 30 | 20 | 40 | 40 | 60 | 60 | 80 | 14 | 34 | 34 | 54 | 54 | 74 | | 30 | 40 | 26 | 46 | 46 | 66 | 66 | 86 | 19 | 39 | 39 | 59 | 59 | 79 | | 40 | 50 | 29 | 49 | 49 | 69 | 69 | 89 | 21 | 41 | 41 | 61 | 61 | 81 | | 50 | 65 | 35 | 60 | 60 | 85 | 85 | 110 | 25 | 50 | 50 | 75 | 75 | 100 | | 65 | 80 | 38 | 63 | 63 | 88 | 88 | 115 | 27 | 52 | 52 | 77 | 77 | 100 | | 80 | 100 | 49 | 74 | 74 | 99 | 99 | 125 | 35 | 60 | 60 | 85 | 85 | 110 | | 100 | 120 | 72 | 97 | 97 | 120 | 120 | 145 | 52 | 77 | 77 | 100 | 100 | 125 | | 120 | 140 | 85 | 115 | 115 | 145 | 145 | 175 | 63 | 93 | 93 | 125 | 125 | 155 | | 140 | 160 | 90 | 120 | 120 | 150 | 150 | 180 | 66 | 96 | 96 | 125 | 125 | 155 | | 160 | 180 | 95 | 125 | 125 | 155 | 155 | 185 | 68 | 98 | 98 | 130 | 130 | 160 | | 180 | 200 | 110 | 140 | 140 | 170 | 170 | 200 | 80 | 110 | 110 | 140 | 140 | 170 | **Remarks** This table is applicable to bearings in Tolerance Classes Normal and 6. For internal axial clearances in bearings in tolerance classes better than 5 and contact angles of 15° and 25°, it is advisable to consult NSK. Table 9.18 Axial Internal Clearance in Four-Point **Contact Ball Bearings** (Measured Clearances) Unite : um | | Units : µm | | | | n | | | | | | |--------|------------|------|--------------------------|------|------|------|------|------|------|--| | Nomin | al Bore | | Axial Internal Clearance | | | | | | | | | Dia. d | (mm) | C | 2 | CN | | C3 | | C4 | | | | over | incl. | min. | max. | min. | max. | min. | max. | min. | max. | | | 10 | 18 | 15 | 55 | 45 | 85 | 75 | 125 | 115 | 165 | | | 18 | 40 | 26 | 66 | 56 | 106 | 96 | 146 | 136 | 186 | | | 40 | 60 | 36 | 86 | 76 | 126 | 116 | 166 | 156 | 206 | | | 60 | 80 | 46 | 96 | 86 | 136 | 126 | 176 | 166 | 226 | | | 80 | 100 | 56 | 106 | 96 | 156 | 136 | 196 | 186 | 246 | | | 100 | 140 | 66 | 126 | 116 | 176 | 156 | 216 | 206 | 266 | | | 140 | 180 | 76 | 156 | 136 | 196 | 176 | 246 | 226 | 296 | | | 180 | 220 | 96 | 176 | 156 | 226 | 206 | 276 | 256 | 326 | | | 220 | 260 | 115 | 196 | 175 | 245 | 225 | 305 | 285 | 365 | | | 260 | 300 | 135 | 215 | 195 | 275 | 255 | 335 | 315 | 395 | | | 300 | 350 | 155 | 235 | 215 | 305 | 275 | 365 | 345 | 425 | | | 350 | 400 | 175 | 265 | 245 | 335 | 315 | 405 | 385 | 475 | | | 400 | 500 | 205 | 305 | 285 | 385 | 355 | 455 | 435 | 525 | | ## 9.2.2 Selection of Bearing Internal Clearances Among the bearing internal clearances listed in the tables, the CN Clearance is adequate for standard operating conditions. The clearance becomes progressively smaller from C2 to C1 and larger from C3 to C5. Standard operating conditions are defined as those where the inner ring speed is less than approximately 50% of the limiting speed listed in the bearing tables. the load is less than normal $(P = 0.1C_r)$, and the bearing is tight-fitted on the shaft. As a measure to reduce bearing noise for electric motors, the radial clearance range is narrower than the normal class and the values are somewhat smaller for deep groove ball bearings and cylindrical roller bearings for electric motors. (Refer to Table 9.13.1 and 9.13.2) Internal clearance varies with the fit and temperature differences in operation. The changes in radial clearance in a roller bearing are shown in Fig. 9.2. ## (1) Decrease in Radial Clearance Caused by Fitting and Residual Clearance When the inner ring or the outer ring is tight-fitted on a shaft or in a housing, a decrease in the radial internal clearance is caused by the expansion or contraction of the bearing rings. The decrease varies according to the bearing type and size and design of the shaft and housing. The amount of this decrease is approximately 70 to 90% of the interference (refer to Section 15.2). Fits (1), Pages A130 to A133). The internal clearance after subtracting this decrease from the theoretical internal clearance Δ_0 is called the residual clearance, $\Delta_{\rm f}$. ## (2) Decrease in Radial Internal Clearance Caused by Temperature Differences between Inner and Outer Rings and Effective Clearance The frictional heat generated during operation is conducted away through the shaft and housing. Since housings generally conduct heat better than shafts, the temperature of the inner ring and the rolling elements is usually higher than that of the outer ring by 5 to 10°C. If the shaft is heated or the housing is cooled, the difference in temperature between the inner and outer rings is greater. The radial clearance decreases due to the thermal expansion caused by the temperature difference between the inner and outer rings. The amount of this decrease can be calculated using the following equations: $$\delta_t = \alpha \Delta_t D_0$$ (9.6) where δ_t : Decrease in radial clearance due to temperature difference between inner and outer rings (mm) - α : Coefficient of linear expansion of bearing steel $= 12.5 \times 10^{-6} (1/°\dot{C})$ - Δ_t : Temperature difference between inner and outer rings (°C) - D_e : Outer ring raceway diameter (mm) For ball bearings $$D_{\rm e} \stackrel{.}{=} \frac{1}{5} (4D + d) \dots (9.7)$$ For roller bearings For roller bearings $$D_{\rm e} = \frac{1}{4} \; (3D+d) \ldots \qquad \qquad (\textbf{9.8})$$ The clearance after substracting this δ_t from the residual clearance. Δ_f is called the effective clearance. △. Theoretically, the longest life of a bearing can be expected when the effective clearance is
slightly negative. However, it is difficult to achieve such an ideal condition, and an excessive negative clearance will greatly shorten the bearing life. Therefore, a clearance of zero or a slightly positive amount, instead of a negative one, should be selected. When single-row angular contact ball bearings or tapered roller bearings are used facing each other, there should be a small effective clearance, unless a preload is required. When two cylindrical roller bearings with a rib on one side are used facing each other, it is necessary to provide adequate axial clearance to allow for shaft elongation during operation. The radial clearances used in some specific applications are given in Table 9.19. Under special operating conditions, it is advisable to consult NSK. Fig. 9.2 Changes in Radial Internal Clearance of Bearings Table 9. 19 Examples of Clearances for Specific **Applications** | Operating Conditions | Examples | Internal
Clearance | |---|--|-----------------------| | When shaft deflection is large. | Semi-floating rear wheels of automobiles | C5 or equivalent | | When steam passes | Dryers in paper making machines | C3, C4 | | through hollow shafts or roller shafts are heated. | Table rollers for rolling mills | C3 | | When impact loads and | Traction motors for railways | C4 | | vibration are severe or | Vibrating screens | C3, C4 | | when both the inner and outer rings are tight- | Fluid couplings | C4 | | fitted. | Final reduction gears for tractors | C4 | | When both the inner and outer rings are loose-fitted | Rolling mill roll necks | C2 or equivalent | | When noise and vibration restrictions are severe | Small motors with special specifications | C1, C2, CM | | When clearance is adjusted after mounting to prevent shaft deflection, etc. | Main shafts of lathes | CC9, CC1 | ## 10. PRELOAD Rolling bearings usually retain some internal clearance while in operation. In some cases, however, it is desirable to provide a negative clearance to keep them internally stressed. This is called "preloading". A preload is usually applied to bearings in which the clearance can be adjusted during mounting, such as angular contact ball bearings or tapered roller bearings. Usually, two bearings are mounted face-to-face or back-to-back to form a duplex set with a preload. ## 10.1 Purpose of Preload The main purposes and some typical applications of preloaded bearings are as follows: - (1) To maintain the bearings in exact position both radially and axially and to maintain the running accuracy of the shaft. - ...Main shafts of machine tools, precision instruments, etc. - (2) To increase bearing rigidity - ...Main shafts of machine tools, pinion shafts of final drive gears of automobiles, etc. - (3) To minimize noise due to axial vibration and resonance - ...Small electric motors, etc. - (4) To prevent sliding between the rolling elements and raceways due to gyroscopic moments - ...High speed or high acceleration applications of angular contact ball bearings, and thrust ball bearings - (5) To maintain the rolling elements in their proper position with the bearing rings - ...Thrust ball bearings and spherical thrust roller bearings mounted on a horizontal shaft ## 10.2 Preloading Methods ## 10.2.1 Position Preload A position preload is achieved by fixing two axially opposed bearings in such a way that a preload is imposed on them. Their position, once fixed, remain unchanged while in operation. In practice, the following three methods are generally used to obtain a position preload. - (1) By installing a duplex bearing set with previously adjusted stand-out dimensions (see Page A7, Fig. 1.1) and axial clearance. - (2) By using a spacer or shim of proper size to obtain the required spacing and preload. (Refer to Fig. 10.1) - (3) By utilizing bolts or nuts to allow adjustment of the axial preload. In this case, the starting torque should be measured to verify the proper preload. #### 10.2.2 Constant-Pressure Preload A constant pressure preload is achieved using a coil or leaf spring to impose a constant preload. Even if the relative position of the bearings changes during operation, the magnitude of the preload remains relatively constant (refer to Fig. 10.2) ## 10.3 Preload and Rigidity ## 10.3.1 Position Preload and Rigidity When the inner rings of the duplex bearings shown in Fig.10.3 are fixed axially, bearings A and B are displaced δ_{a0} and axial space $2\delta_{a0}$ between the inner rings is eliminated. With this condition, a preload F_{a0} is imposed on each bearing. A preload diagram showing bearing rigidity, that is the relation between load and displacement with a given axial load F_a imposed on a duplex set, is shown in Fig. 10.4. δ_{aB}^{aA} : Displacement of Bearing B $F_{\rm a\,A}$: Axial load imposed on Bearing A $F_{\rm a\,B}$: Axial load imposed on Bearing B ## 10.3.2 Constant-Pressure Preload and Rigidity A preload diagram for duplex bearings under a constant-pressure preload is shown in Fig. 10.5. The deflection curve of the spring is nearly parallel to the horizontal axis because the rigidity of springs is lower than that of the bearing. As a result, the rigidity under a constant-pressure preload is approximately equal to that for a single bearing with a preload $F_{\rm a0}$ applied to it. Fig. 10.6 presents a comparison of the rigidity of a bearing with a position preload and one with a constant-pressure preload. ## 10.4 Selection of Preloading Method and Amount of Preload ## 10.4.1 Comparison of Preloading Methods A comparison of the rigidity using both preloading methods is shown in Fig. 10.6. The position preload and constant-pressure preload may be compared as follows: - (1) When both of the preloads are equal, the position preload provides greater bearing rigidity, in other words, the deflection due to external loads is less for bearings with a position preload. - (2) In the case of a position preload, the preload varies depending on such factors as a difference in axial expansion due to a temperature difference between the shaft and housing, a difference in radial expansion due to a temperature difference between the inner and outer rings, deflection due to load, etc. δ_a : Displacement of duplex bearing set δ_a : Displacement of Bearing A In the case of a constant-pressure preload, it is possible to minimize any change in the preload because the variation of the spring load with shaft expansion and contraction is negligible. From the foregoing explanation, it is seen that position preloads are generally preferred for increasing rigidity and constant-pressure preloads are more suitable for high speed applications, for prevention of axial vibration, for use with thrust bearings on horizontal shafts, etc. Fig. 10.5 Axial Displacement with Constant-Pressure Preload Fig. 10.6 Comparison of Rigidities and Preloading Methods #### 10.4.2 Amount of Preload If the preload is larger than necessary, abnormal heart generation, increased frictional torque, reduced fatigue life, etc. may occur. The amount of the preload should be carefully determined considering the operating conditions and the purpose of the preload. ## (1) Preloading of Duplex Angular Contact Ball Bearings Average preloads for duplex angular contact ball bearings (contact angle of 15°) with precision better than P5 class, which are used on the main shafts of machine tools, are listed in Table 10.2. The recommended fitting between the shaft and inner ring and between the housing and outer ring are listed in Table 10.1. In the case of fits with housings, the lower limit of the fitting range should be selected for fixed-end bearings and the upper limit for free-end bearings. As a general rule, an extra light or light preload should be selected for grinding spindles and the main shafts of machining centers, while a medium preload should be adopted for the main shafts of lathes requiring rigidity When speeds result in a value of $D_{\mathrm{pw}} \times n$ ($d_{\mathrm{m}} n$ value) higher than 500000, the preload should be very carefully studied and selected. In such a case, please consult with NSK beforehand. Table 10, 2, 1 Duplex Bearings of Series 79 | Units : N | iliga ul acilea 75 | . Z. I Duplex Deal | Table to | | |-----------|--------------------|--------------------|-------------|---------| | | oads | Prelo | | | | Heavy | Medium | Light | Extra light | Bearing | | Preload H | Preload M | Preload L | Preload EL | No. | | 59 | 29 | 15 | 7 | 7900 C | | 78 | 39 | 15 | 8.6 | 7901 C | | 100 | 49 | 25 | 12 | 7902 C | | 120 | 59 | 25 | 12 | 7903 C | | 150 | 78 | 39 | 19 | 7904 C | | 200 | 100 | 39 | 19 | 7905 C | | 200 | 100 | 49 | 24 | 7906 C | | 290 | 150 | 69 | 34 | 7907 C | | 390 | 200 | 78 | 39 | 7908 C | | 390 | 200 | 100 | 50 | 7909 C | | 490 | 250 | 100 | 50 | 7910 C | | 590 | 290 | 120 | 60 | 7911 C | | 590 | 290 | 120 | 60 | 7912 C | | 690 | 340 | 150 | 75 | 7913 C | | 980 | 490 | 200 | 100 | 7914 C | | 980 | 490 | 200 | 100 | 7915 C | | 980 | 490 | 200 | 100 | 7916 C | | 1 270 | 640 | 290 | 145 | 7917 C | | 1 470 | 740 | 290 | 145 | 7918 C | | 1 570 | 780 | 290 | 145 | 7919 C | | 1 770 | 880 | 390 | 195 | 7920 C | Table 10. 1 Recommended Fitting for High Accuracy Duplex Angular Contact Ball Bearings with Preload | Units . μ III | | | | | | | |----------------------------|------------------|--------------------------------|-------------------------------|------------------|-----------------------------|--| | Nominal Bore Dia. d (mm) | | Target Shaft | Nominal Outside Dia. D (mm) | | Target
Housing | | | over | incl. | | over incl. | | Clearance | | | 18
30 | 18
30
50 | 0 to 2
0 to 2.5
0 to 2.5 | 18
30 | 18
30
50 | 2 to 6
2 to 6 | | | 50
80
120 | 80
120
150 | 0 to 3
0 to 4
— | 50
80
120 | 80
120
150 | 3 to
8
3 to 9
4 to 12 | | | 150
180 | 180
250 | _ | 150
180 | 180
250 | 4 to 12
5 to 15 | | Bearing No. 7000 C 7001 C 7002 C 7003 C 7004 C 7005 C 7006 C 7007 C 7008 C 7009 C 7010 C 7011 C 7012 C 7013 C 7014 C 7015 C 7016 C 7017 C 7018 C 7019 C 7020 C Table 10. 2 Preloads for Duplex Table 10. 2. 2 Duplex Unite: um | Extra light | Light | |-------------|-----------| | Preload EL | Preload L | | 12 | 25 | | 12 | 25 | | 14 | 29 | | 14 | 29 | | 24 | 49 | | 29 | 59 | | 39 | 78 | | 60 | 120 | | 60 | 120 | | 75 | 150 | | 75 | 150 | | 100 | 200 | | 100 | 200 | | 125 | 250 | | 145 | 290 | | 145 | 290 | | 195 | 390 | | 195 | 390 | | 245 | 490 | | 270 | 540 | | 270 | 540 | ## (2) Preload of Thrust Ball Bearings When the balls in thrust ball bearings rotate at relatively high speeds, sliding due to gyroscopic moments on the balls may occur. The larger of the two values obtained from Equations(10.1) and (10.2) below should be adopted as the minimum axial load in order to prevent such sliding $$F_{\text{a min}} = \frac{C_{0\text{a}}}{100} \left(\frac{n}{N_{\text{max}}} \right)^2 \dots (10.1)$$ $$F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000}$$(10.2) where $F_{\rm a\,min}$: Minimum axial load (N), {kgf} n : Speed (min⁻¹) C_{0a} : Basic static load rating (N), {kgf} $N_{\rm max}$: Limiting speed (oil lubrication) (min⁻¹) ## Angular Contact Ball Bearings ## Bearings of Series 70 | Units | 7 | |--------|---| | UIIIIO | 1 | | Preloads | | | | | | |-------------------------|-------------------------|--|--|--|--| | Medium
Preload M | Heavy
Preload H | | | | | | 49
59
69 | 100
120
150 | | | | | | 69
120
150 | 150
250
290 | | | | | | 200
250
290 | 390
490
590 | | | | | | 340
390
490 | 690
780
980 | | | | | | 540
540
740 | 1 080
1 080
1 470 | | | | | | 780
930
980 | 1 570
1 860
1 960 | | | | | | 1 180
1 180
1 270 | 2 350
2 350
2 550 | | | | | ## (3) Preload of Spherical Thrust Roller Bearings When spherical thrust roller bearings are used, damage such as scoring may occur due to sliding between the rollers and outer ring raceway. The minimum axial load $F_{\rm a\ min}$ necessary to prevent such sliding is obtained from the following equation: $$F_{\rm a \, min} = \frac{C_{0 \, \rm a}}{1000}$$(10.3) ## Table 10. 2. 3 Duplex Bearings of Series 72 10. 2. 3 Duplex Bearings of Series 72 | | | | | UIIILS . IN | |---------|-------------|-----------|-----------|-------------| | | | Preli | oads | | | Bearing | Extra light | Light | Medium | Heavy | | No. | Preload EL | Preload L | Preload M | Preload H | | 7200 C | 14 | 29 | 69 | 150 | | 7201 C | 19 | 39 | 100 | 200 | | 7202 C | 19 | 39 | 100 | 200 | | 7203 C | 24 | 49 | 150 | 290 | | 7204 C | 34 | 69 | 200 | 390 | | 7205 C | 39 | 78 | 200 | 390 | | 7206 C | 60 | 120 | 290 | 590 | | 7207 C | 75 | 150 | 390 | 780 | | 7208 C | 100 | 200 | 490 | 980 | | 7209 C | 125 | 250 | 540 | 1 080 | | 7210 C | 125 | 250 | 590 | 1 180 | | 7211 C | 145 | 290 | 780 | 1 570 | | 7212 C | 195 | 390 | 930 | 1 860 | | 7213 C | 220 | 440 | 1 080 | 2 160 | | 7214 C | 245 | 490 | 1 180 | 2 350 | | 7215 C | 270 | 540 | 1 230 | 2 450 | | 7216 C | 295 | 590 | 1 370 | 2 750 | | 7217 C | 345 | 690 | 1 670 | 3 330 | | 7218 C | 390 | 780 | 1 860 | 3 730 | | 7219 C | 440 | 880 | 2 060 | 4 120 | | 7220 C | 490 | 980 | 2 350 | 4 710 | | 7220 C | 490 | 980 | 2 350 | 4 710 | Units: N ## 11. DESIGN OF SHAFTS AND HOUSINGS ## 11.1 Accuracy and Surface Finish of Shafts and Housings If the accuracy of a shaft or housing does not meet the specification, the performance of the bearings will be affected and they will not provide their full capability. For example, inaccuracy in the squareness of the shaft shoulder may cause misalignment of the bearing inner and outer rings, which may reduce the bearing fatigue life by adding an edge load in addition to the normal load. Cage fracture and seizure sometimes occur for this same reason. Housings should be rigid in order to provide firm bearing support. High rigidity housings are advantageous also from he standpoint of noise. load distribution, etc. For normal operating conditions, a turned finish or smooth bored finish is sufficient for the fitting surface; however, a ground finish is necessary for applications where vibration and noise must be low or where heavy loads are applied. In cases where two or more bearings are mounted in one single-piece housing, the fitting surfaces of the housing bore should be designed so both bearing seats may be finished together with one operation such as in -line boring. In the case of split housings, care must be taken in the fabrication of the housing so the outer ring will not become deformed during installation. The accuracy and surface finish of shafts and housings are listed in Table 11.1 for normal operating conditions. Table 11. 1 Accuracy and Roughness of Shaft and Housing | Item | Item Class of Bearings | | Housing Bore | | |----------------------------------|----------------------------------|--|--|--| | Tolerance for | Normal, Class 6 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | | Out-of-roundness | Class 5, Class 4 | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | | | Tolerance for | Normal, Class 6 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | | Cylindricality | Class 5, Class 4 | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | | | Tolerance for | Normal, Class 6 | IT3 | IT3 to IT4 | | | Shoulder Runout | Class 5, Class 4 | IT3 | IT3 | | | Roughness of Fitting Surfaces Ra | Small Bearings
Large Bearings | 0.8
1.6 | 1.6
3.2 | | Remarks This table is for general recommendation using radius measuring method, the basic tolerance (IT) class should be selected in accordance with the bearing precision class. Regarding the figures of IT, please refer to the Appendix Table 11 (page C22). In cases that the outer ring is mounted in the housing bore with interference or that a thin crosssection bearing is mounted on a shaft and housing. the accuracy of the shaft and housing should be higher since this affects the bearing raceway directly. ## 11.2 Shoulder and Fillet Dimensions The shoulders of the shaft or housing in contact with the face of a bearing must be perpendicular to the shaft center line. (Refer to Table 11.1) The front face side shoulder bore of the housing for a tapered roller bearing should be parallel with the bearing axis in order to avoid interference with the cage. The fillets of the shaft and housing should not come in contact with the bearing chamfer; therefore, the fillet radius r_a must be smaller than the minimum bearing chamfer dimension r or r_1 . Fig. 11.1 Chamfer Dimensions. Fillet Radius of Shaft and Housing, and Shoulder Height The shoulder heights for both shafts and housings for radial bearings should be sufficient to provide good support over the face of the bearings, but enough face should extend beyond the shoulder to permit use of special dismounting tools. The recommended minimum shoulder heights for metric series radial bearings are listed in Table 11.2 Nominal dimensions associated with bearing mounting are listed in the bearing tables including the proper shoulder diameters. Sufficient shoulder height is particularly important for supporting the side ribs of tapered roller bearings and cylindrical roller bearings subjected to high axial loads. The values of h and r_a in Table 11.2 should be adopted in those cases where the fillet radius of the shaft or housing is as shown in Fig. 11.2 (a), while the values in Table 11.3 are generally used with an undercut fillet radius produced when grinding the shaft as shown in Fig. 11.2 (b). Table 11. 2 Recommended Minimum Shoulder Heights for Use with Metric Series Radial Bearings | | | | UIIII . IIIIII | |--|--------------------------|--|---| | Nominal | | Shaft or Housir | ng | | Chamfer | Fillet | Minimun Sho | ulder Heights | | Dimensions | | h (n | nin.) | | $ rac{r}{(\text{min.})}$ or $ rac{r}{(\text{min.})}$ | Radius γ_a (max.) | Deep Groove Ball
Bearings,
Self-Aligning Ball
Bearings,
Cylindrical Roller
Bearings,
Solid Needle Roller
Bearings | Angular Contact
Ball Bearings,
Tapered Roller
Bearings, Spherical
Roller Bearings | | 0.05 | 0.05 | 0.2 | _ | | 0.08 | 0.08 | 0.3 | _ | | 0.1 | 0.1 | 0.4 | _ | | 0.15 | 0.15 | 0.6 | — | | 0.2 | 0.2 | 0.8 | — | | 0.3 | 0.3 | 1 | 1.25 | | 0.6 | 0.6 | 2 | 2.5 | | 1 | 1 | 2.5 | 3 | | 1.1 | 1 | 3.25 | 3.5 | | 1.5 | 1.5 | 4 | 4.5 | | 2 | 2 | 4.5 | 5 | | 2.1 | 2 | 5.5 | 6 | | 2.5 | 2 | | 6 | | 3 | 2.5 | 6.5 | 7 | | 4 | 3 | 8 | 9 | | 5 | 4 | 10 | 11 | | 6 | 5 | 13 | 14 | | 7.5 | 6 | 16 | 18 | | 9.5 | 8 | 20 | 22 | | 12 | 10 | 24 | 27 | | 15 | 12 | 29 | 32 | | 19 | 15 | 38 | 42 | - Remarks 1. When heavy axial loads are applied, the shoulder height must be sufficiently higher than the values listed. - 2. The fillet radius of the corner is also applicable to thrust bearings. - 3. The shoulder diameter is listed instead of shoulder height in the bearing tables. Fig. 11. 2 Chamfer Dimensions, Fillet Radius, and Shoulder Height Table 11. 3 Shaft Undercut Units: mm | Chamfer Dimensions of Inner and | Undercut Dimensions | | | | | |--|---------------------|-----------------|-----|--|--| | Outer Rings $m{r}$ (min.) or $m{r}_1$ (min.) | t |
$\gamma_{ m g}$ | b | | | | 1 | 0.2 | 1.3 | 2 | | | | 1.1 | 0.3 | 1.5 | 2.4 | | | | 1.5 | 0.4 | 2 | 3.2 | | | | 2 | 0.5 | 2.5 | 4 | | | | 2.1 | 0.5 | 2.5 | 4 | | | | 2.5 | 0.5 | 2.5 | 4 | | | | 3 | 0.5 | 3 | 4.7 | | | | 4 | 0.5 | 4 | 5.9 | | | | 5 | 0.6 | 5 | 7.4 | | | | 6 | 0.6 | 6 | 8.6 | | | | 7.5 | 0.6 | 7 | 10 | | | A 100 For thrust bearings, the squareness and contact area of the supporting face for the bearing rings must be adequate. In the case of thrust ball bearings, the housing shoulder diameter $D_{\rm a}$ should be less than the pitch circle diameter of the balls, and the shaft shoulder diameter $d_{\rm a}$ should be greater than the pitch circle diameter of the balls (Fig. 11.3). For thrust roller bearings, it is advisable for the full contact length between rollers and rings to be supported by the shaft and housing shoulder (Fig. 11.4). These diameters d_a and D_a are listed in the bearing tables. Fig. 11.3 Face Supporting Diameters for Thrust Ball Bearings Fig. 11.4 Face Supporting Diameters for Thrust Roller Bearings (a) Fig. 11.5 Examples of Oil Grooves ## 11.3 Bearing Seals To insure the longest possible life of a bearing, it may be necessary to provide seals to prevent leakage of lubricant and entry of dust, water and other harmful material like metallic particles. The seals must be free from excessive running friction and the probability of seizure. They should also be easy to assemble and disassemble. It is necessary to select a suitable seal for each application considering the lubricating method. ## 11.3.1 Non-Contact Type Seals Various sealing devices that do not contact the shaft, such as oil grooves, flingers, and labyrinths, are available. Satisfactory sealing can usually be obtained with such seals because of their close running clearance. Centrifugal force may also assist in preventing internal contamination and leakage of the lubricant. ## (1) Oil Groove Seals The effectiveness of oil groove seals is obtained by means of the small gap between the shaft and housing bore and by multiple grooves on either or both of the housing bore and shaft surface (Fig. 11.5 (a), (b)). Since the use of oil grooves alone is not completely effective, except at low speeds, a flinger or labyrinth type seal is often combined with an oil groove seal (Fig. 11.5 (c)). The entry of dust is impeded by packing grease with a consistency of about 200 into the grooves. The smaller the gap between the shaft and housing, the greater the sealing effect; however, the shaft and housing must not come in contact while running. The recommended gaps are given in Table 11.4. The recommended groove width is approximately 3 to 5mm, with a depth of about 4 to 5mm. In the case of sealing methods using grooves only, there should be three or more grooves. (c) ## (2) Flinger (Slinger) Type Seals A flinger is designed to force water and dust away by means of the centrifugal force acting on any contaminants on the shaft. Sealing mechanisms with flingers inside the housing as shown in Fig. 11.6 (a), (b) are mainly intended to prevent oil leakage, and are used in environments with relatively little dust. Dust and moisture are prevented from entering by the centrifugal force of flingers shown in Figs 11.6 (c), (d). Table 11. 4 Gaps between Shafts and Housings for Oil-Groove Type Seals | | Units : mm | |------------------------|-------------| | Nominal Shaft Diameter | Radial Gap | | Under 50 | 0.25 to 0.4 | | 50-200 | 0.5 to 1.5 | (3) Labyrinth Seals Labyrinth seals are formed by interdigitated segments attached to the shaft and housing that are separated by a very small gap. They are particularly suitable for preventing oil leakage from the shaft at high speeds. The type shown in Fig. 11.7 (a) is widely used because of its ease of assembly, but those shown in Fig. 11.7 (b), (c) have better seal effectiveness. Table 11. 5 Labyrinth Seal Gaps Units: mm | Nominal Shaft Diameter | Labyrinth Gaps | | | | |------------------------|----------------|------------|--|--| | Nonlina Shar Diameter | Radial Gap | Axiall Gap | | | | Under 50 | 0.25 to 0.4 | 1 to 2 | | | | 50-200 | 0.5 to 1.5 | 2 to 5 | | | Fig. 11.6 Examples of Flinger Configurations Fig. 11.7 Examples of Labyrinth Designs ## **NSK** ## 11.3.2 Contact Type Seals The effectiveness of contact seals is achieved by the physical contact between the shaft and seal, which may be made of synthetic rubber, synthetic resin, felt, etc. Oil seals with synthetic rubber lips are most frequently used. ## (1) Oil Seals Many types of oil seals are used to prevent lubricant from leaking out as well as to prevent dust, water, and other foreign matter from entering (Figs. 11.8 and 11.9) In Japan, such oil seals are standardized (Refer to JIS B 2402) on the basis of type and size. Since many oil seals are equipped with circumferential springs to maintain adequate contact force, oil seals can follow the non-uniform rotational movement of a shaft to some degree. Seal lip materials are usually synthetic rubber including nitrile, acrylate, silicone, and fluorine. Tetrafluoride ethylene is also used. The maximum allowable operating temperature for each material increases in this same order. Synthetic rubber oil seals may cause trouble such as overheating, wear, and seizure, unless there is an oil film between the seal lip and shaft. Therefore, some lubricant should be applied to the seal lip when the seals are installed. It is also desirable for the lubricant inside the housing to spread a little between the sliding surfaces. However, please be aware that ester-based grease will cause acrylic rubber material to swell. Also, low aniline point mineral oil, silicone-based grease, and silicone-based oil will cause silicone-based material to swell. Moreover, urea-based grease will cause fluorine-based material to deteriorate. The permissible circumferential speed for oil seals varies depending on the type, the finish of the shaft surface, liquid to be sealed, temperature, shaft eccentricity, etc. The temperature range for oil seals is restricted by the lip material. Approximate circumferential surface speeds and temperature permitted under favorable conditions are listed in Table 11.6. When oil seals are used at high circumferential surface speed or under high internal pressure, the contact surface of the shaft must be smoothly finished and the shaft eccentricity should be less than 0.02 to 0.05 mm. The hardness of the shaft's contact surface should be made higher than HRC40 by means of heat treatment or hard chrome plating in order to gain abrasion resistance. If possible, a hardness of more than HRC 55 is recommended. The approximate level of contact surface finish required for several shaft circumferential surface speeds is given in Table 11.7. Fig. 11.8 Example of Application of Oil Seal (1) Fig. 11.9 Example of Application of Oil Seal (2) Table 11. 6 Permissible Circumferential Surface Speeds and Temperature Range for Oil Seals | Seal Materials | | Permissible
Circumferential
Speeds(m/sec) | Operating
Temperature
Range(°C)(¹) | |----------------|-------------------------------|---|--| | Synthetic | Nitrile Rubber | Under 16 | -25 to +100 | | | Acrylic Rubber | Under 25 | -15 to +130 | | Rubber | Silicone Rubber | Under 32 | -70 to +200 | | | Fluorine-
containes Rubber | Under 32 | -30 to +200 | | Tetrafluori | de Ethylene Resin | Under 15 | -50 to +220 | Note (1) The upper limit of the temperature range may be raised about 20 °C for operation for short intervals. Table 11. 7 Shaft Circumferential Surface Speeds and Finish of Contact Surfaces | Surface Finish $R_a \; (\mu m)$ | | |---------------------------------|--| | 0.8 | | | 0.4 | | | 0.2 | | | | | #### (2) Felt Seals Felt seals are one of the simplest and most common seals being used for transmission shafts, etc. However, since oil permeation and leakage are unavoidable if oil is used, this type of seal is used only for grease lubrication, primarily to prevent dust and other foreign matter from entering. Felt seals are not suitable for circumferential surface speeds exceeding 4 m/sec; therefore, it is preferable to replace them with synthetic rubber seals depending on the application. ## 12. LUBRICATION ## 12.1 Purposes of Lubrication The main purposes of lubrication are to reduce friction and wear inside the bearings that may cause premature failure. The effects of lubrication may be briefly explained as follows: (1) Reduction of Friction and Wear Direct metallic contact between the bearing rings, rolling elements and cage, which are the basic components of a bearing, is prevented by an oil film which reduces the friction and wear in the contact areas. (2) Extension of Fatigue Life The rolling fatigue life of bearings depends greatly upon the viscosity and film thickness between the rolling contact surfaces. A heavy film thickness prolongs the fatigue life, but it is shortened if the viscosity of the oil is too low so the film thickness is insufficient. (3) Dissipation of Frictional Heat and Cooling Circulation lubrication may be used to carry away frictional heat or heat transferred from the outside to prevent the bearing from overheating and the oil from deteriorating. (4) Others Adequate lubrication also helps to prevent foreign material from entering the bearings and guards against corrosion or rusting. ## 12.2 Lubricating Methods The various lubricating methods are first divided into either grease or oil lubrication. Satisfactory bearing performance can be achieved by adopting the lubricating method which is most suitable for the particular application and operating condition. In general, oil offers superior lubrication; however, grease lubrication allows a simpler structure around the bearings. A comparison of grease and oil lubrication is given in Table 12.1. Table 12. 1 Comparison of Grease and Oil Lubrication | Item | Grease
Lubrication | Oil Lubrication | |---|--|---| | Housing Structure and
Sealing Method | Simple | May be complex, Careful maintenance required. | | Speed | Limiting speed is 65% to 80% of that with oil lubrication. | Higher limiting speed. | | Cooling Effect | Poor | Heat transter is possible using forced oil circulation. | | Fluidity | Poor | Good | | Full Lubricant
Replacement | Sometimes difficult | Easy | | Removal of Foreign
Matter | Removal of particles from grese is impossible. | Easy | | External
Contamination due to
Leakage | Surroundings seldom contaminated by leakage. | Often leaks without proper countermeasures. Not suitable if external contamination must be avoided. | #### 12.2.1 Grease Lubrication #### (1) Grease Quantity The quantity of grease to be packed in a housing depends on the housing design and free space, grease characteristics, and ambient temperature. For example, the bearings for the main shafts of machine tools, where the accuracy may be impaired by a small temperature rise, require only a small amount of grease. The quantity of grease for ordinary bearings is determined as follows. Sufficient grease must be packed inside the bearing including the cage guide face. The available space inside the housing to be packed with grease depends on the speed as follows: 1/2 to 2/3 of the space ... When the speed is less than 50% of the limiting speed. 1/3 to 1/2 of the space ... When the speed is more than 50% of the limiting speed. A 104 A 105 ## (2) Replacement of Grease Grease, once packed, usually need not be replenished for a long time; however, for severe operating conditions, grease should be frequently replenished or replaced. In such cases, the bearing housing should be designed to facilitate grease replenishment and replacement. When replenishment intervals are short, provide replenishment and discharge ports at appropriate positions so deteriorated grease is replaced by fresh grease. For example, the housing space on the grease supply side can be divided into several sections with partitions. The grease on the partitioned side gradually passes through the bearings and old grease forced from the bearing is discharged through a grease valve (Fig. 12.1). If a grease valve is not used, the space on Fig. 12.1 Combination of Partitioned Grease Reservoir and Grease Valve Radial Ball Bearings 20 000 10 0 Interval, t 8 000 -6 000-5 000-4 000-3 000 2 000-800 1 000-800-600min-1 Speed n (1) Radial Ball Bearings, Cylindrical Roller Bearings (3) Load factor ≤0.06 0.1 0.13 0.16 1.5 0.65 0.45 Load factor the discharge side is made larger than the partitioned side so it can retain the old grease, which is removed periodically by removing the cover. ## (3) Replenishing Interval Even if high-quality grease is used, there is deterioration of its properties with time; therefore, periodic replenishment is required. Figs 12.2 (1) and (2) show the replenishment time intervals for various bearing types running at different speeds. Figs. 12.2 (1) and (2) apply for the condition of high-quality lithium soap-mineral oil grease, bearing temperature of 70°C, and normal load (P/C=0.1). · Temperature If the bearing temperature exceeds 70°C, the replenishment time interval must be reduced by half for every 15°C temperature rise of the bearings. · Grease In case of ball bearings especially, the replenishing time interval can be extended depending on used grease type. (For example, high-quality lithium soapsynthetic oil grease may extend about two times of replenishing time interval shown in Fig.12.2 (1). If the temperature of the bearings is less than 70°C, the usage of lithium soap-mineral oil grease or lithium soap-synthetic oil grease is appropriate.) It is advisable to consult NSK. Load The replenishing time interval depends on the magnitude of the bearing load. Please refer to Fig.12.2 (3). If P/C exceeds 0.16, it is advisable to consult NSK. (2) Tapered Roller Bearings, Spherical Roller Bearings ## (4) Grease Life of Sealed Ball Bearings When grease is packed into single-row deep groove ball bearings, the grease life may be estimated using Equation (12.1) or (12.2) or Fig. 12.3: (General purpose grease (1)) $$log \ t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right)T$$(12.1) (Wide-range grease (2)) $$log \ t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right)T$$(12.2) where t: Average grease life, (h) n: Speed (min⁻¹) $N_{\rm max}$: Limiting speed with grease lubrication (values for ZZ and VV types listed in the bearing tables) T: Operating temperature °C Equations (12.1) and (12.2) and Fig. 12.3 apply under the following conditions: (a) Speed, n $$0.25 \leq \frac{n}{N_{\text{max}}} \leq 1$$ when $$\frac{n}{N_{\rm max}}$$ < 0.25, assume $\frac{n}{N_{\rm max}}$ = 0.25 Fig. 12.3 Grease Life of Sealed Ball Bearings (b) Operating Temperature, T For general purpose grease (1) 70 °C ≤ T ≤ 110 °C For wide-range grease (2) 70 °C≤*T*≤130 °C When T < 70 °C assume T = 70 °C ## (c) Bearing Loads The bearing loads should be about 1/10 or less of the basic load rating C_r . - Notes (1) Mineral-oil base greases (e.g., lithium soap base grease) which are often used over a temperature range of around – 10 to 110 °C. - (2) Synthetic-oil base greases are usable over a wide temperature range of around - 40 to 130 °C. #### 12.2.2 Oil Lubrication #### (1) Oil Bath Lubrication Oil bath lubrication is a widely used with low or medium speeds. The oil level should be at the center of the lowest rolling element. It is desirable to provide a sight gauge so the proper oil level may be maintained (Fig. 12.4) ## (2) Drip-Feed Lubrication Drip feed lubrication is widely used for small ball bearings operated at relatively high speeds. As shown in Fig. 12.5, oil is stored in a visible oiler. The oil drip rate is controlled with the screw in the top. Fig. 12.4 Oil Bath Lubrication Fig. 12.5 Drip Feed Lubrication Fig. 12.2 Grease Replenishment Intervals ## (3) Splash Lubrication With this lubricating method, oil is splashed onto the bearings by gears or a simple rotating disc installed near bearings without submerging the bearings in oil. It is commonly used in automobile transmissions and final drive gears. Fig. 12.6 shows this lubricating method used on a reduction gear. #### (4) Circulating Lubrication Circulating lubrication is commonly used for high speed operation requiring bearing cooling and for bearings used at high temperatures. As shown in Fig. 12.7 (a), oil is supplied by the pipe on the right side, it travels through the bearing, and drains out through the pipe on the left. After being cooled in a reservoir, it returns to the bearing through a pump and filter. The oil discharge pipe should be larger than the supply pipe so an excessive amount of oil will not back up in the housing. Fig. 12.6 Splash Lubrication ## (5) Jet Lubrication Jet lubrication is often used for ultra high speed bearings, such as the bearings in jet engines with a $d_{\rm m}n$ valve ($d_{\rm m}$: pitch diameter of rolling element set in mm; n: rotational speed in min⁻¹) exceeding one million. Lubricating oil is sprayed under pressure from one or more nozzles directly into the bearing. Fig. 12.8 shows an example of ordinary jet lubrication. The lubricating oil is sprayed on the inner ring and cage guide face. In the case of high speed operation, the air surrounding the bearing rotates with it causing the oil jet to be deflected. The jetting speed of the oil from the nozzle should be more than 20 % of the circumferential speed of the inner ring outer surface (which is also the guide face for the cage). More uniform cooling and a better temperature distribution is achieved using more nozzles for a given amount of oil. It is desirable for the oil to be forcibly discharged so the agitating resistance of the lubricant can be reduced and the oil can effectively carry away the heat. ## (6) Oil Mist Lubrication Oil mist lubrication, also called oil fog lubrication, utilizes an oil mist sprayed into a bearing. This method has the following advantages: (a) Because of the small quantity of oil required, the oil agitation resistance is small, and higher speeds are possible. (b) Contamination of the vicinity around the bearing is slight because the oil leakage is small. (c) It is relatively easy to continuously supply fresh oil; therefore, the bearing life is extended. This lubricating method is used in bearings for the high speed spindles of machine tools, high speed pumps, roll necks of rolling mills, etc (Fig. 12.9). For oil mist lubrication of large bearings, it is advisable to consult NSK. ## (7) Oil/Air Lubricating Method Using the oil/air lubricating method, a very small amount of oil is discharged intermittently by a constant-quantity piston into a pipe carrying a constant flow of compressed air. The oil flows along the wall of the pipe and approaches a constant flow rate. The major advantages of oil/air lubrication are: (a) Since the minimum necessary amount of oil is supplied, this method is suitable for high speeds because less heat is generated. (b) Since the minimum amount of oil is fed continuously, bearing temperature remains stable. Also, because of the small amount of oil, there is almost no atmospheric pollution. (c) Since only fresh oil is fed to the bearings, oil deterioration need not be considered. (d) Since compressed air is always fed to the bearings, the internal pressure is high, so dust, cutting fluid, etc. cannot enter. For these reasons, this method is used in the main spindles of machine tools and other high speed applications (Fig. 12.10). Fig. 12.8 Jet Lubrication Fig. 12.9 Oil Mist Lubrication Fig. 12.7 Circulating Lubrication Fig. 12.10
Oil/Air Lubrication A 108 #### 12.3 Lubricants ## 12.3.1 Lubricating Grease Grease is a semi-solid lubricant consisting of base oil, a thickener and additives. The main types and general properties of grease are shown in Table 12.2. It should be remembered that different brands of the same type of grease may have different properties. #### (1) Base Oil Mineral oils or synthetic oils such as silicone or diester oil are mainly used as the base oil for grease. The lubricating properties of grease depend mainly on the characteristics of its base oil. Therefore, the viscosity of the base oil is just as important when selecting grease as when selecting an oil. Usually, grease made with low viscosity base oils is more suitable for high speeds and low temperatures, while greases made with high viscosity base oils are more suited for high temperatures and heavy loads. However, the thickener also influences the lubricating properties of grease; therefore, the selection criteria for grease is not the same as for lubricating oil. Moreover, please be aware that ester-based grease will cause acrylic rubber material to swell, and that silicone-based grease will cause silicone-based material to swell. ## (2) Thickener As thickeners for lubricating grease, there are several types of metallic soaps, inorganic thickeners such as silica gel and bentonite, and heat resisting organic thickeners such as polyurea and fluoric compounds. The type of thickener is closely related to the grease dropping point (1); generally, grease with a high dropping point also has a high temperature capability during operation. However, this type of grease does not have a high working temperature unless the base oil is heat-resistant. The highest possible working temperature for grease should be determined considering the heat resistance of the base oil. The water resistance of grease depends upon the type of thickener. Sodium soap grease or compound grease containing sodium soap emulsifies when exposed to water or high humidity, and therefore, cannot be used where moisture is prevalent. Moreover, please be aware that urea-based grease will cause fluorine-based material to deteriorate. Note (1) The grease dropping point is that temperature at which a grease heated in a specified small container becomes sufficiently fluid to drip. **Table 12.2** | | | | 10010 12.2 | |-----------------------------|---|--|---| | Name
(Popular
name) | | Lithium Grease | | | Thickener | | | | | Base
Oil
Properties | Mineral Oil | Diester Oil,
Polyatomic
Ester Oil | Silicone Oil | | Dropping
Point,°C | 170 to 195 | 170 to 195 | 200 to 210 | | Working
Temperatures, °C | -20 to +110 | -50 to +130 | -50 to +160 | | Working
Speed, %(1) | 70 | 100 | 60 | | Mechanical
Stability | Good | Good | Good | | Pressure
Resistance | Fair | Fair | Poor | | Water Resistance | Good | Good | Good | | Rust Prevention | Good | Good | Poor | | Remarks | General
purpose
grease used
for numerous
applications | Good low
temperature
and torque
characteristics.
Often used for
small motors
and instrument
bearings. Pay
attention to
rust caused
by insulation
varnish. | Mainly for high
temperature
applications.
Unsuitable
for bearings
for high and
low speeds or
heavy loads or
those having
numerous
sliding-contact
areas (roller
bearings, etc.) | **Note** (1) The values listed are percentages of the limiting speeds given in the bearing tables. #### (3) Additives Grease often contains various additives such as antioxidants, corrosion inhibitors, and extreme pressure additives to give it special properties. It is recommended that extreme pressure additives be used in heavy load applications. For long use without replenishment, an antioxidant should be added. ## (4) Consistency Consistency indicates the "softness" of grease. Table 12.3 shows the relation between consistency and working conditions. #### **Grease Properties** | Sodium Grease
(Fiber Grease) | Calcium Grease
(Cup Grease) | Mixed Base
Grease | Complex Base
Grease
(Complex Grease) | | oap Base Grease
-Soap Grease) | |--|---|---|--|---|----------------------------------| | Na Soap | Ca Soap | Na + Ca Soap,
Li + Ca Soap,
etc. | Ca Complex Soap,
Al Complex Soap,
Li Complex Soap,
etc. | Urea, Bentonite, Carbon Black, Fluor
Compounds, Heat Resistant Organic
Compound, etc. | | | Mineral Oil | Mineral Oil | Mineral Oil | Mineral Oil | Synthetic Oil (Ester
Polyatomic Ester Oi
Synthetic Hydrocart
Oil, Silicone Oil, Flu
Based Oil) | | | 170 to 210 | 70 to 90 | 160 to 190 | 180 to 300 | > 230 | > 230 | | -20 to +130 | -20 to +60 | -20 to +80 | -20 to +130 | -10 to +130 | < +220 | | 70 | 40 | 70 | 70 | 70 | 40 to 100 | | Good | Poor | Good | I Good Goo | | Good | | Fair | Poor | Fair to Good | Fair to Good | Fair Fair | | | Poor | Good | Poor for Na
Soap Grease | Good | Good | Good | | Poor to Good | Good | Fair to Good | Fair to Good | Fair to Good | Fair to Good | | Long and short
fiber types are
available. Long
fiber grease is
unsuitable for
high speeds.
Attention to
water and high
temperature is
required. | Extreme pressure grease containing high viscosity mineral oil and extreme pressure additive (Pb soap, etc.) has high pressure resistance. | Often used for
roller bearings
and large ball
bearing. | Suitable
for extreme
pressures
mechanically
stable | Mineral oil base grease is middle and high temperature purpose lubricant. Synthetic oil base grease is recommended for low or high temperature. Some silicone and fluoric oil based grease have poor rust prevention and noise. | | **Remarks** The grease properties shown here can vary between brands. #### Table 12.3 Consistency and Working Conditions | Consistency
Number | 0 | 1 | 2 | 3 | 4 | |--|---|--|--|--|--| | Consistency(1)
1/10 mm | 355 to 385 | 310 to 340 | 265 to 295 | 220 to 250 | 175 to 205 | | Working
Conditions
(Application) | For centralized oiling When fretting is likely to occur | For centralized oiling When fretting is likely to occur For low temperatures | ·For general use ·For sealed ball bearings | For general use For sealed ball bearings For high temperatures | ·For high
temperatures
·For grease seals | Note (1) Consistency: The depth to which a cone descends into grease when a specified weight is applied, indicated in units of 1/10mm. The larger the value, the softer the grease. A 110 A 111 ## (5) Mixing Different Types of Grease In general, different brands of grease must not be mixed. Mixing grease with different types of thickneners may destroy its composition and physical properties. Even if the thickeners are of the same type, possible differences in the additive may cause detrimental effects. ## 12.3.2 Lubricating Oil The lubricating oils used for rolling bearings are usually highly refined mineral oil or synthetic oil that have a high oil film strength and superior oxidation and corrosion resistance. When selecting a lubricating oil, the viscosity at the operating conditions is important. If the viscosity is too low, a proper oil film is not formed and abnormal wear and seizure may occur. On the other hand, if the viscosity is too high, excessive viscous resistance may cause heating or large power loss. In general, low viscosity oils should be used at high speed; however, the viscosity should increase with increasing bearing load and size. Table 12.4 gives generally recommended viscosities for bearings under normal operating conditions. For use when selecting the proper lubricating oil, Fig. 12.11 shows the relationship between oil temperature and viscosity, and examples of selection are shown in Table 12.5. Table 12. 4 Bearing Types and Proper Viscosity of Lubricating Oils | Bearing Type | Proper Viscosity
at Operating
Temperature | |--|---| | Ball Bearings and
Cylindrical Roller Bearings | Higher than $13 \text{mm}^2/\text{s}$ | | Tapered Roller Bearings and
Spherical Roller Bearings | Higher than 20mm²/s | | Spherical Thrust Roller Bearings | Higher than $32 mm^2/s$ | Remarks 1mm²/s=1cSt (centistokes) Fig. 12.11 Temperature-Viscosity Chart #### Oil Replacement Intervals Oil replacement intervals depend on the operating conditions and oil quantity. In those cases where the operating temperature is less than 50°C, and the
environmental conditions are good with little dust, the oil should be replaced approximately once a year. However, in cases where the oil temperature is about 100°C, the oil must be changed at least once every three months. If moisture may enter or if foreign matter may be mixed in the oil, then the oil replacement interval must be shortened. Mixing different brands of oil must be prevented for the same reason given previously for grease. Table 12. 5 Examples of Selection Lubricating Oils | Operating
Temperature | | | Heavy or Shock Load | |--------------------------|---------------------------------|---|--| | -30 to 0 °C | Less than limiting speed | ISO VG 15, 22, 32 (refrigerating machine oil) | - | | | Less than 50% of limiting speed | ISO VG 32, 46, 68 (bearing oil, turbine oil) | ISO VG 46, 68, 100 (bearing oil, turbine oil) | | 0 to 50 °C | 50 to 100% of limiting speed | ISO VG 15, 22, 32 (bearing oil, turbine oil) | ISO VG 22, 32, 46 (bearing oil, turbine oil) | | | More than limiting speed | ISO VG 10, 15, 22 (bearing oil) | _ | | | Less than 50% of limiting speed | ISO VG 100, 150, 220 (bearings oil) | ISO VG 150, 220, 320 (bearing oil) | | 50 to 80 °C | 50 to 100% of limiting speed | ISO VG 46, 68, 100 (bearing oil, turbine oil) | ISO VG 68, 100, 150 (bearing oil, turbine oil) | | | More than limiting speed | ISO VG 32, 46, 68 (bearing oil, turbine oil) | - | | | Less than 50% of limiting speed | ISO VG 320, 460 (bearing oil) | ISO VG 460, 680 (bearing oil, gear oil) | | 80 to 110 °C | 50 to 100% of limiting speed | ISO VG 150, 220 (bearing oil) | ISO VG 220, 320 (bearing oil) | | | More than limiting speed | ISO VG 68, 100 (bearing oil, turbine oil) | _ | - **Remarks** 1. For the limiting speed, use the values listed in the bearing tables. - Refer to Refrigerating Machine Oils (JIS K 2211), Bearing Oils (JIS K 2239), Turbine Oils (JIS K 2213), Gear Oils (JIS K 2219). - If the operating temperature is near the high end of the temperature range listed in the left column, select a high viscosity oil. - 4. If the operating temperature is lower than -30 $^{\circ}$ C or higher than 110 $^{\circ}$ C , it is advisable to consult NSK A 112 A 113 ## 13. BEARING MATERIALS The bearing rings and rolling elements of rolling bearings are subjected to repetitive high pressure with a small amount of sliding. The cages are subjected to tension and compression and sliding contact with the rolling elements and either or both of the bearing rings. Therefore, the materials used for the rings, rolling elements, and cages require the following characteristics: Other necessary characteristics, such as easy production, shock and heat resistance, and corrosion resistance, are required depending on individual applications. ## 13.1 Materials for Bearing Rings and Rolling Elements Primarily, high carbon chromium bearing steel (Table 13.1) is used for the bearing rings and rolling elements. Most NSK bearings are made of SUJ2 among the JIS steel types listed in Table 13.1, while the larger bearings generally use SUJ3. The chemical composition of SUJ2 is approximately the same as AISI 52100 specified in the USA, DIN 100 Cr6 in Germany, and BS 535A99 in England. For bearings that are subjected to very severe shock loads, carburized low-carbon alloy steels such as chrome steel, chrome molybdenum steel, nickel chrome molybdenum steel, etc. are often used. Such steels, when they are carburized to the proper depth and have sufficient surface hardness, are more shock resistant than normal, through-hardened bearing steels because of the softer energy-absorbing core. The chemical composition of common carburized bearing steels is listed in Table 13.2. Table 13. 1 Chemical Composition of High-Carbon Chromium Bearing Steel (Major Elements) | Standard | Cumbala | Chemical Composition (%) | | | | | | | |------------|---------|--------------------------|--------------|-------------------|--------------------|--------------------|--------------|-------------------| | Statiuaru | Symbols | С | Si | Mn | P | S | Cr | Mo | | JIS G 4805 | SUJ 2 | 0.95 to 1.10 | 0.15 to 0.35 | Less than
0.50 | Less than
0.025 | Less than
0.025 | 1.30 to 1.60 | - | | | SUJ 3 | 0.95 to 1.10 | 0.40 to 0.70 | 0.90 to 1.15 | Less than
0.025 | Less than
0.025 | 0.90 to 1.20 | _ | | | SUJ 4 | 0.95 to 1.10 | 0.15 to 0.35 | Less than
0.50 | Less than
0.025 | Less than
0.025 | 1.30 to 1.60 | 0.10 to 0.25 | | ASTM A 295 | 52100 | 0.93 to 1.05 | 0.15 to 0.35 | 0.25 to 0.45 | Less than
0.025 | Less than
0.015 | 1.35 to 1.60 | Less than
0.10 | Table 13. 2 Chemical Composition of Carburizing Bearing Steels (Major Elements) | Standard | Cumbala | | | | Chemical Cor | nposition (%) | | | | |------------|------------|--------------|--------------|--------------|--------------------|--------------------|-------------------|--------------|--------------| | Stanuaru | Symbols | С | Si | Mn | P | S | Ni | Cr | Mo | | JIS G 4052 | SCr 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | Less than
0.030 | Less than
0.030 | Less than
0.25 | 0.85 to 1.25 | - | | | SCM 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | Less than
0.030 | Less than
0.030 | Less than
0.25 | 0.85 to 1.25 | 0.15 to 0.35 | | | SNCM 220 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | Less than
0.030 | Less than
0.030 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.30 | | | SNCM 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.030 | Less than
0.030 | 1.55 to 2.00 | 0.35 to 0.65 | 0.15 to 0.30 | | JIS G 4053 | SNCM 815 | 0.12 to 0.18 | 0.15 to 0.35 | 0.30 to 0.60 | Less than
0.030 | Less than
0.030 | 4.00 to 4.50 | 0.70 to 1.00 | 0.15 to 0.30 | | ASTM A 534 | 8620 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | Less than
0.025 | Less than
0.015 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.25 | | | 4320 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.025 | Less than
0.015 | 1.55 to 2.00 | 0.35 to 0.65 | 0.20 to 0.30 | | | 9310 H | 0.07 to 0.13 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.025 | Less than
0.015 | 2.95 to 3.55 | 1.00 to 1.40 | 0.08 to 0.15 | Table 13. 3 Chemical Composition of High Speed Steel for Bearings Used at High Temperatures | Ctandard | Cumbala | | | | | Ch | emical Com | position (%) |) | | | | | |-------------|------------------|--------------|-------------------|-------------------|--------------------|--------------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------| | Statitual u | Standard Symbols | С | Si | Mn | P | S | Cr | Mo | V | Ni | Cu | Co | W | | AISI | M50 | 0.77 to 0.85 | Less than
0.25 | Less than
0.35 | Less than
0.015 | Less than
0.015 | 3.75 to 4.25 | 4.00 to 4.50 | 0.90 to 1.10 | Less than
0.10 | Less than
0.10 | Less than
0.25 | Less than
0.25 | NSK uses highly pure vacuum-degassed bearing steel containing a minimum of oxygen, nitrogen, and hydrogen compound impurities. The rolling fatigue life of bearings has been remarkably improved using this material combined with the appropriate heat treatment. For special purpose bearings, high temperature bearing steel, which has superior heat resistance, and stainless steel having good corrosion resistance may be used. The chemical composition of these special materials are given in Tables 13.3 and 13.4. ## 13.2 Cage Materials The low carbon steels shown in Table 13.5 are the main ones for the pressed cages for bearings. Depending on the purpose, brass or stainless steel may be used. For machined cages, high strength brass (Table 13.6) or carbon steel (Table 13.5) is used. Sometimes synthetic resin is also used. Table 13. 4 Chemical Composition of Stainless Steel for Rolling Bearing (Major Elements) | Ctandard | Cumbolo | Chemical Composition (%) | | | | | | | | |------------------|-----------|--------------------------|-------------------|-------------------|--------------------|--------------------|----------------|-------------------|--| | Standard Symbols | С | Si | Mn | P | S | Cr | Mo | | | | JIS G 4303 | SUS 440 C | 0.95 to 1.20 | Less than
1.00 | Less than
1.00 | Less than
0.040 | Less than
0.030 | 16.00 to 18.00 | Less than
0.75 | | | SAE J 405 | 51440 C | 0.95 to 1.20 | Less than
1.00 | Less than
1.00 | Less than
0.040 | Less than
0.030 | 16.00 to 18.00 | Less than
0.75 | | Table 13. 5 Chemical Composition of Steel sheet and Carbon Steel for Cages (Major Elements) | Classification | Standard | Cumbala | Chemical Composition (%) | | | | | | | |---------------------------------|------------|---------|--------------------------|-------------------|-------------------|-------------------|--------------------|--|--| | Ciassilication | Stanuaru | Symbols | С | Si | Mn | P | S | | | | Steel sheet and | JIS G 3141 | SPCC | Less than
0.12 | _ | Less than
0.50 | Less than
0.04 | Less than
0.045 | | | | strip for pressed | BAS 361 | SPB 2 | 0.13 to 0.20 | Less than
0.30 | 0.25 to 0.60 | Less than
0.03 | Less than
0.030 | | | | cages | JIS G 3311 | S 50 CM | 0.47 to 0.53 | 0.15 to 0.35 | 0.60 to 0.90 | Less than
0.03 | Less than
0.035 | | | | Carbon steel for machined cages | JIS G 4051 | S 25 C | 0.22 to 0.28 | 0.15 to 0.35 | 0.30 to 0.60 | Less than 0.03 | Less than 0.035 | | | **Remarks** BAS is Japanese Bearing Association Standard. Table 13. 6 Chemical Composition of High Strength Brass for Machined Cages | | | Chemical Composition (%) | | | | | | | | | | |------------------|--------------------|--------------------------|--------------|------------|------------|------------|------------------|------------------|------------------|------------------|--| | Standard Symbols | | Cu | Zn | Mn | Fe | Al | Sn | Ni | Impurities | | | | | | Cu | ZII | 10111 | ге | Al | SII | 111
 Pb | Si | | | JIS H 5120 | CAC301
(HBsC 1) | 55.0 to 60.0 | 33.0 to 42.0 | 0.1 to 1.5 | 0.5 to 1.5 | 0.5 to 1.5 | Less than
1.0 | Less than
1.0 | Less than
0.4 | Less than
0.1 | | | JIS H 3250 | C 6782 | 56.0 to 60.5 | Residual | 0.5 to 2.5 | 0.1 to 1.0 | 0.2 to 2.0 | _ | _ | Less than
0.5 | _ | | Remarks Improved HBsC 1 is also used. A 114 A 115 ## 14. BEARING HANDLING # 14.1 Precautions for Proper Handling of Bearings Since rolling bearings are high precision machine parts, they must be handled accordingly. Even if high quality bearings are used, their expected performance cannot be achieved if they are not handled properly. The main precautions to be observed are as follows: ## (1) Keep Bearings and Surrounding Area Clean Dust and dirt, even if invisible to the naked eye, have harmful effects on bearings. It is necessary to prevent the entry of dust and dirt by keeping the bearings and their environment as clean as possible. ## (2) Careful Handling Heavy shocks during handling may cause bearings to be scratched or otherwise damaged possibly resulting in their failure. Excessively strong impacts may cause brinelling, breaking, or cracking. ## (3) Use Proper Tools Always use the proper equipment when handling bearings and avoid general purpose tools. ## (4) Prevent Corrosion Since perspiration on the hands and various other contaminants may cause corrosion, keep the hands clean when handling bearings. Wear gloves if possible. Pay attention to rust of bearing caused by corrosive gasses. ## 14.2 Mounting The method of mounting rolling bearings strongly affects their accuracy, life, and performance, so their mounting deserves careful attention. Their characteristics should first be thoroughly studied, and then they should be mounted in the proper manner. It is recommended that the handling procedures for bearings be fully investigated by the design engineers and that standards be established with respect to the following items: - (1) Cleaning the bearings and related parts. - (2) Checking the dimensions and finish of related parts. - (3) Mounting - (4) Inspection after mounting. - (5) Supply of lubricants. Bearings should not be unpacked until immediately before mounting. When using ordinary grease lubrication, the grease should be packed in the bearings without first cleaning them. Even in the case of ordinary oil lubrication, cleaning the bearings is not required. However, bearings for instruments or for high speed operation must first be cleaned with clean filtered oil in order to remove the anti-corrosion agent. After the bearings are cleaned with filtered oil, they should be protected to prevent corrosion. Prelubricated bearings must be used without cleaning. Bearing mounting methods depend on the bearing type and type of fit. As bearings are usually used on rotating shafts, the inner rings require a tight fit. Bearings with cylindrical bores are usually mounted by pressing them on the shafts (press fit) or heating them to expand their diameter (shrink fit). Bearings with tapered bores can be mounted directly on tapered shafts or cylindrical shafts using tapered sleeves. Bearings are usually mounted in housings with a loose fit. However, in cases where the outer ring has an interference fit, a press may be used. Bearings can be interference-fitted by cooling them before mounting using dry ice. In this case, a rust preventive treatment must be applied to the bearing because moisture in the air condenses on its surface. ## 14.2.1 Mounting of Bearings with Cylindrical Bores ## (1) Press Fits Fitting with a press is widely used for small bearings. A mounting tool is placed on the inner ring as shown in Fig. 14.1 and the bearing is slowly pressed on the shaft with a press until the side of the inner ring rests against the shoulder of the shaft. The mounting tool must not be placed on the outer ring for press mounting, since the bearing may be damaged. Before mounting, applying oil to the fitted shaft surface is recommended for smooth insertion. The mounting method using a hammer should only be used for small ball bearings with minimally tight fits and when a press is not available. In the case of tight interference fits or for medium and large bearings, this method should not be used. Any time a hammer is used, a mounting tool must be placed on the inner ring. When both the inner and outer rings of non-separable bearings, such as deep groove ball bearings, require tight-fit, a mounting tool is placed on both rings as shown in Fig. 14.2, and both rings are fitted at the same time using a screw or hydraulic press. Since the outer ring of self-aligning ball bearings may deflect a mounting tool such as that shown in Fig. 14.2 should always be used for mounting them. In the case of separable bearings, such as cylindrical roller bearings and tapered roller bearings, the inner and outer rings may be mounted separately. Assembly of the inner and outer rings, which were previously mounted separately, should be done carefully to align the inner and outer rings correctly. Careless or forced assembly may cause scratches on the rolling contact surfaces. Fig. 14.1 Press Fitting Inner Ring Fig. 14.2 Simultaneous Press Fitting of Inner and Outer Rings (2) Shrink Fits Since press fitting large bearings requires a large force, a shrink fit is widely used. The bearings are first heated in oil to expand them before mounting. This method prevents an excessive force from being imposed on the bearings and allows mounting them in a short time. The expansion of the inner ring for various temperature differences and bearing sizes is shown in Fig. 14.3. The precautions to follow when making shrink fits are as follows: - (a) Do not heat bearings to more than 120°C. - (b) Put the bearings on a wire net or suspend them in an oil tank in order to prevent them from touching the tank's bottom directly. - (c) Heat the bearings to a temperature 20 to 30°C higher than the lowest temperature required for mounting without interference since the inner ring will cool a little during mounting. - (d) After mounting, the bearings will shrink in the axial direction as well as the radial direction while cooling. Therefore, press the bearing firmly against the shaft shoulder using locating methods to avoid a clearance between the bearing and shoulder. ## **NSK Bearing Induction Heaters** Besides heating in oil, NSK Bearing Heaters, which use electromagnetic induction to heat bearings, are widely used. (Refer to Page C7.) In NSK Bearing Heaters, electricity (AC) in a coil produces a magnetic field that induces a current inside the bearing that generates heat. Consequently, without using flames or oil uniform heating in a short time is possible, making bearing shrink fitting efficient and In the case of relatively frequent mounting and dismounting such as cylindrical roller bearings for roll necks of rolling mills and for railway journal boxes, induction heating should be used for mounting and dismounting inner rings. A 116 A 117 #### 14.2.2 Mounting of Bearings with Tapered Bores Bearings with tapered bores are mounted on tapered shafts directly or on cylindrical shafts with adapters or withdrawal sleeves (Figs. 14.4 and 14.5). Large spherical roller bearings are often mounted using hydraulic pressure. Fig. 14.6 shows a bearing mounting utilizing a sleeve and hydraulic nut. Fig. 14.7 shows another mounting method. Holes are drilled in the sleeve which are used to feed oil under pressure to the bearing seat. As the bearing expands radially, the sleeve is inserted axially with adjusting bolts. Spherical roller bearings should be mounted while checking their radial-clearance reduction and referring to the push-in amounts listed in Table 14.1. The radial clearance must be measured using clearance gauges. In this measurement, as shown in Fig. 14.8, the clearance for both rows of rollers must be measured simultaneously, and these two values should be kept roughly the same by adjusting the relative position of the outer and inner rings. When a large bearing is mounted on a shaft, the outer ring may be deformed into an oval shape by its own weight. If the clearance is measured at the lowest part of the deformed bearing, the measured value may be bigger than the true value. If an incorrect radial internal clearance is obtained in this manner and the values in Table 14.1 are used, then the interference fit may become too tight and the true residual clearance may become too small. In this case, as shown in Fig. 14.9. one half of the total clearance at points a and b (which are on a horizontal line passing through the bearing center) and c (which is at the lowest position of the bearing) may be used as the residual clearance. When a self-aligning ball bearing is mounted on a shaft with an adapter, be sure that the residual clearance does not become too small. Sufficient clearance for easy alignment of the outer ring must be allowed. ## 14.3 Operation Inspection After the mounting has been completed, a running test should be conducted to determine if the bearing has been mounted correctly. Small machines may be manually operated to assure that they rotate smoothly. Items to be checked include sticking due to foreign matter or visible flaws, uneven torque caused by improper mounting or an improper mounting surface, and excessive torque caused by an inadequate clearance, mounting error, or seal friction. If there are no abnormalities, powered operation may be started. Fig. 14.4 Mounting with Adapter Fig. 14.5 Mounting with Withdrawal Sleeve Fig. 14.6 Mounting with Hydraulic Nut Fig. 14.7 Mounting with Special Sleeve and Hydraulic Pressure Fig. 14.8 Clearance Measurement of Spherical Roller Bearing Fig. 14.9 Measuring Clearance in Large Spherical Roller Bearing ## Table 14.1 Mounting of Spherical Roller Bearings with Tapered Bores Units: mm | Bearinç
Diam | ieter | | n in Radial
rance | Push | -in amour | nt in axial di | rection | | Minimum
Permissible
Residual Clearance | | |-----------------|---------|------------|----------------------|-------------|-------------|----------------|-------------|------------|---|--| | à | ! | | | Taper | 1:12 | Taper 1 : 30 | | | | | | over | incl. | min. | max. | min. | max. | min. | max. | CN | C3 | | | 30 | 40 | 0.025 | 0.030 | 0.40 | 0.45 | - | _ | 0.010 | 0.025 | | | 40 | 50 | 0.030 | 0.035 | 0.45 | 0.55 | - | _ | 0.015 | 0.030 | | | 50 | 65 | 0.030 | 0.035 | 0.45 | 0.55 | - | _ | 0.025 | 0.035 | | | 65 | 80 | 0.040 | 0.045 | 0.60 | 0.70 | - | _ | 0.030 | 0.040 | | | 80 | 100 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | | | 100 | 120 | 0.050 | 0.060 | 0.75 | 0.90 | 1.9 | 2.25 | 0.045 | 0.065 | | | 120 | 140 | 0.060 | 0.070 | 0.90 | 1.1 | 2.25 | 2.75 | 0.055 | 0.080 | | | 140 | 160 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | | | 160 | 180 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | | | 180 | 200 | 0.080 | 0.100 | 1.3 | 1.6 | 3.25 | 4.0 | 0.070 | 0.110 | | | 200 | 225 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | | | 225 | 250 | 0.100 | 0.120 | 1.6 | 1.9 | 4.0 | 4.75 | 0.090 | 0.140 | | | 250 | 280 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | | | 280 | 315 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | | | 315 | 355 | 0.140 | 0.170 | 2.2 | 2.7 | 5.5 | 6.75 | 0.120 | 0.180 | | | 355 | 400 | 0.150 | 0.190 | 2.4 | 3.0 | 6.0 | 7.5 | 0.130 | 0.200 | | | 400 | 450 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | | | 450 | 500 | 0.190 | 0.240 | 3.0 | 3.7 | 7.5 | 9.25 | 0.160 | 0.240 | | | 500 | 560 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | | | 560 | 630 | 0.230 | 0.300 | 3.7 | 4.8 | 9.25 | 12.0 | 0.200 | 0.310 | | | 630 | 710 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0.220 | 0.330 | | | 710 | 800 | 0.280 | 0.370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | | | 800 | 900 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.280 | 0.430 | | | 900 | 1 000 | 0.340 | 0.460 | 5.5 | 7.4 | 14.0 | 18.5 | 0.310 | 0.470 | | | 1 000 | 1 120 | 0.370 | 0.500 | 5.9 | 8.0 | 15.0 | 20.0 | 0.360 | 0.530 | | | Rema | rks The | values for | reduction i | n radial ir | nternal cle | arance are | for hearing | ns with CN | | | Remarks The values for reduction in radial internal clearance are for bearings with CN clearance. For bearing with C3 Clearance, the maximum values listed should be used for the reduction in radial internal clearance. Large machines, which cannot be turned by hand, can be started after examination with no load, and the power immediately cutoff and the machine allowed to coast to a stop. Confirm that there is no abnormality such as vibration, noise, contact of rotating parts, etc. Powered operation should be started slowly without load and the operation should be observed carefully until it is determined that no abnormalities exist, then gradually increase the speed, load, etc. to their normal levels. Items to be checked during the test operation include the existence of abnormal noise, excessive rise of bearing temperature, leakage and contamination of lubricants, etc. If any abnormality is found during the test operation, it must be stopped immediately and the machine should be inspected. If necessary, the bearing should be dismounted for examination. Although the bearing temperature can generally be estimated by the temperature of the outside surface of the housing, it is more desirable to directly measure the temperature of the outer ring using oil holes for access. The bearing temperature should rise gradually to the steady state level within one to two hours after the operation starts. If the bearing or its mounting is improper, the bearing temperature may increase rapidly and become abnormally high. The cause of this abnormal temperature may be an excessive amount of lubricant, insufficient bearing clearance, incorrect mounting, or excessive friction of the seals. In the case of high speed operation, an incorrect selection of bearing type or lubricating method may also cause an abnormal temperature rise. The sound of a bearing may be checked with a noise locater or other instruments. Abnormal conditions are indicated by a loud metallic sound, or other irregular noise, and the possible cause may include incorrect lubrication, poor alignment of the shaft and housing, or the entry of foreign matter into the bearing. The possible causes and measures for irregularities are listed in Table 14.2. Table 14. 2 Causes of and Measures for Operating Irregularities | Irr | regularities | Possible Causes | Measures | | | | |---|------------------------------------|--|--|---|--|--| | | | Abnormal Load | Improve the fit, internal clearance, preload, position of housing shoulder, etc. | | | | | | Loud Metallic
Sound (1) | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method. | | | | | | | Insufficient or improper Lubricant | Replenish the lubricant or select another lubricant. | | | | | | | Contact of rotating parts | Modify the labyrinth seal, etc. | | | | | Noise | Laud Dagular | Flaws,corrosion,or scratches on raceways | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | Loud Regular
Sound | Brinelling | Replace the bearing and use care when handling bearings. | | | | | | | Flaking on raceway | Replace the bearing. | | | | | | | Excessive clearance | Improve the fit, clearance and preload. | | | | | | Irregular
Sound | | | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | Flaws or flaking on balls | Replace the bearing. | | | | | | | Excessive amount of lubricant | Reduce amount of lubricant, select stiffer grease. | | | | | | Insufficient or improper lubricant | | Replenish lubricant or select a better one. | | | | | Abnorn | Abnormal load
rmal Temperature | | Improve the fit, internal clearance, preload, position of housing shoulder. | | | | | | nise | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting, or mounting method. | | | | | | | Creep on fitted surface, excessive seal friction | Correct the seals, replace the bearing, correct the fitting or mounting. | | | | | | | Brinelling | Replace the bearing and use care when handling bearings. | | | | | , | Vibration | Flaking | Replace the bearing. | | | | | | xial runout) | Incorrect mounting | Correct the squareness between the shaft and housing shoulder or side of spacer. | | | | | | | Penetration of foreign particles | Replace or clean the bearing, improve the seals. | | | | | Leakage or Discoloration of Lubricant Lubricant Too much lubricant, Penetration by foreign matter or abrasion chips | | | Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts. | | | | Note (1) Intermittent squeal or high-pitch noise may be heard in medium- to large-sized cylindrical roller bearings or ball bearings that are operating under grease lubrication in low-temperature environments. Under such low-temperature conditions, bearing temperature will not rise resulting in fatigue nor is grease performance affected. Although intermittent squeal or high-pitch noise may occur under these conditions, the bearing is fully functional and can continue to be used. In the event that greater noise reduction or quieter running properties are needed, please contact your nearest NSK branch office. ## 14.4 Dismounting A bearing may be removed for periodic inspection or for other reasons. If the removed bearing is to be used again or it is removed only for inspection, it should be dismounted as carefully as when it was mounted. If the bearing has a tight fit, its removal may be difficult. The means for removal should be considered in the original design of the adjacent parts of the machine. When dismounting, the procedure and sequence of removal should first be studied using the machine drawing and considering the type of mounting fit in order to perform the operation properly. ## 14.4.1 Dismounting of Outer Rings In order to remove an outer ring that is tightly fitted, first place bolts in the push-out holes in the housing at several locations on its circumference as shown in Fig. 14.10, and remove the outer ring by uniformly tightening the bolts. These bolt holes should always be fitted with blank plugs when not being used for dismounting. In the case of separable bearings, such as tapered roller bearings, some notches should be made at several positions in the housing shoulder, as shown in Fig. 14.11, so the outer ring may be pressed out using a dismounting tool or by tapping it. ## 14.4.2 Dismounting of Bearings with Cylindrical Bores If the mounting design allows space to press out the inner ring, this is an easy and fast method. In this case, the withdrawal force should be imposed only on the inner ring (Fig. 14.12). Withdrawal tools like those shown in Figs. 14.13 and 14.14 are often used. Fig. 14.10 Removal of Outer Ring with Dismounting Bolts Fig. 14.11 Removal Notches Fig. 14.12 Removal of Inner Ring Using a Press Fig. 14.13 Removal of Inner Ring Using Withdrawal Tool (1) Fig. 14.14 Removal of Inner Ring Using Withdrawal Tool (2) In both cases, the claws of the tools must substantially engage the face of the inner ring; therefore, it is advisable to consider the size of the shaft shoulder or to cut grooves in the shoulder to accommodate the withdrawal tools (Fig. 14.14). The oil injection method is usually used for the
withdrawal of large bearings. The withdrawal is achieved easily by mean of oil pressure applied through holes in the shaft. In the case of extra wide bearings, the oil injection method is used together with a withdrawal tool. Induction heating is used to remove the inner rings of NU and NJ types of cylindrical roller bearings. The inner rings are expanded by brief local heating, and then withdrawn (Fig. 14.15). Induction heating is also used to mount several bearings of these types on a shaft. ## 14.4.3 Dismounting of Bearings with Tapered Bores When dismounting relatively small bearings with adapters, the inner ring is held by a stop fastened to the shaft and the nut is loosened several turns. This is followed by hammering on the sleeve using a suitable tool as shown in Fig. 14.18. Fig. 14.16 shows one procedure for dismounting a withdrawal sleeve by tightening the removal nut. If this procedure is difficult, it may be possible to drill and tap bolt holes in the nut and withdraw the sleeve by tightening the bolts as shown in Fig. 14.17. Large bearings may be withdrawn easily using oil pressure. Fig. 14.19 illustrates the removal of a bearing by forcing oil under pressure through a hole and groove in a tapered shaft to expand the inner ring. The bearing may suddenly move axially when the interference is relieved during this procedure so a stop nut is recommended for protection. Fig. 14.20 shows a withdrawal using a hydraulic nut. Fig. 14.15 Removal of Inner Ring Using Induction Heater Fig. 14.16 Removal of Withdrawal Sleeve Using Withdrawal Nut (1) Fig. 14.17 Removal of Withdrawal Sleeve Using Withdrawal Nut (2) Fig. 14.18 Removal of Adapter with Stop and Axial Pressure Fig. 14.19 Removal Using Oil Injection Hydraulic Pump ## 14.5 Inspection of Bearings ## 14.5.1 Bearing Cleaning When bearings are inspected, the appearance of the bearings should first be recorded and the amount and condition of the residual lubricant should be checked. After the lubricant has been sampled for examination, the bearings should be cleaned. In general, light oil or kerosene may be used as a cleaning solution. Dismounted bearings should first be given a preliminary cleaning followed by a finishing rinse. Each bath should be provided with a metal net to support the bearings in the oil without touching the sides or bottom of the tank. If the bearings are rotated with foreign matter in them during preliminary cleaning, the raceways may be damaged. The lubricant and other deposits should be removed in the oil bath during the initial rough cleaning with a brush or other means. After the bearing is relatively clean, it is given the finishing rinse. The finishing rinse should be done carefully with the bearing being rotated while immersed in the rinsing oil. It is necessary to always keep the rinsing oil clean. Fig. 14.20 Removal Using Hydraulic Nut ## 14.5.2 Inspection and Evaluation of Bearings After being thoroughly cleaned, bearings should be examined for the condition of their raceways and external surfaces, the amount of cage wear, the increase in internal clearance, and degradation of tolerances. These should be carefully checked, in addition to examination for possible damage or other abnormalities, in order to determine the possibility for its reuse. In the case of small non-separable ball bearings, hold the bearing horizontally in one hand, and then rotate the outer ring to confirm that it turns smoothly. Separable bearings such as tapered roller bearings may be checked by individually examining their rolling elements and the outer ring raceway. Large bearings cannot be rotated manually; however, the rolling elements, raceway surfaces, cages, and contact surface of the ribs should be carefully examined visually. The more important a bearing is, the more carefully it should be inspected. The determination to reuse a bearing should be made only after considering the degree of bearing wear, the function of the machine, the importance of the bearings in the machine, operating conditions, and the time until the next inspection. However, if any of the following defects exist, reuse is impossible and replacement is necessary. - (a) When there are cracks in the inner or outer rings, rolling elements, or cage. - (b) When there is flaking of the raceway or rolling elements. - (c) When there is significant smearing of the raceway surfaces, ribs, or rolling elements. - (d) When the cage is significantly worn or rivets are loose. - (e) When there is rust or scoring on the raceway surfaces or rolling elements. - (f) When there are any significant impact or brinell traces on the raceway surfaces or rolling elements. - (g) When there is significant evidence of creep on the bore or the periphery of the outer ring. - (h) When discoloration by heat is evident. - (i) When significant damage to the seals or shields of grease sealed bearings has occurred. A 122 A 123 ## 14.6 Maintenance and Inspection ## 14.6.1 Detecting and Correcting Irregularities In order to maintain the original performance of a bearing for as long as possible, proper maintenance and inspection should be performed. If proper procedures are used, many bearing problems can be avoided and the reliability, productivity, and operating costs of the equipment containing the bearings are all improved. It is suggested that periodic maintenance be done following the procedure specified. This periodic maintenance encompasses the supervision of operating conditions, the supply or replacement of lubricants, and regular periodic inspection. Items that should be regularly checked during operation include bearing noise, vibration, temperature, and lubrication. If an irregularity is found during operation, the cause should be determined and the proper corrective actions should be taken after referring to Table 14.2. If necessary, the bearing should be dismounted and examined in detail. As for the procedure for ## NSK BEARING MONITOR (Bearing Abnormality Detector) Inspection of Bearings. It is important during operation to detect signs of irregularities early before damage becomes severe. The NSK Bearing Monitor (see Page C5) is an instrument that checks the condition of bearings and gives a warning of any abnormality, or it stops a machine automatically in order to prevent serious trouble. In addition, it helps to improve maintenance and reduce its cost. dismounting and inspection, refer to Section 14.5, ## 14.6.2 Bearing Failures and Measures will survive to their predicted fatigue life. However, they often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, handling, or lubrication, entry of foreign matter, or abnormal heat generation. For instance, the causes of rib scoring, as one example of premature failure, may include insufficient lubrication, use of improper lubricant, faulty lubrication system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft, or any combination of these. Thus, it is difficult to determine the real cause of some premature failures. If all the conditions at the time of failure and previous to the time of failure are known, including the application. the operating conditions, and environment; then by studying the nature of the failure and its probable causes, the possibility of similar future failures can be reduced. The most frequent types of bearing failure, along with their causes and corrective actions, are listed in Table 14.3. In general, if rolling bearings are used correctly they | Table 14.3 | Causes and Measures for Bearing Failures | |-------------------|--| |-------------------|--| | Type of Failure | Probable Causes | Measures | |---|---|--| | Flaking Flaking of one-side of the raceway of radial bearing. | Abnomal axial load. | A loose fit should be used when mounting the outer ring of free-end bearings to allow axial expansion of the shaft. | | Flaking of the raceway in symmetrical patterm. | Out-of-roundness of the housing bore. | Correct the faulty housing. | | Flaking pattern inclined relative to the raceway in radial ball bearings. Flaking near the edge of the raceway and rolling surfaces in roller bearings. | Improper muonting, deflection of shaft, inadequate tolerances for shaft and housing. | Use care in mounting and centering, select a bearing with a large clearance, and correct the shaft and housing shoulder. | | Flaking of raceway with same spacing as rolling elements. | Large shock load during mounting, rusting while bearing is out of operation for prolonged period. | Use care in mounting and apply a rust preventive when machine operation is suspended for a long time. | | Premature flaking of raceway and rolling elements. | Insufficient clearance, excessive load, improper lubrication, rust, etc. | Select proper fit, bearing clearance, and lubricant. | | Premature flaking of duplex bearings. | Excessive preload. | Adjust the preload. | | Type of Failure | Probable Causes | Measures | |---|---|--| | Scoring Scoring or smearing between raceway and rolling
surfaces. | Inadequate initial lubrication, excessively hard grease and high acceleration when starting. | Use a softer grease and avoid rapid acceleration. | | Spiral scoring or smearing of raceway surface of thrust ball bearing. | Raceway rings are not parallel and excessive speed. | Correct the mounting, apply a preload, or select another bearing type. | | Scoring or smearing between the end face of the rollers and guide rib. | Inadequate lubrication, incorrect mounting and large axial load. | Select proper lubricant and modify the mounting. | | Cracks Crack in outer or inner ring. | Excessive shock load, excessive interference in fitting, poor surface cylindricality, improper sleeve taper, large fillet radius, development of thermal cracks and advancement of flaking. | Examine the loading conditions, modify the fit of bearing and sleeve. The fillet radius must be smaller than the bearing chamfer. | | Crack in rolling element.
Broken rib. | Advancement of flaking, shock applied to the rib during mounting or dropped during handling. | Be carefull in handling and mounting. | | Fractured cage. | Abnormal loading of cage due to incorrect mounting and improper lubrication. | Reduce the mounting error and review the lubricating method and lubricant. | | Indentations Indentations in raceway in same pattern as rolling elements. | Shock load during mounting or excessive load when not rotating. | Use care in handling. | | Indentations in raceway and rolling elements. | Foreign matter such as metallic chips or sand. | Clean the housing, improve the seals, and use a clean lubricant. | | Abnormal Wear False brinelling (phenomenon similar to brinelling) | Vibration of the bearing without rotation during shipment or rocking motion of small amplitude. | Secure the shaft and housing, use oil as a lubricant and reduce vibration by applying a preload. | | Fretting | Slight wear of the fitting surface. | Increase interference and apply oil. | | Wearing of raceway, rolling elements, rib, and cage. | Penentration by foreign matter, incorrect lubrication, and rust. | Improve the seals, clean the housing, and use a clean lubricant. | | Creep | Insufficient interference or insufficient tightening of sleeve. | Modify the fit or tighten the sleeve | | Seizure Discoloration and melting of raceway, rolling elements, and ribs. | Insufficient clearance, incorrect lubrication, or improper mounting. | Review the internal clearance and bearing fit, supply an adequate amount of the proper lubricant and improve the mounting method and related parts. | | Electric Burng Fluting or corrugations. | Melting due to electric arcing. | Install a ground wire to stop the flow of electricity or insulate the beaning. | | Corrosion & Rust Rust and corrosion of fitting surfaces and bearing interior. | Condensation of water from the air, or fretting. Penetration by corrosive substance(especially varnish-gas, etc). | Use care in storing and avoid high temperature and high humidity, treatment for rust prevention is necessary when operation is stopped for long time. Selection of varnish and grease. | | | | | A 124 A 125 ## **15. TECHNICAL DATA** ## Page 15. 1 AXIAL DISPLACEMENT OF BEARINGS A 128 (1) Contact Angle and Axial Displacement of Deep Groove Ball Bearings and Angular Contact Ball Bearings A 128 (2) Interferences or Clearances for Shafts and Inner Rings A 130 (3) Interferences or Clearances for Housing Bores and Outer Rings A 130 15. 3 RADIAL AND AXIAL INTERNAL CLEARANCES A 132 15. 4 PRELOAD AND STARTING TORQUE A 134 15. 5 COEFFICIENTS OF FRICTION AND OTHER BEARING DATA A 136 (3) Radial Internal Clearance and Fatigue Life A 136 15. 6 BRANDS AND PROPERTIES OF LUBRICATING GREASES A 138 #### **DEFINIONS OF SYMBOLS AND THEIR UNITS** | Symbols | Nomenclature | Units | |----------------------------|--|----------------| | $a \\ b$ | Contact Ellipse Major Axis
Contact Ellipse Major Axis | (mm)
(mm) | | $C_{\rm r}$ | Basic Dynamic Load Rating of Radial
Bearings | (N){kgf} | | C_{0r} | Basic Static Load Radial of Radial
Bearings | (N){kgf} | | $C_{\rm a}$ | Basic Dynamic Load Rating of Thrust
Bearings | (N){kgf} | | C_{0a} | Basic Static Load Rating of Thrust
Bearings | (N){kgf} | | d | Shaft Diameter, Nominal Bearing Bore Diameter | (mm) | | D | Housing Bore Diameter, Nominal Bearing
Outside Diameter | (mm) | | $D_{\rm e}$ | Outer Ring Raceway Diameter | (mm) | | D_i | Inner Ring Raceway Diameter | (mm) | | D_0 | Housing Outside Diameter | (mm) | | D_{pw} | Rolling Element Pitch Diameter | (mm) | | D_{W} | Nominal Rolling Element Diameter | (mm) | | e | Contact Position of Tapered Roller End
Face with Rib | (mm) | | E | Modulus of Longitudinal Elasticity
(Bearing Steel)
208 000 MP _a {21 200 kgf/mm²} | | | E(k) | Complete elliptic integral of the 2nd kind for which the population parameter is $k = \sqrt{1 - \left(\frac{b}{a}\right)^2}$ | | | $f_{\scriptscriptstyle 0}$ | factor which depends on the geometry of
the bearing components and on the
applicable stress level | | | $f(\varepsilon)$ | Function of ϵ | | | $F_{\rm a}$ | Axial Load, Preload | $(N)\{kgf\}$ | | $F_{\rm r}$ | Radial Load | $(N)\{kgf\}$ | | h | D_{e}/D | | | h_0 | D/D_0 | | | k | d/D_i | | | K | Constant Determined by Internal Design of Bearing | | | L | Fatigue Life when Effective Clearance is 0 | | | $L_{\rm we}$ | Effective Leng of Roller | (mm) | | L_{ϵ} | Fatigue Life when Effective Clearance is \varDelta | | | $m_{\scriptscriptstyle 0}$ | Distance between Centers of Curvature of Inner and Outer Rings $r_i + r_e - D_w$ | (mm) | | M | Frictional Torque | (N·mm){kgf·mm} | | $M_{ m S}$ | Spin Friction | (N·mm){kgf·mm} | | | | | | Symbols | Nomenclature | Units | |--------------------|---|--| | $n_{\rm a}$ | Rotating Speed of Rolling Elements | (min ⁻¹) | | $n_{\rm c}$ | Revolving Speed of Rolling Elements
(Cape Speed) | (min ⁻¹) | | n_{e} | Speed of Ouder Ring | (min ⁻¹) | | n_i | Speed of Inner Ring | (min ⁻¹) | | $p_{ m m}$ | Surface Pressure on Fitted Surface | (MP _a){kgf/mm ² } | | \overline{P} | Bearing Load | $(N)\{kgf\}$ | | Q | Rolling Element Load | $(N)\{kgf\}$ | | $r_{ m e}$ | Groove Radius of Outer Ring | (mm) | | r_i | Groove Radius of Inner Ring | (mm) | | v_{a} | Circumferential Speed of Rolling Element about Its Center | (m/sec) | | $v_{ m c}$ | Circumferential Speed of Rolling Element about Beaing Center | (m/sec) | | Z | Number of Rolling Elements per Row | | | α | Contact Angle (when axial load is applied on Radial Ball Bearning | (°) | | α_0 | Initial Confact Angle (Geometri) (when
inner and outer rings of Angular Contact
Ball Bearings are pushed axially) | (°) | | α_R | Initial Contact Angle (Geometric) (when inner and outer rings Angular Contact Ball Bearing are pushed radially) | (°) | | β | 1/2 of Conical Angle of Roller | (°) | | $\dot{\delta}_a$ | Relative Axial Displacement of Inner and Outer Rings | (mm) | | Δa | Axial Internal Clearance | (mm) | | Δd | Effective Interference of Inner Ring and | | | Δr | Shaft
Radial Internal Clearance | (mm)
(mm) | | | | (IIIII) | | △D | Effective Interference of Outer Ring and Housing | (mm) | | $\Delta D_{ m e}$ | Contraction of Outer Ring Raceway
Diameter due to Fit | (mm) | | ΔD_i | Expansion of Inner Ring Raceway
Diameter dus to Fit | (mm) | | ε | Load Factor | | | μ | Coefficient of Dynamic Friction of Rolling
Bearing | | | μ_{e} | Coefficient of Friction between Roller End Face and Rib | | | μ_{s} | Coefficient of Sliding Friction | | | σ_{tmax} | Maximum Stress on Fitted Surfaces | (MP _a){kgf/mm ² } | | | | | | | | | | | | | | | | | A 126 A 127 ## NSK ## 15. 1 Axial Displacement of Bearings (1) Contact Angle α and Axial Displacement δ_a of Deep Groove Ball Bearing and Angular Contact Ball Bearings (Figs. 15.1 to 15.3) $$\delta_{a} = \frac{0.00044}{\sin \alpha} \left(\frac{Q^{2}}{D_{w}}\right)^{\frac{1}{3}} \dots (N)$$ $$\delta_{a} = \frac{0.002}{\sin \alpha} \left(\frac{Q^{2}}{D_{w}}\right)^{\frac{1}{3}} \dots \{kgf\}$$ $$Q = \frac{F_{a}}{Z\sin \alpha} (N), \{kgf\}$$ (2) Axial Load F_a and Axial Displacement δ_a of Tapered Roller Bearings (Fig. 15.4) $$\delta_{a} = \frac{0.000077 \; F_{a}^{0.9}}{(\sin \alpha)^{1.9} \; Z^{0.9} \; L_{we}^{0.8}} \qquad \qquad (N) \\ \delta_{a} = \frac{0.0006 \; F_{a}^{0.9}}{(\sin \alpha)^{1.9} \; Z^{0.9} \; L_{we}^{0.8}} \qquad \qquad \{kgf\}$$ Fig. 15.1 $F_a/C_{ m or}$ and Contact Angle of Deep Groove and Angular Contact Ball Bearings ## Remarks: Actual axial displacement may vary depending on the shaft/housing thickness, material, and fitting interference with the bearing. Please contact NSK about such factors of axial displacement which are not discussed in detail in this catalog. Fig. 15.2 Axial Load and Axial Displacement of Deep Groove Ball Bearings Fig. 15.3 Axial Load and Axial Displacement of Angular Contact Ball Bearings Fig. 15.4 Axial Load and Axial Displacement of Tapered Roller Bearings ## 15.2 Fits (1) Surface Pressure $p_{\rm m}$, Maximum Stress $\sigma_{\rm tmax}$ on Fitted Surfaces and Expansion of Inner Ring Raceway Diameter ΔD_i or Contraction of Outer Ring Raceway Diameter $\Delta D_{\rm e}$ (Table 15.1, Figs. 15.5 and 15.6) - (2) Interferences or Clearances of Shafts and Inner Rings (Table 15.2) - (3) Interferences or Clearances of Housing Bores and Outer Rings (Table 15.3) Table. 15. 1 Surface Pressure, Maximum Stress on Fitted Surfaces and Expansion or Contraction |
Items | Shaft & Inner Ring | Housing & Bore & Outer Ring | |--|--|---| | Surface
Pressure
$p_{ m m}$
(MP _a)
{kgf/mm ² } | (In case of sold shaft) $p_{\rm m}=~\frac{E}{2}~\frac{\varDelta d}{2}~(1-k^2)$ | In case of housing outside dia. $D_0 \neq \infty$ $p_{\mathrm{m}} = \frac{E}{2} \frac{\Delta D}{D} \frac{(1-h^2)(1-h_0^2)}{1-h^2 h_0^2}$ In case $D_0 = \infty$ $p_{\mathrm{m}} = \frac{E}{2} \frac{\Delta D}{D} (1-h^2)$ | | $\begin{array}{c} \text{Maximum stress} \\ \sigma_{\rm tmax} \\ \text{(MPa)} \\ \text{\{kgf/mm}^2\} \end{array}$ | Maximum circumferential stress on fitted surface of inner ring bore is $\sigma_{\rm tmax} = p_{\rm m} \frac{1+k^2}{1-k^2}$ | Maximum circumferential stress on outer ring bore surface is $\sigma_{t \max} = p_{\text{in}} \frac{2}{1 - h^2}$ | | Expansion of inner ring raceway dia. ΔD_i (mm) | In case of solid shaft $\Delta D_i = \Delta d \cdot k$ | In case $D_0 \neq \infty$ | | Contraction of outer ring raceway dia. △De (mm) | | In case D_0 = ∞ | Remarks The modulus of longitudinal elasticity and Poisson's ratio for the shaft and housing material are the same as those for inner and outer rings. **Reference** 1 MPa=1 N/mm^2 = 0.102 kgf/mm² Table 15. 2 Interferences or Clearances | ı | Siz | 70 | | e Plane | | | | | | | | | | | Interf | erences | or Cleara | ances for | |---|----------|---------|---|-------------|-------|------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------| | | Classifi | ication | Mean Bore
Dia. Deviation
(Normal) | | f | 6 | g | 5 | g | 6 | h | 15 | ŀ | 16 | js | 5 | j. | 5 | | | (mı | m) | | $d_{ m mp}$ | Clear | ance | Clearance | Inter-
ference | | | over | incl. | high | low | max. | min. | max. | | 3 | 6 | 0 | - 8 | 18 | 2 | 9 | 4 | 12 | 4 | 5 | 8 | 8 | 8 | | | | — | | | 6 | 10 | 0 | - 8 | 22 | 5 | 11 | 3 | 14 | 3 | 6 | 8 | 9 | 8 | 3 | 11 | 2 | 12 | | | 10 | 18 | 0 | - 8 | 27 | 8 | 14 | 2 | 17 | 2 | 8 | 8 | 11 | 8 | 4 | 12 | 3 | 13 | | | 18 | 30 | 0 | -10 | 33 | 10 | 16 | 3 | 20 | 3 | 9 | 10 | 13 | 10 | 4.5 | 14.5 | 4 | 15 | | | 30 | 50 | 0 | -12 | 41 | 13 | 20 | 3 | 25 | 3 | 11 | 12 | 16 | 12 | 5.5 | 17.5 | 5 | 18 | | | 50 | 65 | 0 | -15 | 49 | 15 | 23 | 5 | 29 | 5 | 13 | 15 | 19 | 15 | 6.5 | 21.5 | 7 | 21 | | | 65 | 80 | 0 | -15 | 49 | 15 | 23 | 5 | 29 | 5 | 13 | 15 | 19 | 15 | 6.5 | 21.5 | 7 | 21 | | | 80 | 100 | 0 | -20 | 58 | 16 | 27 | 8 | 34 | 8 | 15 | 20 | 22 | 20 | 7.5 | 27.5 | 9 | 26 | | | 100 | 120 | 0 | -20 | 58 | 16 | 27 | 8 | 34 | 8 | 15 | 20 | 22 | 20 | 7.5 | 27.5 | 9 | 26 | | | 120 | 140 | 0 | -25 | 68 | 18 | 32 | 11 | 39 | 11 | 18 | 25 | 25 | 25 | 9 | 34 | 11 | 32 | | | 140 | 160 | 0 | -25 | 68 | 18 | 32 | 11 | 39 | 11 | 18 | 25 | 25 | 25 | 9 | 34 | 11 | 32 | | | 160 | 180 | 0 | -25 | 68 | 18 | 32 | 11 | 39 | 11 | 18 | 25 | 25 | 25 | 9 | 34 | 11 | 32 | | | 180 | 200 | 0 | -30 | 79 | 20 | 35 | 15 | 44 | 15 | 20 | 30 | 29 | 30 | 10 | 40 | 13 | 37 | | | 200 | 225 | 0 | -30 | 79 | 20 | 35 | 15 | 44 | 15 | 20 | 30 | 29 | 30 | 10 | 40 | 13 | 37 | | | 225 | 250 | 0 | -30 | 79 | 20 | 35 | 15 | 44 | 15 | 20 | 30 | 29 | 30 | 10 | 40 | 13 | 37 | | | 250 | 280 | 0 | -35 | 88 | 21 | 40 | 18 | 49 | 18 | 23 | 35 | 32 | 35 | 11.5 | 46.5 | 16 | 42 | | | 280 | 315 | 0 | -35 | 88 | 21 | 40 | 18 | 49 | 18 | 23 | 35 | 32 | 35 | 11.5 | 46.5 | 16 | 42 | | | 315 | 355 | 0 | -40 | 98 | 22 | 43 | 22 | 54 | 22 | 25 | 40 | 36 | 40 | 12.5 | 52.5 | 18 | 47 | | | 355 | 400 | 0 | -40 | 98 | 22 | 43 | 22 | 54 | 22 | 25 | 40 | 36 | 40 | 12.5 | 52.5 | 18 | 47 | | | 400 | 450 | 0 | -45 | 108 | 23 | 47 | 25 | 60 | 25 | 27 | 45 | 40 | 45 | 13.5 | 58.5 | 20 | 52 | | | 450 | 500 | 0 | -45 | 108 | 23 | 47 | 25 | 60 | 25 | 27 | 45 | 40 | 45 | 13.5 | 58.5 | 20 | 52 | excessive are omitted. 2. The tolerance range js is now recommended instead of j. Remarks 1. The figures for tolerance classes where stress caused by the fitting of the shaft and inner ring becomes excessive are omitted. Fig. 15.5 Surface Pressure \dot{P}_{m} and Maximum Stress $\sigma_{t\,max}$ for Average Fitting Interference Fig. 15.6 Surface Pressure P_m and Maximum Stress $\sigma_{t \max}$ for Maximum Fitting Interference ## of Shafts and Inner Rings Units: µm | Each Fit | ting Cla | SS | | | | | | | | | | | | | | | | Si | 7 0 | |----------------------|----------------------|----------------|-------------------|-------------|----------------|-------------|----------------|----------------|----------------|----------------|------------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------| | js | 66 | j(| 6 | k | c 5 | 1 | 6 | n | 15 | n | n6 | r | 16 | I | 6 | r | 6 | Classif | ication | | Clearance | Inter-
ference | Clearance | Inter-
ference | Interf | erence | Interfe | erence | (m | m) | | max. | max. | max. | max. | min. over | incl. | |
4.5
5.5 | —
12.5
13.5 |
2
3 | 15
16 | _
_
_ | _ | _
_
_ | _ | _
_
_ | _
_
_ | _ | _ | _ | _ | _
_
_ | _ | _
_
_ | _
_ | 3
6
10 | 6
10
18 | | 6.5
8
9.5 | 16.5
20
24.5 | 4
5
7 | 19
23
27 | 2
2
2 | 21
25
30 | 2
2
2 | 25
30
36 | 9
11 | 32
39 | 9
11 | 37
45 | | _
_
_ | _
_
_ | _ | | _ | 18
30
50 | 30
50
65 | | 9.5
11
11 | 24.5
31
31 | 7
9
9 | 27
33
33 | 2
3
3 | 30
38
38 | 2
3
3 | 36
45
45 | 11
13
13 | 39
48
48 | 11
13
13 | 45
55
55 | 20
23
23 | 54
65
65 | —
37
37 | —
79
79 | _
_
_ | _
_
_ | 65
80
100 | 80
100
120 | | 12.5
12.5
12.5 | 37.5
37.5
37.5 | 11
11
11 | 39
39
39 | 3
3
3 | 46
46
46 | 3
3
3 | 53
53
53 | 15
15
15 | 58
58
58 | 15
15
15 | 65
65
65 | 27
27
27 | 77
77
77 | 43
43
43 | 93
93
93 | 63
65
68 | 113
115
118 | 120
140
160 | 140
160
180 | | 14.5
14.5
14.5 | 44.5
44.5
44.5 | 13
13
13 | 46
46
46 | 4
4
4 | 54
54
54 | 4
4
4 | 63
63
63 | 17
17
17 | 67
67
67 | 17
17
17 | 76
76
76 | 31
31
31 | 90
90
90 | 50
50
50 | 109
109
109 | 77
80
84 | 136
139
143 | 180
200
225 | 200
225
250 | | 16
16
18 | 51
51
58 | 16
16
18 | 51
51
58 | 4
4
4 | 62
62
69 | 4
4
4 | 71
71
80 | 20
20
21 | 78
78
86 | 20
20
21 | 87
87
97 | 34
34
37 | 101
101
113 | 56
56
62 | 123
123
138 | 94
98
108 | 161
165
184 | 250
280
315 | 280
315
355 | | 18
20
20 | 58
65
65 | 18
20
20 | 58
65
65 | 4
5
5 | 69
77
77 | 4
5
5 | 80
90
90 | 21
23
23 | 86
95
95 | 21
23
23 | 97
108
108 | 37
40
40 | 113
125
125 | 62
68
68 | 138
153
153 | 114
126
132 | 190
211
217 | 355
400
450 | 400
450
500 | A 130 A 131 Table 15. 3 Interferences or | Q | ize | | e Plane
n O. D. | | | | | | | | | | | Interf | erences | or Clear | ances for | |-------------------|---------------------|-------------|----------------------|-------------------|----------------|------------------|-------------|-------------------|-------------|-------------------|-------------|----------------|-------------------|----------------------|----------------------|----------------|-------------------| | Classi | fication | Dev | riation
ormal) | G | 7 | Н | 16 | H | 17 | Н | 18 | J | 6 | JS | 86 | J | 7 | | (m | nm) | ٠. | D_{mp} | Clear | ance | Clea | rance | Clea | rance | Clea | rance | Clearance | Inter-
ference | Clearance | Inter-
ference | Clearance | Inter-
ference | | over | incl. | high | low | max. | min. | max. | min. | max. | min. | max. | min. | max. | max. | max. | max. | max. | max. | | 6
10
18 | 10
18
30 | 0
0
0 | - 8
- 8
- 9 | 28
32
37 | 5
6
7 | 17
19
22 | 0
0
0 | 23
26
30 | 0
0
0 | 30
35
42 | 0
0
0 | 13
14
17 | 4
5
5 | 12.5
13.5
15.5 | 4.5
5.5
6.5 | 16
18
21 | 7
8
9 | | 30
50
80 | 50
80
120 | 0
0
0 | - 11
- 13
- 15 | 45
53
62 | 9
10
12 | 27
32
37 | 0
0
0 | 36
43
50 | 0
0
0 | 50
59
69 | 0
0
0 | 21
26
31 | 6
6
6 | 19
22.5
26 | 8
9.5
11 | 25
31
37 | 11
12
13 | | 120
150
180 | 150
180
250 | 0
0
0 | - 18
- 25
- 30 | 72
79
91 | 14
14
15 | 43
50
59 | 0
0
0 | 58
65
76 | 0
0
0 | 81
88
102 | 0
0
0 | 36
43
52 | 7
7
7 | 30.5
37.5
44.5 | 12.5
12.5
14.5 | 44
51
60 | 14
14
16 | | 250
315
400 | 315
400
500 | 0
0
0 | - 35
- 40
- 45 | 104
115
128 | 17
18
20 | 67
76
85 | 0
0
0 | 87
97
108 | 0
0
0 | 116
129
142 | 0
0
0 | 60
69
78 | 7
7
7 | 51
58
65 | 16
18
20 | 71
79
88 | 16
18
20 | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 142
179
216 | 22
24
26
| 94
125
156 | 0
0
0 | 120
155
190 | 0
0
0 | 160
200
240 | 0
0
0 | = | _
_
_ | 72
100
128 | 22
25
28 | _
_
_ | = | Note (*) Indicates the minimum interference **Remarks** The tolerance range JS is now recommended instead of J. # 15.3 Radial and Axial Internal Clearances (1) Radial Internal Clearance $\varDelta_{\rm r}$ and Axial Internal Clearance $\varDelta_{\rm a}$ in Single-Row Deep Groove Ball Bearings (Fig. 15.7) $$\Delta_{\mathbf{a}} = K \Delta_{\mathbf{r}}^{\frac{1}{2}} \tag{mm}$$ where $$K=2 (r_e + r_i - D_w)^{\frac{1}{2}}$$ (2) Radial Internal Clearance \varDelta_r and Axial Internal Clearance \varDelta_a in Double-Row Angular Contact Ball Bearings (Fig. 15.8) $$\Delta_{\rm a} = 2\sqrt{m_0^2 - \left(m_0 \cos \alpha_{\rm R} - \frac{\Delta_{\rm r}}{2}\right)^2}$$ $$-2m_0 \sin \alpha_{\rm R} \qquad (mm)$$ Table 15. 4 Constant K | | | Value | s of <i>K</i> | | |----------------|--------------|------------------|----------------------|----------------------| | Bore No. | 160XX | 60XX | 62XX | 63XX | | 00
01
02 | 0.80
0.80 |
0.80
0.93 | 0.93
0.93
0.93 | 1.14
1.06
1.06 | | 03 | 0.80 | 0.93 | 0.99 | 1.11 | | 04 | 0.90 | 0.96 | 1.06 | 1.07 | | 05 | 0.90 | 0.96 | 1.06 | 1.20 | | 06 | 0.96 | 1.01 | 1.07 | 1.19 | | 07 | 0.96 | 1.06 | 1.25 | 1.37 | | 08 | 0.96 | 1.06 | 1.29 | 1.45 | | 09 | 1.01 | 1.11 | 1.29 | 1.57 | | 10 | 1.01 | 1.11 | 1.33 | 1.64 | | 11 | 1.06 | 1.20 | 1.40 | 1.70 | | 12 | 1.06 | 1.20 | 1.50 | 2.09 | | 13 | 1.06 | 1.20 | 1.54 | 1.82 | | 14 | 1.16 | 1.29 | 1.57 | 1.88 | | 15 | 1.16 | 1.29 | 1.57 | 1.95 | | 16 | 1.20 | 1.37 | 1.64 | 2.01 | | 17 | 1.20 | 1.37 | 1.70 | 2.06 | | 18 | 1.29 | 1.44 | 1.76 | 2.11 | | 19 | 1.29 | 1.44 | 1.82 | 2.16 | | 20 | 1.29 | 1.44 | 1.88 | 2.25 | | 21 | 1.37 | 1.54 | 1.95 | 2.32 | | 22 | 1.40 | 1.64 | 2.01 | 2.40 | | 24 | 1.40 | 1.64 | 2.06 | 2.40 | | 26 | 1.54 | 1.70 | 2.11 | 2.49 | | 28 | 1.54 | 1.70 | 2.11 | 2.59 | | 30 | 1.57 | 1.76 | 2.11 | 2.59 | ## **Clearances of Housing Bores and Outer Rings** Units: µm | Each Fit | ting Cla | SS | | | | | | | | | | | | | | | | c | ize | |-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|--------|--------|--------|--------|--------|----------| | JS | 87 | K | 6 | K | .7 | N | 16 | N | 17 | N | 16 | N | 17 | I | P6 | F | 7 | Classi | fication | | Clearance | Inter-
ference Interf | erence | Interf | erence | (n | nm) | | max. min. | max. | over | incl. | | 15 | 7 | 10 | 7 | 13 | 10 | 5 | 12 | 8 | 15 | 1 | 16 | 4 | 19 | 4 | 21 | 1 | 24 | 6 | 10 | | 17 | 9 | 10 | 9 | 14 | 12 | 4 | 15 | 8 | 18 | 1* | 20 | 3 | 23 | 7 | 26 | 3 | 29 | 10 | 18 | | 19 | 10 | 11 | 11 | 15 | 15 | 5 | 17 | 9 | 21 | 2* | 24 | 2 | 28 | 9 | 31 | 5 | 35 | 18 | 30 | | 23 | 12 | 14 | 13 | 18 | 18 | 7 | 20 | 11 | 25 | 1* | 28 | 3 | 33 | 10 | 37 | 6 | 42 | 30 | 50 | | 28 | 15 | 17 | 15 | 22 | 21 | 8 | 24 | 13 | 30 | 1* | 33 | 4 | 39 | 13 | 45 | 8 | 51 | 50 | 80 | | 32 | 17 | 19 | 18 | 25 | 25 | 9 | 28 | 15 | 35 | 1* | 38 | 5 | 45 | 15 | 52 | 9 | 59 | 80 | 120 | | 38 | 20 | 22 | 21 | 30 | 28 | 10 | 33 | 18 | 40 | 2* | 45 | 6 | 52 | 18 | 61 | 10 | 68 | 120 | 150 | | 45 | 20 | 29 | 21 | 37 | 28 | 17 | 33 | 25 | 40 | 5 | 45 | 13 | 52 | 11 | 61 | 3 | 68 | 150 | 180 | | 53 | 23 | 35 | 24 | 43 | 33 | 22 | 37 | 30 | 46 | 8 | 51 | 16 | 60 | 11 | 70 | 3 | 79 | 180 | 250 | | 61 | 26 | 40 | 27 | 51 | 36 | 26 | 41 | 35 | 52 | 10 | 57 | 21 | 66 | 12 | 79 | 1 | 88 | 250 | 315 | | 68 | 28 | 47 | 29 | 57 | 40 | 30 | 46 | 40 | 57 | 14 | 62 | 24 | 73 | 11 | 87 | 1 | 98 | 315 | 400 | | 76 | 31 | 53 | 32 | 63 | 45 | 35 | 50 | 45 | 63 | 18 | 67 | 28 | 80 | 10 | 95 | 0 | 108 | 400 | 500 | | 85 | 35 | 50 | 44 | 50 | 70 | 24 | 70 | 24 | 96 | 6 | 88 | 6 | 114 | 28 | 122 | 28 | 148 | 500 | 630 | | 115 | 40 | 75 | 50 | 75 | 80 | 45 | 80 | 45 | 110 | 25 | 100 | 25 | 130 | 13 | 138 | 13 | 168 | 630 | 800 | | 145 | 45 | 100 | 56 | 100 | 90 | 66 | 90 | 66 | 124 | 44 | 112 | 44 | 146 | 0 | 156 | 0 | 190 | 800 | 1 000 | Fig. 15.7 Δ_r and Δ_a in Single-Row Deep Groove Ball Bearings Fig. 15.8 \varDelta_r and \varDelta_a in Double-Row Angular Contact Ball Bearings (52, 53 Series) ## 15. 4 Preload and Staring Torque # (1) Axial Load $F_{\rm a}$ and Starting Torque M of Tapered Roller Bearings (Figs. 15.9 and 15.10) $$M$$ = $e~\mu_{\rm e}~F_{\rm a}~{\rm cos}\beta$ (N·mm), {kgf·mm} where $$\mu_{ m e}$$: 0.20 When bearings with the same number are used in opposition, the torque M caused by the preload becomes 2M. Fig. 15.9 Relation between e and β (2) Preload $F_{\rm a}$ and Starting Torque M of Angular Contact Ball Bearings and Double-Direction Angular Contact Thrust Ball Bearings (Figs. 15.11 and 15.12) $$M = M_{\rm S} \, Z \, {\rm sin} \alpha$$ (N·mm), {kgf·mm} where $M_{\rm S}$ is spin friction $$M_{\rm S} = \frac{3}{8} \mu_{\rm s} \, Q \, a \, E(k)$$ (N·mm), {kgf·mm} ## where $$\mu_{\rm s} = 0.15$$ When bearings with the same number are used in opposition, the torque M caused by the preload becomes 2M. Fig. 15.10 Relation between Axial Load and Starting Torque of Tapered Roller Bearings Fig. 15.11 Preload and Starting Torque for Back-to-Back or Face-to-Face Arrangements of Angular Contact Ball Bearings ($\alpha=$ 15°) Fig. 15.12 Preload and Starting Torque of Double-Direction Angular Contact Thrust Ball Bearings # 15.5 Coefficients of Dynamic Friction and Other Bearing Data # (1) Bearing Types and Their Coefficients of Dynamic Friction $\boldsymbol{\mu}$ $$\mu = \frac{M}{P \cdot \frac{d}{2}}$$ Table 15.5 Coefficients of Dynamic Friction | Bearing Types | Approximate values of $\boldsymbol{\mu}$ | |---|--| | Deep Groove Ball Bearings | 0.0013 | | Angular Contact Ball Bearings | 0.0015 | | Self-Aligning Ball Bearings | 0.0010 | | Thrust Ball Bearings | 0.0011 | | Cylindrical Roller Bearings | 0.0010 | | Tapered Roller Bearings | 0.0022 | | Spherical Roller Bearings | 0.0028 | | 5 5 | | | Needle Roller Bearings with Cages | 0.0015 | | Full Complement Needle
Roller Bearings | 0.0025 | | Spherical Thrust Roller
Bearings | 0.0028 | ## (3) Radial Internal Clearance $\varDelta_{\rm r}$ and Fatigue Life L (Fig. 15.13) For the radial internal clearance Δ_r and the function $f(\varepsilon)$ of the load factor, the following equations are valid: For Deep Groove Ball Bearings $$f(\epsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.00044 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}}$$(N) $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.002 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \dots \{\text{kgf}\}$$ For Cylindrical Roller Bearings $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.000077 \left(\frac{F_{\rm r}}{Z}\right)^{0.9}}$$(N) $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.0006 \left(\frac{F_{\rm r}}{Z}\right)^{0.9}} \dots \{\text{kgf}\}$$ The relation between the load factor ϵ and $f(\epsilon)$ and L_ϵ/L , when the radial internal clearance is $\varDelta_{\rm r}$ is as shown in Table 15.7. From the above equations, first obtain $f(\varepsilon)$ and then ε and L_{ε}/L can be obtained. ## (2) Circumferential Speeds of Rolling Elements about Their Centers and Bearing Center Table 15.6 Circumferential Speeds of Rolling Elements about Their Centers and Bearing Center | Items | Rotating inner ring, fixed outer ring | Rotating outer ring, fixed inner ring | |---|---|--| | Ball rotating speed $n_a (\mathrm{min}^{\scriptscriptstyle -1})$ | $-\left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}}-\frac{\mathrm{cos}^{2}\alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right)\frac{n_{i}}{2}$ | $+ \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^2 \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}} \right) \frac{n_{\mathrm{e}}}{2}$ | | Cicumferential speed around bearing ball's center $\upsilon_a(m/sec)$ | $-\frac{\boldsymbol{\pi} \cdot D_{\mathrm{w}}}{60 \times 10^{3}} \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2} \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}} \right) \frac{\boldsymbol{n}_{i}}{2}$ | $+\frac{\pi \cdot D_{\mathrm{w}}}{60 \times 10^{3}} \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2} \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}} \right) \frac{n_{\mathrm{e}}}{2}$ | | Revolving speed around bearing center $n_{ m c}$ (min $^{-1}$) | $+ \left(1 - \frac{\cos \alpha}{D_{\rm pw}/D_{\rm w}}\right) \frac{n_i}{2}$ | $+ \left(1 - \frac{\cos \alpha}{D_{\rm pw}/D_{\rm w}}\right) \frac{n_{\rm e}}{2}$ | | Cicumferential speed around bearing center υ_{c} (m/sec) | $-\frac{\pi \cdot D_{\mathrm{pw}}}{60 \times 10^{3}} \left(1 - \frac{\cos \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{i}}{2}$ | $+\frac{\pi \cdot D_{\mathrm{pw}}}{60 \times 10^{3}} \left(1 - \frac{\cos \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{\mathrm{e}}}{2}$ | Remarks 1. + sign indicates CW rotation and - sign CCW Table 15. 7 ε and $f(\varepsilon)$, L_{ε}/L | | Deep Groove | Ball Bearings | Cylindrical Ro | oller Bearings | |------|------------------|-----------------------------|------------------|-----------------------------| | ε | $f(\varepsilon)$ | $\frac{L_{\mathcal{E}}}{L}$ | $f(\varepsilon)$ | $\frac{L_{\mathcal{E}}}{L}$ |
 0.1 | 33.713 | 0.294 | 51.315 | 0.220 | | 0.2 | 10.221 | 0.546 | 14.500 | 0.469 | | 0.3 | 4.045 | 0.737 | 5.539 | 0.691 | | 0.4 | 1.408 | 0.889 | 1.887 | 0.870 | | 0.5 | 0 | 1.0 | 0 | 1.0 | | 0.6 | - 0.859 | 1.069 | – 1.133 | 1.075 | | 0.7 | - 1.438 | 1.098 | - 1.897 | 1.096 | | 0.8 | - 1.862 | 1.094 | - 2.455 | 1.065 | | 0.9 | - 2.195 | 1.041 | - 2.929 | 0.968 | | 1.0 | - 2.489 | 0.948 | - 3.453 | 0.805 | | 1.25 | - 3.207 | 0.605 | - 4.934 | 0.378 | | 1.5 | - 3.877 | 0.371 | - 6.387 | 0.196 | | 1.67 | - 4.283 | 0.276 | - 7.335 | 0.133 | | 1.8 | - 4.596 | 0.221 | - 8.082 | 0.100 | | 2.0 | - 5.052 | 0.159 | - 9.187 | 0.067 | | 2.5 | - 6.114 | 0.078 | -11.904 | 0.029 | | 3 | - 7.092 | 0.043 | -14.570 | 0.015 | | 4 | - 8.874 | 0.017 | -19.721 | 0.005 | | 5 | -10.489 | 0.008 | -24.903 | 0.002 | | 10 | -17.148 | 0.001 | -48.395 | 0.0002 | Fig. 15.13 Radial Internal Clearance and Life Ratio The revolving speed and circumferential speed of the rolling elements are the same as those of the cage. ## 15. 6 BRANDS AND PROPERTIES OF LUBRICATING GREASES Table 15. 8 Brands of Lubricating Greases #### **Brands** Thickeners Base Oils ADLEX Lithium Mineral oil APOLOIL AUTOLEX A Lithium Mineral oil ARAPEN RB 300 Lithium/Calcium Mineral oil EA2 GREASE Urea (3) Poly-α-olefin oil EA3 GREASE Poly-α-olefin oil Urea (3) EA5 GREASE Urea (3) Poly-α-olefin oil EA7 GREASE Urea (3) Poly-α-olefin oil **ENC GREASE** Polyol ester oil + Mineral oil (4) Urea (3) ENS GREASE Urea (3) Polyol ester oil (4) ECZ GREASE Lithium + Carbon black Poly-α-olefin oil ISOFLEX NBU 15 Barium Complex Ester oil + Mineral oil+ Poly-α-olefin oil (4) ISOFLEX SUPER LDS 18 Ester oil + Mineral oil (4) Lithium ISOFLEX TOPAS NB 52 Barium Complex Poly-α-olefin oil AEROSHELL GREASE 7 Micro Gel Diester oil (4) GREASE SH 33 L DOW CORNING® Lithium Silicone oil (5) GREASE SH 44 M DOW CORNING® Lithium Silicone oil (5) NS HI-LUBE Lithium Polyol ester oil + Diester oil (4) NSA GREASE Lithium Poly-α-olefin oil + Ester oil (4) NSC GREASE Lithium Alkyldiphenyl ether oil + Polyol ester oil (4) NSK CLEAN GREASE LG2 Lithium Poly-α-olefin oil + Mineral oil EMALUBE 8030 Urea (3) Mineral oil MA8 GREASE Alkyldiphenyl ether oil + Poly- α -olefin oil Urea (3) KRYTOX GPL-524 PTFE Perfluoropolyether oil KP1 GREASE PTFE Perfluoropolyether oil COSMO WIDE GREASE WR No.3N Sodium Terephtalamate Polyol ester oil + Mineral oil (4) G-40M Lithium Silicone oil (5) SHELL GADUS S2 V220 2 Lithium Mineral oil SHELL ALVANIA GREASE S1 Lithium Mineral oil SHELL ALVANIA GREASE S2 Mineral oil Lithium SHELL ALVANIA GREASE S3 Lithium Mineral oil SHELL CASSIDA GREASE RLS 2 Aluminum Complex Poly- α -olefin oil SHELL SUNLIGHT GREASE 2 Lithium Mineral oil WPH GREASE Urea (3) Poly-α-olefin oil DEMNUM GREASE L-200 PTFE Perfluoropolyether oil - Notes (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such as vacuum, it is advisable to consult NSK. - (2) For short-term operation or when cooling is grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate. - (3) Urea-based grease causes fluorine-based material to deteriorate. - (4) Ester-based grease causes acrylic rubber material to swell. - (5) Silicone-based grease causes silicone-based material to swell. ## and Comparison of Properties | Dropping Point (°C) | Consistency | Working
Temperature
Range(1)(°C) | Pressure Resistance | Usable Limit Compare
to Listed Limiting
Speed(2)(%) | |---------------------|-------------|--|---------------------|---| | 198 | 300 | 0 to +110 | Good | 70 | | 198 | 280 | -10 to +110 | Fair | 60 | | 177 | 294 | -10 to + 80 | Fair | 70 | | ≧260 | 243 | -40 to +150 | Fair | 100 | | ≧260 | 230 | -40 to +150 | Fair | 100 | | ≧260 | 251 | -40 to +160 | Good | 60 | | ≧260 | 243 | -40 to +160 | Fair | 100 | | ≧260 | 262 | -40 to +160 | Fair | 70 | | ≧260 | 264 | -40 to +160 | Poor | 100 | | ≧260 | 243 | -10 to +120 | Fair | 100 | | ≧260 | 280 | -30 to +120 | Poor | 100 | | 195 | 280 | -50 to +110 | Poor | 100 | | ≧260 | 280 | -40 to +130 | Poor | 90 | | ≧260 | 288 | -55 to +100 | Poor | 100 | | 210 | 310 | -60 to +120 | Poor | 60 | | 210 | 260 | -30 to +130 | Poor | 60 | | 192 | 250 | -40 to +130 | Poor | 100 | | 201 | 311 | -40 to +130 | Fair | 70 | | 192 | 235 | -30 to +140 | Fair | 70 | | 201 | 199 | -40 to +130 | Poor | 100 | | ≧260 | 280 | 0 to +130 | Good | 60 | | ≧260 | 283 | -30 to +160 | Fair | 70 | | ≧260 | 265 | 0 to +200 | Fair | 70 | | ≧260 | 280 | -30 to +200 | Fair | 60 | | ≧230 | 227 | -40 to +130 | Poor | 100 | | 223 | 252 | -30 to +130 | Poor | 60 | | 187 | 276 | 0 to + 80 | Good | 60 | | 182 | 323 | -10 to +110 | Fair | 70 | | 185 | 275 | -10 to +110 | Fair | 70 | | 185 | 242 | -10 to +110 | Fair | 70 | | ≧260 | 280 | 0 to +120 | Fair | 70 | | 200 | 274 | -10 to +110 | Fair | 70 | | 259 | 240 | -40 to +150 | Fair | 70 | | ≥260 | 280 | -30 to +200 | Fair | 60 | (continued on next page) A 138 A 139 | Brands | Thickeners | Base Oils | | | | |-------------------------|-----------------|-------------------------------------|--|--|--| | NIGACE WR-S | Urea (³) | Mixed oil | | | | | NIGLUB RSH | Sodium Complex | Polyalkylene Glycol oil | | | | | PYRONOC UNIVERSAL N6B | Urea (3) | Mineral oil | | | | | PALMAX RBG | Lithium Complex | Mineral oil | | | | | BEACON 325 | Lithium | Diester oil (4) | | | | | MULTEMP PS No.2 | Lithium | Poly-α-olefin oil + Diester oil (4) | | | | | MOLYKOTE FS-3451 Grease | PTFE | Fluorosilicone oil (5) | | | | | UME GREASE | Urea | Mineral oil | | | | | RAREMAX AF-1 | Urea | Mineral oil | | | | - Notes (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such as vacuum, it is advisable to consult NSK. - as vacuum, it is advisable to consult NSK. (2) For short-term operation or when cooling is grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate. (3) Urea-based grease causes fluorine-based material to deteriorate. (4) Ester-based grease causes acrylic rubber material to swell. (5) Silicone-based grease causes silicone-based material to swell. | Dropping Point (°C) | Consistency | Working
Temperature
Range(¹)(°C) | Pressure Resistance | Usable Limit Compared
to Listed Limiting
Speed(²)(%) | |---------------------|-------------|--|---------------------|--| | ≧260 | 230 | −30 to +150 | Poor | 70 | | ≧260 | 270 | 270 —20 to +120 Fair | | 60 | | 238 | 290 | 290 0 to +130 Fair | | 70 | | 216 | 300 | -10 to +130 | Good | 70 | | 190 | 274 | -50 to +110 | Poor | 100 | | 190 | 275 | -50 to +110 | Poor | 100 | | ≧260 | 285 | 0 to +180 | Fair | 70 | | ≧260 | 268 | -10 to +130 | Fair | 70 | | ≧260 | 300 | -10 to +130 | Fair | 70 | A 140 A 141 # **BEARING TABLES** ## **BEARING TABLE CONTENTS** | DEEP GROOVE BALL BEARINGS | | Page
B | |--|-------------------------|-----------| | DELF GROOVE DALE DEARINGS | Bore Dia. | D4 | | SINGLE-ROW DEEP GROOVE BALL BEARINGS | 10 – 800mm ····· | R | | MAXIMUM TYPE BALL BEARINGS | 25 – 110mm ····· | | | MAGNETO BEARINGS | 4 – 20mm ····· | | | EXTRA SMALL BALL BEARINGS AND | 4 2011111 | טבו | | MINIATURE BALL BEARINGS | | B30 | | Metric Design | 1 – 9mm ····· | | | Inch Design | 1.016 – 9.525mm····· | | | | | | | ANGULAR CONTACT BALL BEARINGS | | B46 | | CINCLE DOWN ANGLE AD CONTACT DALL DEADINGS | Bore Dia. | D.E. | | SINGLE-ROW ANGULAR CONTACT BALL BEARINGS | 10 – 200mm ····· | | | MATCHED ANGULAR CONTACT BALL BEARINGS DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS | 10 – 200mm ······· | | | FOUR-POINT CONTACT BALL BEARINGS | 30 – 200mm ······ | | | FOUR-POINT CONTACT BALL BEARINGS | 30 – 200mm ···· | В/4 | | SELF-ALIGNING BALL BEARINGS | | B76 | | | Bore Dia. | | | SELF-ALIGNING BALL BEARINGS | 5 – 110mm ····· | B78 | | 0V/ WDD1041 D011 ED DE1DW00 | | | | CYLINDRICAL ROLLER BEARINGS | Bore Dia. | B84 | | SINGLE-ROW CYLINDRICAL ROLLER BEARINGS | 20 – 500mm ····· | DO | | L-SHAPED THRUST COLLARS FOR CYLINDRICAL ROLLER | 20 – 50011111 | DOG | | BEARINGS | 20 – 320mm ····· | R104 | | DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS | 25 – 360mm ····· | | | BOODE NOW OTEMBRIONE ROLLER BENIMING | 20 00011111 | D10. | | TAPERED ROLLER BEARINGS | | B110 | | | Bore Dia. | | | METRIC DESIGN TAPERED ROLLER BEARINGS | 15 – 440mm | | | INCH DESIGN TAPERED ROLLER BEARINGS | 12.000 – 206.375mm····· | B136 | | DOUBLE-ROW TAPERED ROLLER BEARINGS | 80 – 260mm ····· | B1/2 | | SPHERICAL ROLLER BEARINGS | | B185 | | of Helitorie Holler Definition | Bore Dia. | D 101 | | SPHERICAL ROLLER BEARINGS | 25 – 1400mm | B184 | | | | | | THRUST BEARINGS | | B206 | | ONIOLE DIDECTION TUDUCT DALL DEADINGS | Bore Dia. | D04 | | SINGLE-DIRECTION THRUST BALL BEARINGS | 10 – 360mm ····· | | | DOUBLE-DIRECTION THRUST BALL BEARINGS | 10 – 190mm ····· | | | CYLINDRICAL ROLLER THRUST BEARINGS | 35 – 320mm ······ | | | SPHERICAL THRUST ROLLER BEARINGS
ANGULAR CONTACT THRUST BALL BEARINGS | 60 – 500mm ····· | | | Double-Direction Angular Contact Thrust Ball Bearings | 35 – 280mm ····· | | | Angular Contact Thrust Ball Bearings for Ball Screws | 15 – 60mm ······ | | | | | | | Needle Roller Bearings | | B244 | | | Bore Dia. | | | CAGE & NEEDLE ROLLER ASSEMBLIES | 5 – 100mm ····· | | | DRAWN CUP NEEDLE ROLLER BEARINGS | 4 – 55mm ····· | | | SOLID NEEDLE ROLLER BEARINGS | 9 – 390mm ····· | | | THRUST NEEDLE ROLLER BEARINGS | 10 – 100mm ····· | | | CAM FOLLOWERS | 16 – 90mm ····· | | | ROLLER FOLLOWERS | 5 – 50mm ····· | B278 | | | ugo | |------------------
--| | | B280 | | OL (I D) | | | Shaft Dia. | | | 12 – 90mm ····· | B286 | | 12 – 90mm ····· | | | 12 – 90mm ····· | B298 | | | B304 | | Shaft Dia. | | | | | | | | | | | | 25 – 320mm | B318 | | | B326 | | | | | | | | 40 – 400mm ····· | B332 | | | B334 | | | | | | | | 100 – 920mm | B340 | | | B344 | | | B340 | | Basic Dia. | | | 0.3 – 114.3mm | | | | | | | | | 1 – 5mm ····· | B354 | | | B350 | | Shaft Dia. | | | 17 – 470mm ····· | | | | | | | | | | | | | B3/8 | | | Shaft Dia. 12 – 90mm 12 – 90mm 12 – 90mm Shaft Dia. 20 – 140mm 150 – 450mm 50 – 180mm 25 – 320mm Bore Dia. 50 – 560mm 40 – 400mm Bore Dia. 100 – 939.800mm 100 – 920mm Basic Dia. 0.3 – 114.3mm 3 – 80mm 5.5 – 15mm 1 – 5mm Shaft Dia. | ## **DEEP GROOVE BALL BEARINGS** ## SINGLE-ROW DEEP GROOVE BALL BEARINGS | Open Type, Shielded Type, Sealed Type | Bore Diameter | 10 – 240mm····· B | |---------------------------------------|---------------|---------------------| | Open Type | Bore Diameter | 260 – 800mm····· B2 | | MAXIMUM TYPE BALL BEARINGS | Bore Diameter | 25 – 110mm B2 | | MAGNETO BEARINGS | Bore Diameter | 4 – 20mm B2 | **Extra Small and Miniature Ball Bearings** are described on Pages B30 to B45. ## **DESIGN, TYPES, AND FEATURES** ### SINGLE-ROW DEEP GROOVE BALL BEARINGS Single-Row Deep Groove Ball Bearings are classified into the types shown The proper amount of good quality grease is packed in shielded and sealed ball bearings. A comparison of the features of each type is shown in Table 1. Open Type With Snap Ring Shielded Type (ZZ Type) Non-Contact **Rubber Sealed** Type (VV Type) Contact **Rubber Sealed** Type (DDU Type) The above temperature range applies to standard bearings. By using cold or heat resistant grease and changing the type of rubber, the operating temperature range can be extended. For such applications, please contact NSK. For deep groove ball bearings, pressed cages are usually used. For big bearings, machined brass cages are used. (Refer to Table 2) Machined cages are also used for high speed applications. **Table 2 Standard Cages for Deep Groove Ball Bearings** | Series | Pressed Steel Cages | Machined Brass Cages | | | | | |--------|---------------------|----------------------|--|--|--|--| | 68 | 6800 - 6838 | 6840 - 68/800 | | | | | | 69 | 6900 – 6936 | 6938 – 69/800 | | | | | | 160 | 16001 - 16026 | 16028 - 16064 | | | | | | 60 | 6000 - 6040 | 6044 - 60/670 | | | | | | 62 | 6200 - 6240 | 6244 – 6272 | | | | | | 63 | 6300 - 6332 | 6334 – 6356 | | | | | ### **MAXIMUM TYPE BALL BEARINGS** Maximum Type Ball Bearings contain a larger number of balls than normal deep groove ball bearings because of filling slots in the inner and outer rings. Because of their filling slots, they are not suitable for applications with high axial loads. BL2 and BL3 types of bearings have boundary dimensions equal to those of single-row deep groove ball bearings of Series 62 and 63 respectively. Besides the open type, ZZ type shielded bearings are also available. When using these bearings, it is important for the filling slot in the outer ring to be outside of the loaded zone as much as possible. Their cages are pressed steel. ### **MAGNETO BEARINGS** The groove in the inner ring is a little shallower than that of deep groove ball bearings and one side of the outer ring is relieved. Consequently, the outer ring is separable, which makes it convenient for mounting. Pressed cages are standard, but for high speed applications, machined synthetic resin cages are used. ### PRECAUTIONS FOR USE OF DEEP GROOVE BALL BEARINGS For deep groove ball bearings, if the bearing load is too small during operation, slippage occurs between the balls and raceways, which may result in smearing. The higher the weight of balls and cage, the higher this tendency becomes, especially for large bearings. If very small bearing loads are expected, please contact NSK for selection of an appropriate bearing. ## **TOLERANCES AND RUNNING ACCURACY** | SINGLE-ROW DEEP GROOVE BALL | | | | | | |-----------------------------|-------|-----|--------|---------|-------| | BEARINGS | Table | 8.2 | (Pages | A60 to | A63) | | MAXIMUM TYPE BALL BEARINGS | Table | 8.2 | (Pages | A60 to | A63) | | MAGNETO BEARINGS | Table | 8.5 | (Pages | A70 and | d A71 | ### RECOMMENDED FITS | SINGLE-ROW DEEP GROOVE BALL | | | | | |-----------------------------|-------|-----|-------|-----| | BEARINGS | Table | 9.2 | (Page | A84 | | | Table | 9.4 | (Page | A85 | | MAXIMUM TYPE BALL BEARINGS | Table | 9.2 | (Page | A84 | | | Table | 9.4 | (Page | A85 | | MAGNETO BEARINGS | Table | 9.2 | (Page | A84 | | | Table | 9.4 | (Page | A85 | ### INTERNAL CLEARANCES | SINGLE-ROW DEEP GROOVE BALL | | |-----------------------------|-------------------------| | BEARINGS | ·· Table 9.9 (Page A89) | | MAXIMUM TYPE BALL BEARINGS | ·· Table 9.9 (Page A89) | | MAGNETO BEARINGS | Table 9.11 (Page A89 | ### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. B6 B7 | | | | | | | V | V | | וטט י טט | U | IV | | | I۱ | IK | |------|----------------|----------------|-------------------|---------------------------|-------------------------|-----------------------|-------------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------------|----------------|----------------|-------------------| | Bour | ndary [|)imen | sions | | Basic Load I | | | Factor | Limitino | g Speeds | (min ⁻¹) | | Rearir | ıa Nııı | mbers | | | (mm) | | | 1) | (N) | | {kgf} | | Grease Oil | | | Dourn | ig iva | 1115010 | | | d | D | В | γ
min. | C_{r} | C_{0r} | C_{r} | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open S | Shielded | l Se | ealed | | 10 | 19
22
26 | 5
6
8 | 0.3
0.3
0.3 | 1 720
2 700
4 550 | 840
1 270
1 970 | 175
275
465 | 86
129
201 | 14.8
14.0
12.4 | 34 000
32 000
30 000 | 24 000
22 000
22 000 | 40 000
38 000
36 000 | 6800
6900
6000 | ZZ
ZZ
ZZ | VV
VV
VV | DD
DD
DDU | | | 30
35 | 9
11 | 0.6
0.6 | 5 100
8 100 | 2 390
3 450 | 520
825 | 244
350 | 13.2
11.2 | 24 000
22 000 | 18 000
17 000 | 30 000
26 000 | 6200
6300 | ZZ
ZZ | VV
VV | DDU
DDU | | 12 | 21
24
28 | 5
6
7 | 0.3
0.3
0.3 | 1 920
2 890
5 100 | 1 040
1 460
2 370 | 195
295
520 | 106
149
241 | 15.3
14.5
13.0 | 32 000
30 000
28 000 | 20 000
20 000
— | 38 000
36 000
32 000 | 6801
6901
16001 | ZZ
ZZ | VV
VV | DD
DD | | | 28
32
37 | 8
10
12 | 0.3
0.6
1 | 5 100
6 800
9 700 | 2 370
3 050
4 200 | 520
695
990 | 241
310
425 | 13.0
12.3
11.1 | 28 000
22 000
20 000 | 18 000
17 000
16 000 | 32 000
28 000
24 000 | 6001
6201
6301 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 15 | 24
28
32 | 5
7
8 | 0.3
0.3
0.3 | 2 070
4 350
5 600 | 1 260
2 260
2 830 | 212
440
570 | 128
230
289 | 15.8
14.3
13.9 | 28 000
26 000
24 000 | 17 000
17 000
— | 34 000
30 000
28 000 | 6802
6902
16002 | ZZ
ZZ | VV
VV | DD
DD | | | 32
35
42 | 9
11
13 | 0.3
0.6
1 | 5 600
7 650
11 400 | 2 830
3 750
5 450 | 570
780
1 170 | 289
380
555 | 13.9
13.2
12.3 | 24 000
20 000
17 000 | 15 000
14 000
13 000 | 28 000
24 000
20 000 | 6002
6202
6302 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 17 | 26
30
35 | 5
7
8 | 0.3
0.3
0.3 | 2 630
4 600
6 000 | 1 570
2 550
3 250 | 268
470
610 | 160
260
330 | 15.7
14.7
14.4 | 26 000
24 000
22 000 | 15 000
15 000
— | 30 000
28 000
26 000 | 6803
6903
16003 | ZZ
ZZ | VV
VV
— | DD
DDU | | | 35
40
47 | 10
12
14 | 0.3
0.6
1 | 6 000
9 550
13 600 | 3 250
4 800
6 650 | 610
975
1 390 | 330
490
675 | 14.4
13.2
12.4 | 22 000
17 000
15 000 | 13 000
12 000
11 000 | 26 000
20 000
18 000 | 6003
6203
6303 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 20 | 32
37
42 | 7
9
8 | 0.3
0.3
0.3 | 4 000
6 400
7 900 | 2 470
3 700
4 450 | 410
650
810 | 252
375
455 | 15.5
14.7
14.5 | 22 000
19 000
18 000 | 13 000
12 000
— | 26 000
22 000
20 000 | 6804
6904
16004 | ZZ
ZZ | VV
VV | DD
DDU | | | 42
47
52 | 12
14
15 | 0.6
1
1.1 | 9 400
12 800
15 900 | 5 000
6 600
7 900 | 955
1 300
1 620 | 510
670
805 | 13.8
13.1
12.4 | 18 000
15 000
14 000 | 11 000
11 000
10 000 | 20 000
18 000
17 000 | 6004
6204
6304 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 22 | 44
50
56 | 12
14
16 | 0.6
1
1.1 | 9 400
12 900
18 400 | 5 050
6 800
9 250 | 960
1 320
1 870 | 515
695
940 | 14.0
13.5
12.4 | 17 000
14 000
13 000 | 11 000
9 500
9 500 | 20 000
16 000
16 000 | 60/22
62/22
63/22 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | ⁽²⁾ When heavy axial loads are applied, increase d_a and decrease D_a from the above values. $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | $\leq e$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |--------------------------|------
-------------------------------|----------|---|------| | c_{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | NSK ## Static Equivalent Load $\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$ $\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$ | | | | | | | | | | | r _r | | | | | | |------------------------|---------------------|----------------------|----------------------|---------------------------------|-------------------|------------------------|----------------------|----------------------|-------------------------------------|-----------------------|-----------------------|---------------------------|------------------------------|-------------------|-------------------------| | With | With | Sna | p Ring G | roove Din
(mm) | nensions | i (1) | Snap R
Dimen | sions | Abutment and Fillet Dimensions (mm) | | | | | | Mass
(kg) | | Snap
Ring
Groove | Snap
Ring | а
max. | $b \atop { m min.}$ | $D_{\scriptscriptstyle 1}$ max. | ${m r}_0$ max. | $ m \emph{r}_{N}$ min. | $D_2^{(m max.}$ | f max. | min. | $l_{ m a^{(2)}}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{\rm a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | | —
NR(3)
NR(4) | | —
0.8
0.87 | —
20.8
24.5 | 0.2
0.2 |
0.2
0.3 | —
24.8
28.7 | —
0.7
0.84 | 12
12
12 | 12
12.5
13 | 17
20
24 | 0.3
0.3
0.3 | —
25.5
29.4 | —
1.5
1.9 | 0.005
0.009
0.018 | | N
N | NR
NR | 2.06
2.06 | 1.35
1.35 | 28.17
33.17 | 0.4
0.4 | 0.5
0.5 | 34.7
39.7 | 1.12
1.12 | 14
14 | 16
16.5 | 26
31 | 0.6
0.6 | 35.5
40.5 | 2.9
2.9 | 0.032
0.052 | | _
N
_ | NR
— | 1.05
— | 0.8 | 22.8
— | 0.2 | 0.2
— | 26.8
— | 0.7
— | 14
14
14 | 14
14.5
— | 19
22
26 | 0.3
0.3
0.3 |
27.5
 | 1.5
— | 0.006
0.010
0.019 | | N (4)
N
N | NR(4)
NR
NR | 1.35
2.06
2.06 | 0.87
1.35
1.35 | 26.5
30.15
34.77 | 0.2
0.4
0.4 | 0.3
0.5
0.5 | 30.7
36.7
41.3 | 0.84
1.12
1.12 | 14
16
17 | 15.5
17
18 | 26
28
32 | 0.3
0.6
1 | 31.4
37.5
42 | 1.9
2.9
2.9 | 0.022
0.037
0.060 | | _
N
_ | NR
— | 1.3 | 0.95
— | 26.7
— | 0.25
— | 0.3 | 30.8
— | 0.85
— | 17
17
17 | 17
17
— | 22
26
30 | 0.3
0.3
0.3 |
31.5
 | 1.8
— | 0.007
0.015
0.027 | | N
N
N | NR
NR
NR | 2.06
2.06
2.06 | 1.35
1.35
1.35 | 30.15
33.17
39.75 | 0.4
0.4
0.4 | 0.3
0.5
0.5 | 36.7
39.7
46.3 | 1.12
1.12
1.12 | 17
19
20 | 19
20.5
22.5 | 30
31
37 | 0.3
0.6
1 | 37.5
40.5
47 | 2.9
2.9
2.9 | 0.031
0.045
0.083 | | _
N
_ | NR
— | 1.3 | 0.95
— | 28.7
— | 0.25
— | 0.3 | —
32.8
— | 0.85
— | 19
19
19 | 19
19.5
— | 24
28
33 | 0.3
0.3
0.3 |
33.5
 | 1.8
— | 0.007
0.017
0.033 | | N
N
N | NR
NR
NR | 2.06
2.06
2.46 | 1.35
1.35
1.35 | 33.17
38.1
44.6 | 0.4
0.4
0.4 | 0.3
0.5
0.5 | 39.7
44.6
52.7 | 1.12
1.12
1.12 | 19
21
22 | 21.5
23.5
25.5 | 33
36
42 | 0.3
0.6
1 | 40.5
45.5
53.5 | 2.9
2.9
3.3 | 0.041
0.067
0.113 | | N
N | NR
NR
— | 1.3
1.7
— | 0.95
0.95
— | 30.7
35.7
— | 0.25
0.25
— | 0.3
0.3
— | 34.8
39.8
— | 0.85
0.85
— | 22
22
22 | 22
24
— | 30
35
40 | 0.3
0.3
0.3 | 35.5
40.5
— | 1.8
2.3
— | 0.017
0.037
0.048 | | N
N
N | NR
NR
NR | 2.06
2.46
2.46 | 1.35
1.35
1.35 | 39.75
44.6
49.73 | 0.4
0.4
0.4 | 0.5
0.5
0.5 | 46.3
52.7
57.9 | 1.12
1.12
1.12 | 24
25
26.5 | 25.5
26.5
28 | 38
42
45.5 | 0.6
1
1 | 47
53.5
58.5 | 2.9
3.3
3.3 | 0.068
0.107
0.145 | | N
N
N | NR
NR
NR | 2.06
2.46
2.46 | 1.35
1.35
1.35 | 41.75
47.6
53.6 | 0.4
0.4
0.4 | 0.5
0.5
0.5 | 48.3
55.7
61.7 | 1.12
1.12
1.12 | 26
27
28.5 | 26.5
29.5
30.5 | 40
45
49.5 | 0.6
1
1 | 49
56.5
62.5 | 2.9
3.3
3.3 | 0.074
0.119
0.179 | **Notes** (4) Snap ring groove dimensions and snap ring dimensions are not conformed to ISO15. ϕD_a ϕD_1 $\phi d_a \phi D_X$ Remarks 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. ⁽³⁾ Ring types N and NR applicable only to open-type bearings. $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{ m r}}$ | >e | |--------------------------|------|---|----------|------------------------------|------| | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | NSK | (- | | 1 | | | | |-----------------------------|----------|---------|---|------|------| | $\mathcal{L}_{0\mathrm{r}}$ | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | Static E | quivaler | nt Load | | | | | $\frac{F_{\rm a}}{F_{\rm r}}$ > 0.8, P_0 = 0.6 $F_{\rm r}$ + 0.5 $F_{\rm a}$ | | |--|--| | $\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$ | | | With | With
Snap | Sna | p Ring G | roove Dim
(mm) | ensions | (1) | Snap R
Dimen | sions | | Abutmer | t and Fille
(mm | | ensions | | Mass
(kg) | |------------------------|----------------|----------------------|----------------------|-------------------------|----------------------------|------------------------|-----------------------|---------------------|------------------|-----------------------|-----------------------|---------------------------|----------------------|--|-------------------------| | Snap
Ring
iroove | Ring | а
max. | $oldsymbol{b}{min.}$ | $D_{ m 1}$ max. | $oldsymbol{\gamma}_0$ max. | $\emph{r}_{ m N}$ min. | $D_2^{(m mr}$ max. | f max. | d
min. | $I_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{\rm a}$ max. | $D_{ m x}$ min. | $C_{\scriptscriptstyle \mathrm{Y}}$ max. | approx. | | N
N | NR
NR | 1.3
1.7 | 0.95
0.95
— | 35.7
40.7 | 0.25
0.25
— | 0.3
0.3
— | 39.8
44.8
— | 0.85
0.85 | 27
27
27 | 27
28.5
— | 35
40
45 | 0.3
0.3
0.3 | 40.5
45.5 | 1.8
2.3 | 0.021
0.042
0.059 | | N
N
N | NR
NR
NR | 2.06
2.46
3.28 | 1.35
1.35
1.9 | 44.6
49.73
59.61 | 0.4
0.4
0.6 | 0.5
0.5
0.5 | 52.7
57.9
67.7 | 1.12
1.12
1.7 | 29
30
31.5 | 30
32
36 | 43
47
55.5 | 0.6
1
1 | 53.5
58.5
68.5 | 2.9
3.3
4.6 | 0.079
0.129
0.235 | | N
N
N | NR
NR
NR | 2.06
2.46
3.28 | 1.35
1.35
1.9 | 49.73
55.6
64.82 | 0.4
0.4
0.6 | 0.5
0.5
0.5 | 57.9
63.7
74.6 | 1.12
1.12
1.7 | 32
33
34.5 | 34
35.5
38 | 48
53
61.5 | 0.6
1
1 | 58.5
64.5
76 | 2.9
3.3
4.6 | 0.096
0.175
0.287 | | N
N | NR
NR | 1.3
1.7
— | 0.95
0.95
— | 40.7
45.7
— | 0.25
0.25
— | 0.3
0.3
— | 44.8
49.8
— | 0.85
0.85
— | 32
32
32 | 32
34
— | 40
45
53 | 0.3
0.3
0.3 | 45.5
50.5
— | 1.8
2.3
— | 0.024
0.052
0.087 | | N
N
N | NR
NR
NR | 2.08
3.28
3.28 | 1.35
1.9
1.9 | 52.6
59.61
68.81 | 0.4
0.6
0.6 | 0.5
0.5
0.5 | 60.7
67.7
78.6 | 1.12
1.7
1.7 | 35
35
36.5 | 36.5
38.5
42.5 | 50
57
65.5 | 1
1
1 | 61.5
68.5
80 | 2.9
4.6
4.6 | 0.116
0.199
0.345 | | N
N
N | NR
NR
NR | 2.08
3.28
3.28 | 1.35
1.9
1.9 | 55.6
62.6
71.83 | 0.4
0.6
0.6 | 0.5
0.5
0.5 | 63.7
70.7
81.6 | 1.12
1.7
1.7 | 37
37
38.5 | 38.5
40
44.5 | 53
60
68.5 | 1
1
1 | 64.5
71.5
83 | 2.9
4.6
4.6 | 0.122
0.225
0.389 | | N
N | NR
NR | 1.3
1.7
— | 0.95
0.95
— | 45.7
53.7
— | 0.25
0.25
— | 0.3
0.5
— | 49.8
57.8
— | 0.85
0.85
— | 37
39
37 | 37
39
— | 45
51
60 | 0.3
0.6
0.3 | 50.5
58.5
— | 1.8
2.3
— | 0.027
0.075
0.107 | | N
N
N | NR
NR
NR | 2.08
3.28
3.28 | 1.9
1.9
1.9 | 59.61
68.81
76.81 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 67.7
78.6
86.6 | 1.7
1.7
1.7 | 40
41.5
43 | 41.5
44.5
47 | 57
65.5
72 | 1
1
1.5 | 68.5
80
88 | 3.4
4.6
4.6 | 0.151
0.284
0.464 | | N
N | NR
NR | 1.3
1.7
— | 0.95
0.95
— | 50.7
60.7
— | 0.25
0.25
— | 0.3
0.5
— | 54.8
64.8
— | 0.85
0.85
— |
42
44
42 | 42
46
— | 50
58
66 | 0.3
0.6
0.3 | 55.5
65.5
— | 1.8
2.3
— | 0.031
0.112
0.13 | | N
N
N | NR
NR
NR | 2.49
3.28
3.28 | 1.9
1.9
2.7 | 64.82
76.81
86.79 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 74.6
86.6
96.5 | 1.7
1.7
2.46 | 45
46.5
48 | 47.5
50.5
53 | 63
73.5
82 | 1
1
1.5 | 76
88
98 | 3.8
4.6
5.4 | 0.19
0.366
0.636 | | N
N | NR
NR | 1.3
1.7
— | 0.95
0.95
— | 56.7
66.7
— | 0.25
0.25
— | 0.3
0.5
— | 60.8
70.8
— | 0.85
0.85
— | 47
49
49 | 47.5
50
— | 56
64
71 | 0.3
0.6
0.6 | 61.5
72
— | 1.8
2.3
— | 0.038
0.126
0.167 | | N
N
N | NR
NR
NR | 2.49
3.28
3.28 | 1.9
1.9
2.7 | 71.83
81.81
96.8 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 81.6
91.6
106.5 | 1.7
1.7
2.46 | 50
51.5
53 | 53.5
55.5
61.5 | 70
78.5
92 | 1
1
1.5 | 83
93
108 | 3.8
4.6
5.4 | 0.241
0.42
0.829 | Remarks 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. $\phi D_{\rm a}$ ϕD_1 $\phi d_a \phi D_{\gamma}$ 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. ### Bore Diameter 25 - 45 mm | | | | | | | | v v | | יטט י טט | , | IV | | | IV | 11 | |-----|-----------------|----------------|-------------------|------------------------------|----------------------------|-------------------------|-------------------------|----------------------|----------------------------|-------------------------|----------------------------|-------------------------|----------------|----------------|-------------------| | Bou | ndary D | | sions | Basic Load Ratings (N) {kgf} | | | Factor | Limiting | Speeds | (min ⁻¹) | F | Bearin | a Nur | nbers | | | | (m | m) | | (1 | V) | {k | gf} | | Gre | ase | Oil | | J 0 u | 9 | | | d | D | В | ∤
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open S | hielded | Se | aled | | 25 | 37
42
47 | 7
9
8 | 0.3
0.3
0.3 | 4 500
7 050
8 850 | 3 150
4 550
5 600 | 455
715
905 | 320
460
570 | 16.1
15.4
15.1 | 18 000
16 000
15 000 | 10 000
10 000
— | 22 000
19 000
18 000 | 6805
6905
16005 | ZZ
ZZ | VV
VV | DD
DDU | | | 47
52
62 | 12
15
17 | 0.6
1
1.1 | 10 100
14 000
20 600 | 5 850
7 850
11 200 | 1 030
1 430
2 100 | 595
800
1 150 | 14.5
13.9
13.2 | 15 000
13 000
11 000 | 9 500
9 000
8 000 | 18 000
15 000
13 000 | 6005
6205
6305 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 28 | 52
58
68 | 12
16
18 | 0.6
1
1.1 | 12 500
16 600
26 700 | 7 400
9 500
14 000 | 1 270
1 700
2 730 | 755
970
1 430 | 14.5
13.9
12.4 | 14 000
12 000
10 000 | 8 500
8 000
7 500 | 16 000
14 000
13 000 | 60/28
62/28
63/28 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 30 | 42
47
55 | 7
9
9 | 0.3
0.3
0.3 | 4 700
7 250
11 200 | 3 650
5 000
7 350 | 480
740
1 150 | 370
510
750 | 16.4
15.8
15.2 | 15 000
14 000
13 000 | 9 000
8 500
— | 18 000
17 000
15 000 | 6806
6906
16006 | ZZ
ZZ
— | VV
VV | DD
DDU
— | | | 55
62
72 | 13
16
19 | 1
1
1.1 | 13 200
19 500
26 700 | 8 300
11 300
15 000 | 1 350
1 980
2 720 | 845
1 150
1 530 | 14.7
13.8
13.3 | 13 000
11 000
9 500 | 8 000
7 500
6 700 | 15 000
13 000
12 000 | 6006
6206
6306 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 32 | 58
65
75 | 13
17
20 | 1
1
1.1 | 15 100
20 700
29 900 | 9 150
11 600
17 000 | 1 530
2 120
3 050 | 935
1 190
1 730 | 14.5
13.6
13.2 | 12 000
10 000
9 000 | 7 500
7 100
6 300 | 14 000
12 000
11 000 | 60/32
62/32
63/32 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 35 | 47
55
62 | 7
10
9 | 0.3
0.6
0.3 | 4 900
10 600
11 700 | 4 100
7 250
8 200 | 500
1 080
1 190 | 420
740
835 | 16.7
15.5
15.6 | 14 000
12 000
11 000 | 7 500
7 500
— | 16 000
15 000
13 000 | 6807
6907
16007 | ZZ
ZZ | VV
VV | DD
DDU | | | 62
72
80 | 14
17
21 | 1
1.1
1.5 | 16 000
25 700
33 500 | 10 300
15 300
19 200 | 1 630
2 620
3 400 | 1 050
1 560
1 960 | 14.8
13.8
13.2 | 11 000
9 500
8 500 | 6 700
6 300
6 000 | 13 000
11 000
10 000 | 6007
6207
6307 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 40 | 52
62
68 | 7
12
9 | 0.3
0.6
0.3 | 6 350
13 700
12 600 | 5 550
10 000
9 650 | 650
1 390
1 290 | 565
1 020
985 | 17.0
15.7
16.0 | 12 000
11 000
10 000 | 6 700
6 300
— | 14 000
13 000
12 000 | 6808
6908
16008 | ZZ
ZZ | VV
VV | DD
DDU
— | | | 68
80
90 | 15
18
23 | 1
1.1
1.5 | 16 800
29 100
40 500 | 11 500
17 900
24 000 | 1 710
2 970
4 150 | 1 180
1 820
2 450 | 15.3
14.0
13.2 | 10 000
8 500
7 500 | 6 000
5 600
5 300 | 12 000
10 000
9 000 | 6008
6208
6308 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 45 | 58
68
75 | 7
12
10 | 0.3
0.6
0.6 | 6 600
14 100
14 900 | 6 150
10 900
11 400 | 670
1 440
1 520 | 625
1 110
1 160 | 17.2
15.9
15.9 | 11 000
9 500
9 000 | 6 000
5 600
— | 13 000
12 000
11 000 | 6809
6909
16009 | ZZ
ZZ | VV
VV | DD
DDU
— | | | 75
85
100 | 16
19
25 | 1
1.1
1.5 | 20 900
31 500
53 000 | 15 200
20 400
32 000 | 2 140
3 200
5 400 | 1 550
2 080
3 250 | 15.3
14.4
13.1 | 9 000
7 500
6 700 | 5 300
5 300
4 800 | 11 000
9 000
8 000 | 6009
6209
6309 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A50 to A53. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. | Bou | ndary [| | sions | () | Basic Load | | 0 | Factor | Limiting | Speeds | (min ⁻¹) | Bea | ring Num | bers | |-----|-------------------|----------------|-------------------|-----------------------------|----------------------------|--------------------------|-------------------------|----------------------|--------------------------|-------------------------|----------------------------|-------------------------------|----------|-------------------| | | (111) | 111/ | | (1) | 1) | {kg | T} | | Grea | se | Oil | | | | | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shiel | ded Sea | led | | 50 | 65
72
80 | 7
12
10 | 0.3
0.6
0.6 | 6 400
14 500
15 400 | 6 200
11 700
12 400 | 655
1 480
1 570 | 635
1 200
1 260 | 17.2
16.1
16.1 | 9 500
9 000
8 500 | 5 300
5 300
— | 11 000
11 000
10 000 | 6810 ZZ
6910 ZZ
16010 — | | DDU
DDU | | | 80
90
110 | 16
20
27 | 1
1.1
2 | 21 800
35 000
62 000 | 16 600
23 200
38 500 | 2 220
3 600
6 300 | 1 700
2 370
3 900 | 15.6
14.4
13.2 | 8 500
7 100
6 000 | 4 800
4 800
4 300 | 10 000
8 500
7 500 | 6010 ZZ
6210 ZZ
6310 ZZ | . VV | DDU
DDU
DDU | | 55 | 72
80
90 | 9
13
11 | 0.3
1
0.6 | 8 800
16 000
19 400 | 8 500
13 300
16 300 | 900
1 630
1 980 | 865
1 350
1 660 | 17.0
16.2
16.2 | 8 500
8 000
7 500 | 4 800
4 500
— | 10 000
9 500
9 000 | 6811 ZZ
6911 ZZ
16011 — | | DDU
DDU | | | 90
100
120 | 18
21
29 | 1.1
1.5
2 | 28 300
43 500
71 500 | 21 200
29 300
44 500 | 2 880
4 450
7 300 | 2 170
2 980
4 550 | 15.3
14.3
13.1 | 7 500
6 300
5 600 | 4 500
4 300
4 000 | 9 000
7 500
6 700 | 6011 ZZ
6211 ZZ
6311 ZZ | . VV | DDU
DDU
DDU | | 60 | 78
85
95 | 10
13
11 | 0.3
1
0.6 | 11 500
19 400
20 000 | 10 900
16 300
17 500 | 1 170
1 980
2 040 | 1 120
1 660
1 780 | 16.9
16.2
16.3 | 8 000
7 500
7 100 | 4 500
4 300
— | 9 500
9 000
8 500 | 6812 ZZ
6912 ZZ
16012 — | | DD
DDU
— | | | 95
110
130 | 18
22
31 | 1.1
1.5
2.1 | 29 500
52 500
82 000 | 23 200
36 000
52 000 | 3 000
5 350
8 350 | 2 370
3 700
5 300 | 15.6
14.3
13.1 | 7 100
5 600
5 300 | 4 000
3 800
3 600 | 8 500
7 100
6 300 | 6012 ZZ
6212 ZZ
6312 ZZ | VV I | DDU
DDU
DDU | | 65 | 85
90
100 | 10
13
11 | 0.6
1
0.6 | 11 900
17 400
20 500 | 12 100
16 100
18 700 | 1 220
1 770
2 090 | 1 230
1 640
1 910 | 17.0
16.6
16.5 | 7 500
7 100
6 700 | 4 000
4 000
— | 8 500
8 500
8 000 | 6813 ZZ
6913 ZZ
16013 — | | DD
DDU
— | | | 100
120
140 | 18
23
33 | 1.1
1.5
2.1 | 30 500
57 500
92 500 | 25 200
40 000
60 000 | 3 100
5 850
9 450 | 2 570
4 100
6 100 | 15.8
14.4
13.2 | 6 700
5 300
4 800 | 4 000
3 600
3 400 | 8 000
6 300
6 000 | 6013 ZZ
6213 ZZ
6313 ZZ | VV I | DDU
DDU
DDU | | 70 | 90
100
110 | 10
16
13 | 0.6
1
0.6 | 12 100
23 700
26 800 | 12 700
21 200
23 600 | 1 230
2 420
2 730 | 1 300
2 160
2 410 | 17.2
16.3
16.3 | 6 700
6 300
6 000 | 3 800
— | 8 000
7 500
7 100 | 6814 ZZ
6914 ZZ
16014 — | VV
i | DD
DDU
— | | | 110
125
150 | 20
24
35 | 1.1
1.5
2.1 | 38 000
62 000
104 000 | 31 000
44 000
68 000 | 3 900
6 350
10 600 | 3 150
4 500
6 950 | 15.6
14.5
13.2 | 6 000
5 000
4 500 | 3 600
3 400
3 200 | 7 100
6 300
5 300 | 6014 ZZ
6214 ZZ
6314 ZZ | VV I | DDU
DDU
DDU | | 75 | 95
105
115 | 10
16
13 | 0.6
1
0.6 | 12 500
24 400
27 600 | 13 900
22 600
25 300 | 1 280
2 480
2 820 | 1 410
2 300
2 580 | 17.3
16.5
16.4 | 6 300
6 000
5 600 | 3 600
3 400
— | 7 500
7 100
6 700 | 6815 ZZ
6915 ZZ
16015 — | | DDU
DDU
— | | | 115
130
160 | 20
25
37 | 1.1
1.5
2.1 | 39 500
66 000
113 000 | 33 500
49 500
77 000 | 4 050
6 750
11 600 | 3 400
5 050
7 850 | 15.8
14.7
13.2 | 5 600
4 800
4 300 | 3 400
3 200
2 800 | 6 700
5 600
5 000 | 6015 ZZ
6215 ZZ
6315 ZZ | . VV | DDU
DDU
DDU | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A50 to A53. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. $P = XF_r + YF_a$ NSK | Static | Equiva | lent | Load | |--------|--------|------|------| | | | | | > 0.8, $P_0 = 0.6F_r + 0.5F_a$ | With | With | Sna | p Ring G | iroove Dim
(mm) | ensions | (1) | Snap Ri
Dimen | sions | | Abutmer | nt and Fill
(mm | | ensions | | Mass
(kg) | |------------------------|----------------|----------------------|-------------------|----------------------------|----------------------------|------------------------|-------------------------|----------------------|------------------|------------------------|-----------------------|--------------------------|---------------------|-------------------|----------------------| | Snap
Ring
Iroove | Snap
Ring | а
max. | $m{b}$ min. | $D_{ m 1}$ max. | $oldsymbol{\gamma}_0$ max. | $\emph{r}_{ m N}$ min. | $D_2^{(m mr}$ max. | f max. | d min. | $f_{\rm a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{ m a}$ max. | $D_{ m x}$ min. | $C_{ m Y}$ max. | approx | | N
N | NR
NR | 1.3
1.7
— | 0.95
0.95
— | 63.7
70.7
— | 0.25
0.25
— | 0.3
0.5
— | 67.8
74.8
— | 0.85
0.85
— | 52
54
54 | 52.5
55
— | 63
68
76 | 0.3
0.6
0.6 | 68.5
76
— | 1.8
2.3
— | 0.05
0.13
0.17 | | N
N
N | NR
NR
NR | 2.49
3.28
3.28 | 1.9
2.7
2.7 | 76.81
86.79
106.81 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 86.6
96.5
116.6 | 1.7
2.46
2.46 | 55
56.5
59 | 58.5
60
68 | 75
83.5
101 | 1
1
2 | 88
98
118 | 3.8
5.4
5.4 | 0.26
0.45
1.06 | | N
N | NR
NR | 1.7
2.1
— | 0.95
1.3
— | 70.7
77.9
— | 0.25
0.4
— | 0.3
0.5
— | 74.8
84.4
— | 0.85
1.12
— | 57
60
59 | 59
61.5
— | 70
75
86 | 0.3
1
0.6 | 76
86
— | 2.3
2.9
— | 0.08
0.18
0.28 | | N
N
N | NR
NR
NR | 2.87
3.28
4.06 | 2.7
2.7
3.1 | 86.79
96.8
115.21 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 96.5
106.5
129.7 | 2.46
2.46
2.82 | 61.5
63
64 | 64
66.5
72.5 | 83.5
92
111 | 1
1.5
2 | 98
108
131.5 | 5
5.4
6.5 | 0.38
0.67
1.37 | | N
N | NR
NR | 1.7
2.1
— | 1.3
1.3
— | 76.2
82.9
— | 0.4
0.4
— | 0.3
0.5
— | 82.7
89.4
— | 1.12
1.12
— | 62
65
64 | 64
66
— | 76
80
91 | 0.3
1
0.6 | 84
91
— | 2.5
2.9
— | 0.10
0.19
0.28 | | N
N
N | NR
NR
NR | 2.87
3.28
4.06 | 2.7
2.7
3.1 | 91.82
106.81
125.22 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 101.6
116.6
139.7 | 2.46
2.46
2.82 | 66.5
68
71 | 69
74.5
79 | 88.5
102
119 | 1
1.5
2 | 103
118
141.5 | 5
5.4
6.5 | 0.4°
0.78
1.72 | | N
N | NR
NR | 1.7
2.1
— | 1.3
1.3
— | 82.9
87.9
— | 0.4
0.4
— | 0.5
0.5
— | 89.4
94.4
— | 1.12
1.12
— | 69
70
69 | 69
71.5
— | 81
85
96 | 0.6
1
0.6 | 91
96
— | 2.5
2.9
— | 0.13
0.2
0.3 | | N
N
N | NR
NR
NR | 2.87
4.06
4.9 | 2.7
3.1
3.1 | 96.8
115.21
135.23 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 106.5
129.7
149.7 | 2.46
2.82
2.82 | 71.5
73
76 | 73
80
85.5 | 93.5
112
129 | 1
1.5
2 | 108
131.5
152 | 5
6.5
7.3 | 0.43
1.0
2.1 | | N
N | NR
NR | 1.7
2.5
— | 1.3
1.3
— | 87.9
97.9
— | 0.4
0.4
— | 0.5
0.5
— | 94.4
104.4
— | 1.12
1.12
— | 74
75
74 | 74.5
77.5
— | 86
95
106 | 0.6
1
0.6 | 96
106
— | 2.5
3.3
— | 0.13
0.34
0.44 | | N
N
N | NR
NR
NR | 2.87
4.06
4.9 | 2.7
3.1
3.1 | 106.81
120.22
145.24 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 116.6
134.7
159.7 | 2.46
2.82
2.82 | 76.5
78
81 | 80.5
84
92 | 103.5
117
139 | 1
1.5
2 | 118
136.5
162 | 5
6.5
7.3 | 0.60
1.00
2.5 | | N
N | NR
NR | 1.7
2.5
— | 1.3
1.3
— | 92.9
102.6
— | 0.4
0.4
— | 0.5
0.5
— | 99.4
110.7
— | 1.12
1.12
— | 79
80
79 | 79.5
82
— | 91
100
111 | 0.6
1
0.6 | 101
112
— | 2.5
3.3
— | 0.14
0.30
0.40 | | N
N
N | NR
NR
NR | 2.87
4.06
4.9 | 2.7
3.1
3.1 | 111.81
125.22
155.22 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 121.6
139.7
169.7 | 2.46
2.82
2.82 | 81.5
83
86 | 85.5
90
98.5 | 108.5
122
149 | 1
1.5
2 | 123
141.5
172 | 5
6.5
7.3 | 0.64
1.19
3.08 | **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. ϕD_a ϕD_1 NR $\phi d_a \phi D_X$ 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. | | | | | | | | v v | | DD DDC | | | | | VII (| |-----|--------------------------|----------------|------------------|------------------------------|------------------------------|---------------------------|---------------------------|----------------------|--------------------------|-------------------------|-------------------------|-------------------------------|--------------|-------------------| | Bou | Boundary Dimensions (mm) | | | | Basic Load | | 0 | Factor | Limiting | Speeds (| min ⁻¹) | Bea | aring Nu | mbers | | | (111) | 111) | | 1) | ۷) | {k | gt} | | Grea | se | Oil | | | | | d | D | В | ∤
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shie | lded S | ealed | | 80 | 100
110
125 | 10
16
14 | 0.6
1
0.6 | 12 700
25 000
32 000 | 14 500
24 000
29 600 | 1 290
2 540
3 250 | 1 470
2 450
3 000 | 17.4
16.6
16.4 | 6 000
5 600
5 300 | 3 400
3 200
— | 7 100
6 700
6 300 | 6816 Z
6916 Z
16016 — | z vv | DDU
DDU | | | 125
140
170 | 22
26
39 | 1.1
2
2.1 | 47 500
72 500
123 000 | 40 000
53 000
86 500 | 4 850
7 400
12 500 | 4 050
5 400
8 850 | 15.6
14.6
13.3 | 5 300
4 500
4 000 | 3 200
3 000
2 800 | 6 300
5 300
4 800 | 6016 Zi
6216 Zi
6316 Zi | Z VV | DDU
DDU
DDU | | 85 | 110
120
130 | 13
18
14 | 1
1.1
0.6 | 18 700
32 000
33 000 | 20 000
29 600
31 500 | 1 910
3 250
3 350 | 2 040
3 000
3 200 | 17.1
16.4
16.5 | 5 600
5 300
5 000 | 3 200
3 000
— | 6 700
6 300
6 000 | 6817 Z
6917 Z
16017 — | | DDU
DDU | | | 130
150
180 | 22
28
41 | 1.1
2
3 | 49 500
84 000
133 000 | 43 000
62 000
97 000 | 5 050
8 550
13 500 | 4 400
6 300
9 850 | 15.8
14.5
13.3 | 5 000
4 300
3 800 | 3 000
2 800
2 600 | 6 000
5 000
4 500 | 6017 Z
6217 Z
6317 Z | z vv | DDU
DDU
DDU | | 90 | 115
125
140 | 13
18
16 | 1
1.1
1 | 19 000
33 000
41 500 | 21 000
31 500
39 500 | 1 940
3 350
4 250 | 2 140
3 200
4 000 | 17.2
16.5
16.3 | 5 300
5 000
4 800 | 3 000
2 800
— | 6 300
6 000
5 600 | 6818 Z
6918 Z
16018 — | z vv | DDU
DDU | | | 140
160
190 | 24
30
43 | 1.5
2
3 | 58 000
96 000
143 000 | 50 000
71 500
107 000 | 5 950
9 800
14 500 | 5 050
7 300
11 000 | 15.6
14.5
13.3 | 4 800
4 000
3 600 | 2 800
2 600
2 400 | 5 600
4 800
4 300 | 6018 Z
6218 Z
6318 Z | Z VV | DDU
DDU
DDU | | 95 | 120
130
145 | 13
18
16 | 1
1.1
1 | 19 300
33 500
43 000 | 22 000
33 500
42 000 | 1 970
3 450
4 350 | 2 240
3 400
4 250 | 17.2
16.6
16.4 | 5 000
4 800
4 500 | 2 800
2 800
— | 6 000
5 600
5 300 | 6819 Z
6919 Z
16019 — | | DD
DDU | | | 145
170
200 | 24
32
45 | 1.5
2.1
3 | 60 500
109 000
153 000 | 54 000
82 000
119 000 | 6 150
11 100
15 600 | 5 500
8 350
12 100 | 15.8
14.4
13.3 | 4 500
3 800
3 000 | 2 600
2 600
2 400 | 5 300
4 500
3 600 | 6019 Z
6219 Z
6319 Z | Z VV | DDU
DDU
DDU | | 100 | 125
140
150 | 13
20
16 | 1
1.1
1 | 19 600
43 000
42 500 | 23 000
42 000
42 000 | 2 000
4 350
4 300 | 2 340
4 250
4 300 | 17.3
16.4
16.5 | 4 800
4 500
4 300 | 2 800
2 600
— | 5 600
5 300
5 300 | 6820 Z
6920 Z
16020 — | z vv | DD
DDU | | | 150
180
215 | 24
34
47 | 1.5
2.1
3 | 60 000
122 000
173 000 | 54 000
93 000
141 000 | 6 150
12 500
17 700 | 5 550
9 500
14 400 | 15.9
14.4
13.2 | 4 300
3
600
2 800 | 2 600
2 400
2 200 | 5 300
4 300
3 400 | 6020 Z
6220 Z
6320 Z | Z VV
Z VV | DDU
DDU
DDU | | 105 | 130
145
160 | 13
20
18 | 1
1.1
1 | 19 800
42 500
52 000 | 23 900
42 000
50 500 | 2 020
4 300
5 300 | 2 440
4 300
5 150 | 17.4
16.5
16.3 | 4 800
4 300
4 000 | 2 600
—
— | 5 600
5 300
4 800 | 6821 Z
6921 Z
16021 — | Z VV | DDU
—
— | | | 160
190
225 | 26
36
49 | 2
2.1
3 | 72 500
133 000
184 000 | 66 000
105 000
154 000 | 7 400
13 600
18 700 | 6 700
10 700
15 700 | 15.8
14.4
13.2 | 4 000
3 400
2 600 | 2 400
2 200
2 000 | 4 800
4 000
3 200 | 6021 Z
6221 Z
6321 Z | Z VV | DDU
DDU
DDU | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A50 to A53. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. $P = XF_r + YF_a$ | | -1 6 | 1 | | | | |--------------------------|------|---|----------|-----------------------------|------| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{ m a}}{F_{ m r}}$ | >e | | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | | | NSK ## Static Equivalent Load $\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$ $\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$ | With | | Sna | o Ring G | Groove Dim | ensions | S (1) | Snap R
Dimen | sions | | Abutmer | nt and Fille | | ensions | | Mass
(kg) | |-----------------------|----------------|----------------------------|--------------------------|-------------------------------------|--------------------------|--------------------------|----------------------------------|-----------------------------|------------------------|-----------------------------|----------------------------|--------------------------|----------------------------|--|--------------------------------| | Snap
Ring
Groov | Ring | а
max. | $b \atop ext{min.}$ | $D_{ m 1}$ max. | ${m r}_0$ max. | $ m \emph{r}_{N}$ min. | $D_2^{(m max.}$ | f max. | min. | $l_{ m a^{(2)}}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{ m a}$ max. | $D_{ m x}$ min. | $C_{\scriptscriptstyle \mathrm{Y}}$ max. | approx. | | N
N | NR
NR | 1.7
2.5
— | 1.3
1.3
— | 97.9
107.6
— | 0.4
0.4
— | 0.5
0.5
— | 104.4
115.7
— | 1.12
1.12
— | 84
85
84 | 84.5
87.5
— | 96
105
121 | 0.6
1
0.6 | 106
117
— | 2.5
3.3
— | 0.151
0.391
0.621 | | N
N
N | NR
NR
NR | 2.87
4.9
5.69
2.1 | 3.1
3.1
3.5
1.3 | 120.22
135.23
163.65
107.6 | 0.6
0.6
0.6
0.4 | 0.5
0.5
0.5
0.5 | 134.7
149.7
182.9
115.7 | 2.82
2.82
3.1
1.12 | 86.5
89
91
90 | 91
95.5
104.5
90.5 | 118.5
131
159
105 | 1
2
2 | 136.5
152
185
117 | 5.3
7.3
8.4
2.9 | 0.872
1.42
3.67
0.263 | | N
— | NR
— | 3.3 | 1.3 | 117.6
— | 0.4 | 0.5
0.5
— | 125.7
— | 1.12
— | 91.5
89 | 94.5 | 113.5
126 | 1 0.6 | 127
— | 4.1 | 0.55
0.652 | | N
N
N | NR
NR
NR | 2.87
4.9
5.69 | 3.1
3.1
3.5 | 125.22
145.24
173.66 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 139.7
159.7
192.9 | 2.82
2.82
3.1 | 91.5
94
98 | 96
102
110.5 | 123.5
141
167 | 1
2
2.5 | 141.5
162
195 | 5.3
7.3
8.4 | 0.918
1.76
4.28 | | N
N | NR
NR
— | 2.1
3.3
— | 1.3
1.3
— | 112.6
122.6
— | 0.4
0.4
— | 0.5
0.5
— | 120.7
130.7
— | 1.12
1.12
— | 95
96.5
95 | 95.5
98.5
— | 110
118.5
135 | 1
1
1 | 122
132
— | 2.9
4.1
— | 0.276
0.585
0.873 | | N
N
N | NR
NR
NR | 3.71
4.9
5.69 | 3.1
3.1
3.5 | 135.23
155.22
183.64 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 149.7
169.7
202.9 | 2.82
2.82
3.1 | 98
99
103 | 103
107.5
117 | 132
151
177 | 1.5
2
2.5 | 152
172
205 | 6.1
7.3
8.4 | 1.19
2.18
4.98 | | N
N | NR
NR
— | 2.1
3.3
— | 1.3
1.3
— | 117.6
127.6
— | 0.4
0.4
— | 0.5
0.5
— | 125.7
135.7
— | 1.12
1.12
— | 100
101.5
100 | 101.5
103.5
— | 115
123.5
140 | 1
1
1 | 127
137
— | 2.9
4.1
— | 0.297
0.601
0.904 | | N
N
N | NR
NR
NR | 3.71
5.69
5.69 | 3.1
3.5
3.5 | 140.23
163.65
193.65 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 154.7
182.9
212.9 | 2.82
3.1
3.1 | 103
106
108 | 108.5
114
123.5 | 137
159
187 | 1.5
2
2.5 | 157
185
215 | 6.1
8.4
8.4 | 1.23
2.64
5.76 | | N
N | NR
NR | 2.1
3.3
— | 1.3
1.9
— | 122.6
137.6
— | 0.4
0.6
— | 0.5
0.5
— | 130.7
145.7
— | 1.12
1.7
— | 105
106.5
105 | 105.5
111
— | 120
133.5
145 | 1
1
1 | 132
147
— | 2.9
4.7
— | 0.31
0.828
0.945 | | N
N | NR
NR | 3.71
5.69
— | 3.1
3.5
— | 145.24
173.66
— | 0.6
0.6
— | 0.5
0.5
— | 159.7
192.9
— | 2.82
3.1
— | 108
111
113 | 112.5
121.5
133 | 142
169
202 | 1.5
2
2.5 | 162
195
— | 6.1
8.4
— | 1.29
3.17
7.04 | | N
N | NR
NR | 2.1
3.3
— | 1.3
1.9
— | 127.6
142.6
— | 0.4
0.6
— | 0.5
0.5
— | 135.7
150.7
— | 1.12
1.7
— | 110
111.5
110 | 110.5
116
— | 125
138.5
155 | 1
1
1 | 137
152
— | 2.9
4.7
— | 0.324
0.856
1.24 | | N
N | NR
NR
— | 3.71
5.69
— | 3.1
3.5
— | 155.22
183.64
— | 0.6
0.6
— | 0.5
0.5
— | 169.7
202.9
— | 2.82
3.1
— | 114
116
118 | 120
127.5
138 | 151
179
212 | 2
2
2.5 | 172
205
— | 6.1
8.4
— | 1.58
3.79
8.09 | **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. $\phi D_{\rm a}$ ϕD_1 $\phi d_a \phi D_X$ 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. Shielded Type ZZ · ZZS NSK Bore Diameter 110 - 160 mm Open Type Sealed Type DD · DDU Sealed Type VV Ring Groove N | Bou | ndary D | | sions | | Basic Load | | | Factor Limiting Speeds (min ⁻¹) Grease Oil | | | min ⁻¹) | Bearing Numbers | |----------|-------------------|----------------|-------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|---|--------------------------|-----------|-------------------------|--| | | (m | | | 1) | • | | gf} | f _o Open | | | Oil | | | <i>d</i> | D | В | ∤
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shielded Sealed | | 110 | 140 | 16 | 1 | 28 100 | 32 500 | 2 860 | 3 350 | 17.1 | 4 300 | 2 400 | 5 300 | 6822 ZZ VV DDU | | | 150 | 20 | 1.1 | 43 500 | 44 500 | 4 450 | 4 550 | 16.6 | 4 300 | 2 400 | 5 000 | 6922 ZZ VV DDU | | | 170 | 19 | 1 | 57 500 | 56 500 | 5 850 | 5 800 | 16.3 | 3 800 | — | 4 500 | 16022 — — — | | | 170 | 28 | 2 | 85 000 | 73 000 | 8 650 | 7 450 | 15.5 | 3 800 | 2 200 | 4 500 | 6022 ZZ VV DDU | | | 200 | 38 | 2.1 | 144 000 | 117 000 | 14 700 | 11 900 | 14.3 | 2 800 | 2 200 | 3 400 | 6222 ZZ VV DDU | | | 240 | 50 | 3 | 205 000 | 179 000 | 20 900 | 18 300 | 13.2 | 2 400 | — | 3 000 | 6322 ZZ — — | | 120 | 150 | 16 | 1 | 28 900 | 35 500 | 2 950 | 3 650 | 17.3 | 4 000 | 2 200 | 4 800 | 6824 ZZ VV DD | | | 165 | 22 | 1.1 | 53 000 | 54 000 | 5 400 | 5 500 | 16.5 | 3 800 | — | 4 500 | 6924 ZZ — — | | | 180 | 19 | 1 | 56 500 | 57 500 | 5 800 | 5 850 | 16.5 | 3 600 | — | 4 300 | 16024 — — — | | | 180 | 28 | 2 | 88 000 | 80 000 | 9 000 | 8 150 | 15.7 | 3 600 | 2 200 | 4 300 | 6024 ZZ VV DDU | | | 215 | 40 | 2.1 | 155 000 | 131 000 | 15 800 | 13 400 | 14.4 | 2 600 | 2 000 | 3 200 | 6224 ZZ VV DDU | | | 260 | 55 | 3 | 207 000 | 185 000 | 21 100 | 18 800 | 13.5 | 2 200 | 1 800 | 2 800 | 6324 ZZS — DDU | | 130 | 165
180
200 | 18
24
22 | 1.1
1.5
1.1 | 37 000
65 000
75 500 | 44 000
67 500
77 500 | 3 750
6 650
7 700 | 4 450
6 850
7 900 | 17.1
16.5
16.4 | 3 600
3 400
3 000 | 2 000 | 4 300
4 000
3 600 | 6826 ZZS VV DD
6926 ZZ — —
16026 — — — | | | 200
230
280 | 33
40
58 | 2
3
4 | 106 000
167 000
229 000 | 101 000
146 000
214 000 | 10 800
17 000
23 400 | 10 300
14 900
21 800 | 15.8
14.5
13.6 | 3 000
2 400
2 200 | 1 900 | 3 600
3 000
2 600 | 6026 ZZ — DDU
6226 ZZ — —
6326 ZZS — — | | 140 | 175
190
210 | 18
24
22 | 1.1
1.5
1.1 | 38 500
66 500
77 500 | 48 000
72 000
82 500 | 3 900
6 800
7 900 | 4 850
7 300
8 400 | 17.3
16.6
16.5 | 3 400
3 200
2 800 | 1 900 | 4 000
3 800
3 400 | 6828 ZZ VV DDU
6928 ZZS VV —
16028 — — — | | | 210 | 33 | 2 | 110 000 | 109 000 | 11 200 | 11 100 | 16.0 | 2 800 | 1 800 | 3 400 | 6028 ZZ — DDU | | | 250 | 42 | 3 | 166 000 | 150 000 | 17 000 | 15 300 | 14.9 | 2 200 | 1 700 | 2 800 | 6228 ZZS — DDU | | | 300 | 62 | 4 | 253 000 | 246 000 | 25 800 | 25 100 | 13.6 | 2 000 | — | 2 400 | 6328 ZZS — — | | 150 | 190 | 20
 1.1 | 47 500 | 58 500 | 4 850 | 5 950 | 17.1 | 3 200 | 1 800 | 3 800 | 6830 ZZ VV DDU | | | 210 | 28 | 2 | 85 000 | 90 500 | 8 650 | 9 200 | 16.5 | 2 600 | 1 700 | 3 200 | 6930 ZZS — DDU | | | 225 | 24 | 1.1 | 84 000 | 91 000 | 8 550 | 9 250 | 16.6 | 2 600 | — | 3 000 | 16030 — — — | | | 225 | 35 | 2.1 | 126 000 | 126 000 | 12 800 | 12 800 | 15.9 | 2 600 | 1 700 | 3 000 | 6030 ZZ VV DDU | | | 270 | 45 | 3 | 176 000 | 168 000 | 18 000 | 17 100 | 15.1 | 2 000 | — | 2 600 | 6230 ZZS — — | | | 320 | 65 | 4 | 274 000 | 284 000 | 28 000 | 28 900 | 13.9 | 1 800 | — | 2 200 | 6330 ZZS — — | | 160 | 200 | 20 | 1.1 | 48 500 | 61 000 | 4 950 | 6 250 | 17.2 | 2 600 | 1 700 | 3 200 | 6832 ZZS VV DDU | | | 220 | 28 | 2 | 87 000 | 96 000 | 8 850 | 9 800 | 16.6 | 2 600 | 1 600 | 3 000 | 6932 ZZS — DDU | | | 240 | 25 | 1.5 | 99 000 | 108 000 | 10 100 | 11 000 | 16.5 | 2 400 | — | 2 800 | 16032 — — — | | | 240 | 38 | 2.1 | 137 000 | 135 000 | 13 900 | 13 800 | 15.9 | 2 400 | 1 600 | 2 800 | 6032 ZZ — DDU | | | 290 | 48 | 3 | 185 000 | 186 000 | 18 900 | 19 000 | 15.4 | 1 900 | — | 2 400 | 6232 ZZS — — | | | 340 | 68 | 4 | 278 000 | 287 000 | 28 300 | 29 200 | 13.9 | 1 700 | — | 2 000 | 6332 ZZS — — | ⁽²⁾ When heavy axial loads are applied, increase d_a and decrease D_a from the above values. | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | |--------------------------|------|-------------------------------|----------|-----------------------------------|------| | U _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | 0.42 0.44 Static Equivalent Load > 0.8, $P_0 = 0.6F_r + 0.5F_a$ | Wit | | Sna | p Ring (| Groove Dim
(mm) | ensions | S (1) | Snap R
Dimen | sions | | Abutmei | nt and Fille | | ensions | | Mass
(kg) | |--------------------|--------------|-------------------|----------------------|-----------------------|---------------------|------------------------|---------------------|-----------------|-----------------------|-----------------------|-----------------------|--------------------------|-----------------|-----------------|------------------------| | Sna
Rin
Groo | g Ring | a
max. | $b \atop ext{min.}$ | $D_{ m 1}$ max. | ${m \gamma}_0$ max. | $ m \emph{r}_{N}$ min. | $D_2^{(m max.}$ | n)
f
max. | min. | $l_{ m a^{(2)}}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{ m a}$ max. | $D_{ m x}$ min. | $C_{ m Y}$ max. | approx. | | N | NR
NR | 2.5
3.3
— | 1.9
1.9
— | 137.6
147.6
— | 0.6
0.6 | 0.5
0.5
— | 145.7
155.7
— | 1.7
1.7
— | 115
116.5
115 | 117
121
— | 135
143.5
165 | 1
1
1 | 147
157
— | 3.9
4.7
— | 0.497
0.893
1.51 | | N
N | NR
NR | 3.71
5.69
— | 3.5
3.5
— | 163.65
193.65
— | 0.6
0.6 | 0.5
0.5
— | 182.9
212.9
— | 3.1
3.1
— | 119
121
123 | 124.5
134
147 | 161
189
227 | 2
2
2.5 | 185
215
— | 6.4
8.4
— | 1.94
4.45
9.51 | | N
N | NR
NR | 2.5
3.7
— | 1.9
1.9
— | 147.6
161.8
— | 0.6
0.6
— | 0.5
0.5
— | 155.7
171.5
— | 1.7
1.7
— | 125
126.5
125 | 127
132
— | 145
158.5
175 | 1
1
1 | 157
173
— | 3.9
5.1
— | 0.537
1.21
1.6 | | N
_ | NR
—
— | 3.71
—
— | 3.5
—
— | 173.66
—
— | 0.6
— | 0.5
—
— | 192.9
—
— | 3.1
 | 129
131
133 | 134.5
146
161 | 171
204
247 | 2
2
2.5 | 195
— | 6.4 | 2.08
5.29
12.5 | | N | NR
NR | 3.3
3.7
— | 1.9
1.9
— | 161.8
176.8
— | 0.6
0.6 | 0.5
0.5
— | 171.5
186.5
— | 1.7
1.7
— | 136.5
138
136.5 | 138
144
— | 158.5
172
193.5 | 1
1.5
1 | 173
188
— | 4.7
5.1
— | 0.758
1.57
2.4 | | N | NR
—
— | 5.69
— | 3.5
—
— | 193.65
—
— | 0.6
— | 0.5
— | 212.9
—
— | 3.1
—
— | 139
143
146 | 148.5
157
175 | 191
217
264 | 2
2.5
3 | 215
— | 8.4
—
— | 3.26
5.96
15.2 | | N
N | NR
NR | 3.3
3.7
— | 1.9
1.9
— | 171.8
186.8
— | 0.6
0.6 | 0.5
0.5
— | 181.5
196.5
— | 1.7
1.7
— | 146.5
148
146.5 | 148.5
153.5
— | 168.5
182
203.5 | 1
1.5
1 | 183
198
— | 4.7
5.1
— | 0.832
1.67
2.84 | | = | _ | Ξ | _ | | _ | _
_
_ | _
_
_ | _ | 149
153
156 | 158.5
171.5
187 | 201
237
284 | 2
2.5
3 | _ | = | 3.48
7.68
18.5 | | N | NR
—
— | 3.3 | 1.9
—
— | 186.8
—
— | 0.6
—
— | 0.5
—
— | 196.5
—
— | 1.7
—
— | 156.5
159
156.5 | 160
166
— | 183.5
201
218.5 | 1
2
1 | 198
—
— | 4.7
—
— | 1.15
3.01
3.62 | | = | _ | Ξ | _ | _
_
_ | _ | _ | _
_
_ | | 161
163
166 | 170
186
203 | 214
257
304 | 2
2.5
3 | _ | _ | 4.24
10
22.7 | | N | NR
— | 3.3 | 1.9
— | 196.8
—
— | 0.6
— | 0.5
—
— | 206.5
—
— | 1.7
— | 166.5
169
168 | 170.5
176
— | 193.5
211
232 | 1
2
1.5 | 208
—
— | 4.7
—
— | 1.23
2.71
4.2 | | = | _ | = | _ | | _ | _
_
_ | _
_
_ | | 171
173
176 | 181.5
202
215.5 | 229
277
324 | 2
2.5
3 | _ | _ | 5.15
12.8
26.2 | Remarks When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. ## Bore Diameter 170 - 240 mm | Open | Туре | | | |------|------|--|--| | | | | | Shielded Type ZZS Non-Contact Sealed Type VV | | | | | | | | | | | VV | | | |-----|-------------------|----------------|-------------------|-------------------------------|-------------------------------|--------------------------|----------------------------|----------------------|--------------------------|-----------|-------------------------|--| | Bou | ndary [|)imen: | sions | | Basic Load | Ratings | | Factor | Limiting | Speeds (i | min ⁻¹) | Bearing Numbers | | | (m | m) | | 1) | V) | {kg | gf} | | Grea | se | Oil | bearing Numbers | | d | D | В | γ
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shielded Sealed | | 170 | 215
230
260 | 22
28
28 | 1.1
2
1.5 | 60 000
86 000
114 000 | 75 000
97 000
126 000 | 6 100
8 750
11 700 | 7 650
9 850
12 900 | 17.1
16.7
16.5 | 2 600
2 400
2 200 | 1 600 | 3 000
2 800
2 600 | 6834 ZZS VV DDU
6934 ZZS — —
16034 — — — | | | 260
310
360 | 42
52
72 | 2.1
4
4 | 161 000
212 000
325 000 | 161 000
224 000
355 000 | 21 700 | 16 400
22 800
36 000 | 15.8
15.3
13.6 | 2 200
1 800
1 600 | | 2 600
2 200
2 000 | 6034 ZZS VV —
6234 ZZS — —
6334 — — — | | 180 | 225
250
280 | 22
33
31 | 1.1
2
2 | 60 500
119 000
145 000 | 78 500
128 000
157 000 | | 8 000
13 100
16 000 | 17.2
16.4
16.3 | 2 400
2 200
2 000 | | 2 800
2 600
2 400 | 6836 — VV —
6936 ZZS — —
16036 — — — | | | 280
320
380 | 46
52
75 | 2.1
4
4 | 180 000
227 000
355 000 | 185 000
241 000
405 000 | 23 200 | 18 800
24 600
41 500 | 15.6
15.1
13.9 | 2 000
1 700
1 500 | | 2 400
2 000
1 800 | 6036 ZZS VV —
6236 ZZS — —
6336 — — — | | 190 | 240
260
290 | 24
33
31 | 1.5
2
2 | 73 000
113 000
149 000 | 93 500
127 000
168 000 | | 9 550
13 000
17 100 | 17.1
16.6
16.4 | 2 200
2 200
2 000 | | 2 600
2 600
2 400 | 6838 — VV —
6938 — — —
16038 — — — | | | 290
340
400 | 46
55
78 | 2.1
4
5 | 188 000
255 000
355 000 | 201 000
282 000
415 000 | 26 000 | 20 500
28 700
42 500 | 15.8
15.0
14.1 | 2 000
1 600
1 400 | | 2 400
2 000
1 700 | 6038 ZZS — —
6238 ZZS — —
6338 — — — | | 200 | 250
280
310 | 24
38
34 | 1.5
2.1
2 | 74 000
143 000
161 000 | 98 000
158 000
180 000 | 14 600 | 10 000
16 100
18 300 | 17.2
16.4
16.4 | 2 200
2 000
1 900 | | 2 600
2 400
2 200 | 6840 — — —
6940 ZZS — —
16040 — — — | | | 310
360
420 | 51
58
80 | 2.1
4
5 | 207 000
269 000
380 000 | 226 000
310 000
445 000 | 27 400 | 23 000
31 500
45 500 | 15.6
15.2
13.8 | 1 900
1 500
1 300 | | 2 200
1 800
1 600 | 6040 ZZS — —
6240 ZZS — —
6340 — — — | | 220 | 270
300
340 | 24
38
37 | 1.5
2.1
2.1 | 76 500
146 000
180 000 | 107 000
169 000
217 000 | 14 900 | 10 900
17 300
22 100 | 17.4
16.6
16.5 | 1 900
1 800
1 600 | | 2 400
2 200
2 000 | 6844 ZZS — —
6944 ZZS — —
16044 — — — | | | 340
400
460 | 56
65
88 | 3
4
5 | 235 000
310 000
410 000 | 271 000
375 000
520 000 | 31 500 | 27 600
38 500
53 000 | 15.6
15.1
14.3 | 1 700
1 300
1 200 | | 2 000
1 600
1 500 | 6044 ZZS — —
6244 — — —
6344 — — — | | 240 | 300
320
360 | 28
38
37 | 2
2.1
2.1 | 98 500
154 000
196 000 | 137 000
190 000
243 000 | 15 700 | 14 000
19 400
24 700 | 17.3
16.8
16.5 | 1 700
1 700
1 500 | | 2 000
2 000
1 900 | 6848 — — —
6948 ZZS — —
16048 — — — | | | 360
440
500 | 56
72
95 | 3
4
5 | 244 000
340 000
470 000 | 296 000
430 000
625 000 | 34 500 | 30 000
44 000
63 500 | 15.9
15.2
14.2 | 1
500
1 200
1 100 | | 1 900
1 500
1 300 | 6048 — — —
6248 — — —
6348 — — — | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. **Remarks** When using bearings with rotating outer rings, contact NSK if they are sealed or shielded. **B** 18 | $\frac{f_0 F_a}{C_{co}}$ | $\frac{f_0 F_a}{C_{0r}}$ e | | $\leq e$ | $\frac{F_a}{F_r} > e$ | | | |--------------------------|------------------------------|---|----------|-----------------------|------|--| | O ₀ r | | X | Y | X | Y | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | Static Equivalent Load $$\frac{F_a}{F_r} > 0.8, P_0 = 0.6F_r + 0.5F_a$$ $$\frac{F_a}{F_r} \le 0.8, P_0 = F_r$$ $$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$$ Mass (kg) | min. | $I_{ m a}^{(1)}$ max. | $D_{\mathrm{a}^{\left(1 ight)}}$ max. | ${m r}_{\rm a}$ max. | approx. | |-------------------|-----------------------|---------------------------------------|----------------------|----------------------| | 176.5 | 182 | 208.5 | 1 | 1.86 | | 179 | 186 | 221 | 2 | 3.34 | | 178 | — | 252 | 1.5 | 5.71 | | 181 | 194.5 | 249 | 2 | 6.89 | | 186 | 215 | 294 | 3 | 15.8 | | 186 | — | 344 | 3 | 36.6 | | 186.5 | 192 | 218.5 | 1 | 1.98 | | 189 | 198.5 | 241 | 2 | 4.16 | | 189 | — | 271 | 2 | 7.5 | | 191 | 208 | 269 | 2 | 8.88 | | 196 | 223 | 304 | 3 | 15.9 | | 196 | — | 364 | 3 | 43.1 | | 198 | 202.5 | 232 | 1.5 | 2.53 | | 199 | — | 251 | 2 | 5.18 | | 199 | — | 281 | 2 | 7.78 | | 201 | 218 | 279 | 2 | 9.39 | | 206 | 236 | 324 | 3 | 22.3 | | 210 | — | 380 | 4 | 49.7 | | 208 | | 242 | 1.5 | 2.67 | | 211 | 222 | 269 | 2 | 7.28 | | 209 | | 301 | 2 | 10 | | 211 | 231.5 | 299 | 2 | 12 | | 216 | 252 | 344 | 3 | 26.7 | | 220 | — | 400 | 4 | 55.3 | | 228 | 233.5 | 262 | 1.5 | 2.9 | | 231 | 242 | 289 | 2 | 7.88 | | 231 | — | 329 | 2 | 13.1 | | 233 | 254.5 | 327 | 2.5 | 18.6 | | 236 | — | 384 | 3 | 37.4 | | 240 | — | 440 | 4 | 73.9 | | 249
251
251 | 262
— | 291
309
349 | 2
2
2 | 4.48
8.49
13.9 | | 253 | = | 347 | 2.5 | 19.9 | | 256 | | 424 | 3 | 50.5 | | 260 | | 480 | 4 | 94.4 | $\phi D_{\rm a}$ Abutment and Fillet Dimensions (mm) ## Bore Diameter 260 - 360 mm Open Type | Во | oundary [| | ons | | Basic Load | | | Factor | Limiting S | • | Bearing
Numbers | |-----|-----------|-----|-----------|-------------|-------------------|-------------|-------------------|--------|------------|-------|--------------------| | , | , | , | | , | (N) {kgf} | | | | (min | , | | | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | | 260 | 320 | 28 | 2 | 101 000 | 148 000 | 10 300 | 15 100 | 17.4 | 1 600 | 1 900 | 6852 | | | 360 | 46 | 2.1 | 204 000 | 255 000 | 20 800 | 26 000 | 16.5 | 1 500 | 1 800 | 6952 | | | 400 | 44 | 3 | 237 000 | 310 000 | 24 100 | 31 500 | 16.4 | 1 400 | 1 700 | 16052 | | | 400 | 65 | 4 | 291 000 | 375 000 | 29 700 | 38 500 | 15.8 | 1 400 | 1 700 | 6052 | | | 480 | 80 | 5 | 400 000 | 540 000 | 41 000 | 55 000 | 15.1 | 1 100 | 1 300 | 6252 | | | 540 | 102 | 6 | 505 000 | 710 000 | 51 500 | 72 500 | 14.6 | 1 000 | 1 200 | 6352 | | 280 | 350 | 33 | 2 | 133 000 | 191 000 | 13 600 | 19 500 | 17.3 | 1 500 | 1 700 | 6856 | | | 380 | 46 | 2.1 | 209 000 | 272 000 | 21 300 | 27 700 | 16.6 | 1 400 | 1 700 | 6956 | | | 420 | 44 | 3 | 243 000 | 330 000 | 24 700 | 33 500 | 16.5 | 1 300 | 1 600 | 16056 | | | 420 | 65 | 4 | 300 000 | 410 000 | 31 000 | 41 500 | 16.0 | 1 300 | 1 600 | 6056 | | | 500 | 80 | 5 | 400 000 | 550 000 | 41 000 | 56 000 | 15.2 | 1 000 | 1 300 | 6256 | | | 580 | 108 | 6 | 570 000 | 840 000 | 58 000 | 86 000 | 14.5 | 900 | 1 100 | 6356 | | 300 | 380 | 38 | 2.1 | 166 000 | 233 000 | 17 000 | 23 800 | 17.1 | 1 300 | 1 600 | 6860 | | | 420 | 56 | 3 | 269 000 | 370 000 | 27 400 | 38 000 | 16.4 | 1 300 | 1 500 | 6960 | | | 460 | 50 | 4 | 285 000 | 405 000 | 29 000 | 41 000 | 16.4 | 1 200 | 1 400 | 16060 | | | 460 | 74 | 4 | 355 000 | 500 000 | 36 500 | 51 000 | 15.8 | 1 200 | 1 400 | 6060 | | | 540 | 85 | 5 | 465 000 | 670 000 | 47 500 | 68 500 | 15.1 | 950 | 1 200 | 6260 | | 320 | 400 | 38 | 2.1 | 168 000 | 244 000 | 17 200 | 24 900 | 17.2 | 1 300 | 1 500 | 6864 | | | 440 | 56 | 3 | 266 000 | 375 000 | 27 100 | 38 000 | 16.5 | 1 200 | 1 400 | 6964 | | | 480 | 50 | 4 | 293 000 | 430 000 | 29 800 | 44 000 | 16.5 | 1 100 | 1 300 | 16064 | | | 480 | 74 | 4 | 390 000 | 570 000 | 40 000 | 58 000 | 15.7 | 1 100 | 1 300 | 6064 | | | 580 | 92 | 5 | 530 000 | 805 000 | 54 500 | 82 500 | 15.0 | 850 | 1 100 | 6264 | | 340 | 420 | 38 | 2.1 | 175 000 | 265 000 | 17 800 | 27 100 | 17.3 | 1 200 | 1 400 | 6868 | | | 460 | 56 | 3 | 273 000 | 400 000 | 27 800 | 40 500 | 16.6 | 1 100 | 1 300 | 6968 | | | 520 | 82 | 5 | 440 000 | 660 000 | 45 000 | 67 500 | 15.6 | 1 000 | 1 200 | 6068 | | | 620 | 92 | 6 | 530 000 | 820 000 | 54 000 | 83 500 | 15.3 | 800 | 1 000 | 6268 | | 360 | 440 | 38 | 2.1 | 192 000 | 290 000 | 19 600 | 29 600 | 17.3 | 1 100 | 1 300 | 6872 | | | 480 | 56 | 3 | 280 000 | 425 000 | 28 500 | 43 000 | 16.7 | 1 100 | 1 300 | 6972 | | | 540 | 82 | 5 | 460 000 | 720 000 | 47 000 | 73 500 | 15.7 | 950 | 1 200 | 6072 | | | 650 | 95 | 6 | 555 000 | 905 000 | 57 000 | 92 000 | 15.4 | 750 | 950 | 6272 | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | |--------------------------|------|-----------------------------|----------|-----------------------------------|------| | O ₀ r | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | ## Static Equivalent Load $\frac{F_a}{F}$ >0.8, P_0 =0.6 F_r +0.5 F_a $$\frac{F_a}{F_r} \le 0.8, P_0 = F_1$$ | 269 | 311 | 2 | 4.84 | |-----|-----|-----|------| | 271 | 349 | 2 | 14 | | 273 | 387 | 2.5 | 21.1 | | 276 | 384 | 3 | 29.4 | | 280 | 460 | 4 | 67 | | 286 | 514 | 5 | 118 | | 289 | 341 | 2 | 7.2 | | 291 | 369 | 2 | 15.1 | | 293 | 407 | 2.5 | 22.7 | | 296 | 404 | 3 | 31.2 | | 300 | 480 | 4 | 70.4 | | 306 | 554 | 5 | 144 | | 311 | 369 | 2 | 10.3 | | 313 | 407 | 2.5 | 23.9 | | 316 | 444 | 3 | 31.5 | | 316 | 444 | 3 | 44.2 | | 320 | 520 | 4 | 87.8 | | 331 | 389 | 2 | 10.8 | | 333 | 427 | 2.5 | 25.3 | | 336 | 464 | 3 | 33.2 | | 336 | 464 | 3 | 46.5 | | 340 | 560 | 4 | 111 | | 351 | 409 | 2 | 11.5 | | 353 | 447 | 2.5 | 26.6 | | 360 | 500 | 4 | 62.3 | | 366 | 594 | 5 | 129 | | 371 | 429 | 2 | 11.8 | | 373 | 467 | 2.5 | 27.9 | | 380 | 520 | 4 | 65.3 | | 386 | 624 | 5 | 145 | Abutment and Fillet Dimensions (mm) $d_{ m a}^{(1)}$ min. $\begin{array}{cc} D_{\rm a} {}^{\scriptscriptstyle (1)} & \quad {\it r}_{\rm a} \\ {\rm max.} & \quad {\rm max.} \end{array}$ Mass (kg) approx. ### Bore Diameter 380 - 600 mm Open Type | Во | oundary [
(m | Dimension) | ons | 1) | Basic Load | | gf} | Factor | Limiting (| | Bearing
Numbers | |-----|-----------------|------------|------------------|-------------|-------------------|-------------|-------------------|--------|------------|-------|--------------------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | | 380 | 480 | 46 | 2.1 | 238 000 | 375 000 | 24 200 | 38 000 | 17.1 | 1 000 | 1 200 | 6876 | | | 520 | 65 | 4 | 325 000 | 510 000 | 33 000 | 52 000 | 16.6 | 950 | 1 200 | 6976 | | | 560 | 82 | 5 | 455 000 | 725 000 | 46 500 | 74 000 | 15.9 | 900 | 1 100 | 6076 | | 400 | 500 | 46 | 2.1 | 241 000 | 390 000 | 24 600 | 40 000 | 17.2 | 950 | 1 200 | 6880 | | | 540 | 65 | 4 | 335 000 | 540 000 | 34 000 | 55 000 | 16.7 | 900 | 1 100 | 6980 | | | 600 | 90 | 5 | 510 000 | 825 000 | 52 000 | 84 000 | 15.7 | 850 | 1 000 | 6080 | | 420 | 520 | 46 | 2.1 | 245 000 | 410 000 | 25 000 | 41 500 | 17.3 | 900 | 1 100 | 6884 | | | 560 | 65 | 4 | 340 000 | 570 000 | 35 000 | 58 500 | 16.8 | 900 | 1 100 | 6984 | | | 620 | 90 | 5 | 530 000 | 895 000 | 54 000 | 91 000 | 15.8 | 800 | 1 000 | 6084 | | 440 | 540 | 46 | 2.1 | 248 000 | 425 000 | 25 300 | 43 500 | 17.4 | 900 | 1 100 | 6888 | | | 600 | 74 | 4 | 395 000 | 680 000 | 40 500 | 69 000 | 16.6 | 800 | 1 000 | 6988 | | | 650 | 94 | 6 | 550 000 | 965 000 | 56 000 | 98 500 | 16.0 | 750 | 900 | 6088 | | 460 | 580 | 56 | 3 | 310 000 | 550 000 | 31 500 | 56 000 | 17.1 | 800 | 1 000 | 6892 | | | 620 | 74 | 4 | 405 000 | 720 000 | 41 500 | 73 500 | 16.7 | 800 | 950 | 6992 | | | 680 | 100 | 6 | 605 000 | 1 080 000 | 62 000 | 110 000 | 15.8 | 710 | 850 | 6092 | | 480 | 600 | 56 | 3 | 315 000 | 575 000 | 32 000 | 58 500 | 17.2 | 800 | 950 | 6896 | | | 650 | 78 | 5 | 450 000 | 815 000 | 45 500 | 83 000 | 16.6 | 750 | 900 | 6996 | | | 700 | 100 | 6 | 605 000 | 1 090 000 | 61 500 | 111 000 | 15.9 | 710 | 850 | 6096 | | 500 | 620 | 56 | 3 | 320 000 | 600 000 | 33 000 | 61 000 | 17.3 | 750 | 900 | 68/500 | | | 670 | 78 | 5 | 460 000 | 865 000 | 47 000 | 88 000 | 16.7 | 710 | 850 | 69/500 | | | 720 | 100 | 6 | 630 000 | 1 170 000 | 64 000 | 120 000 | 16.0 | 670 | 800 | 60/500 | | 530 | 650 | 56 | 3 | 325 000 | 625 000 | 33 000 | 63 500 | 17.4 | 710 | 850 | 68/530 | | | 710 | 82 | 5 | 455 000 | 870 000 | 46 500 | 88 500 | 16.8 | 670 | 800 | 69/530 | | | 780 | 112 | 6 | 680 000 | 1 300 000 | 69 500 | 133 000 | 16.0 | 600 | 750 | 60/530 | | 560 |
680 | 56 | 3 | 330 000 | 650 000 | 33 500 | 66 500 | 17.4 | 670 | 800 | 68/560 | | | 750 | 85 | 5 | 525 000 | 1 040 000 | 53 500 | 106 000 | 16.7 | 600 | 750 | 69/560 | | | 820 | 115 | 6 | 735 000 | 1 500 000 | 75 000 | 153 000 | 16.2 | 560 | 670 | 60/560 | | 600 | 730 | 60 | 3 | 355 000 | 735 000 | 36 000 | 75 000 | 17.5 | 600 | 710 | 68/600 | | | 800 | 90 | 5 | 550 000 | 1 160 000 | 56 500 | 118 000 | 16.9 | 560 | 670 | 69/600 | | | 870 | 118 | 6 | 790 000 | 1 640 000 | 80 500 | 168 000 | 16.1 | 530 | 630 | 60/600 | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. B 22 $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}}$ | >e | |--------------------------|------|---|----------|-------------------------------|------| | O ₀ r | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | Static Equivalent Load $\phi D_{\!\scriptscriptstyle a}$ $d_{ m a}^{(1)}$ min. Abutment and Fillet Dimensions (mm) $D_{\mathrm{a}^{\left(1\right)}}$ max. 793.5 $r_{\rm a}$ 2.5 2.5 2.5 2.5 2.5 Mass (kg) approx. 19.5 20.5 88.4 21.4 43.6 92.2 22.3 60.2 34.3 62.6 35.4 73.5 37.2 > 39.8 89.8 41.5 50.9 $$\frac{F_{\rm a}}{F_{\rm r}}$$ >0.8, P_0 =0.6 $F_{\rm r}$ +0.5 $F_{\rm a}$ | $F_{\rm a}$ | <00 | D E | |-------------|-------|--| | $F_{\rm r}$ | ≦0.8, | $\mathbf{r}_0 = \mathbf{r}_{\mathrm{r}}$ | ## Bore Diameter 630 - 800 mm Open Type | В | Boundary Dimensions
(mm) | | | (1 | Basic Load Ratings (N) {kgf} | | | Factor | Limiting S | ' | Bearing
Numbers | |-----|-----------------------------|-----|------------------|-------------|------------------------------|-------------|----------|--------|------------|-----|--------------------| | d | D | B | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | Open | | 630 | 780 | 69 | 4 | 420 000 | 890 000 | 43 000 | 90 500 | 17.3 | 560 | 670 | 68/630 | | | 850 | 100 | 6 | 625 000 | 1 350 000 | 64 000 | 138 000 | 16.7 | 530 | 630 | 69/630 | | | 920 | 128 | 7.5 | 750 000 | 1 620 000 | 76 500 | 165 000 | 16.4 | 480 | 600 | 60/630 | | 670 | 820 | 69 | 4 | 435 000 | 965 000 | 44 500 | 98 000 | 17.4 | 500 | 630 | 68/670 | | | 900 | 103 | 6 | 675 000 | 1 460 000 | 68 500 | 149 000 | 16.7 | 480 | 560 | 69/670 | | | 980 | 136 | 7.5 | 765 000 | 1 730 000 | 78 000 | 177 000 | 16.6 | 450 | 530 | 60/670 | | 710 | 870 | 74 | 4 | 480 000 | 1 100 000 | 49 000 | 113 000 | 17.4 | 480 | 560 | 68/710 | | | 950 | 106 | 6 | 715 000 | 1 640 000 | 72 500 | 167 000 | 16.8 | 450 | 530 | 69/710 | | 750 | 920 | 78 | 5 | 525 000 | 1 260 000 | 53 500 | 128 000 | 17.4 | 430 | 530 | 68/750 | | | 1 000 | 112 | 6 | 785 000 | 1 840 000 | 80 000 | 188 000 | 16.7 | 400 | 500 | 69/750 | | 800 | 980 | 82 | 5 | 530 000 | 1 310 000 | 54 000 | 133 000 | 17.5 | 400 | 480 | 68/800 | | | 1 060 | 115 | 6 | 825 000 | 2 050 000 | 84 500 | 209 000 | 16.8 | 380 | 450 | 69/800 | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}}$ | >e | |--------------------------|------|-----------------------------|----------|-------------------------------|------| | O ₀ r | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | Static Equivalent Load $$\frac{F_a}{F_r} > 0.8, P_0 = 0.6F_r + 0.5F_a$$ $$\frac{F_a}{F_r} \le 0.8, P_0 = F_r$$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$$ | Abut | Mass | | | |-----------------------|-----------------------|----------------------------|---------| | Dim | (kg) | | | | $d_{ m a}^{(1)}$ min. | $D_{ m a}^{(1)}$ max. | $\emph{\textbf{r}}_a$ max. | approx. | | 646 | 764 | 3 | 71.3 | | 656 | 824 | 5 | 163 | | 662 | 888 | 6 | 285 | | 686 | 804 | 3 | 75.4 | | 696 | 874 | 5 | 181 | | 702 | 948 | 6 | 351 | | 726 | 854 | 3 | 92.6 | | 736 | 924 | 5 | 208 | | 770 | 900 | 4 | 110 | | 776 | 974 | 5 | 245 | | 820 | 960 | 4 | 132 | | 826 | 1 034 | 5 | 275 | | | | | | ### Bore Diameter 25 – 110 mm Open Type Shielded Type (One Shield) Z Shielded Type (Two Shields) ZZ | Bearing Nur | nbers | Abu | tment and Fill
(mn | | ns | Mass
(kg) | |--------------------|------------------------|-----------------|-----------------------|-----------------|------------------------------|--------------| | With
One Shield | With
ed Two Shields | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $\emph{\textbf{r}}_{a}$ max. | approx. | | BL 205 Z | BL 205 ZZ | 30 | 32 | 47 | 1 | 0.133 | | BL 305 Z | BL 305 ZZ | 31.5 | 36 | 55.5 | 1 | 0.246 | | BL 206 Z | BL 206 ZZ | 35 | 38.5 | 57 | 1 | 0.215 | | BL 306 Z | BL 306 ZZ | 36.5 | 42 | 65.5 | 1 | 0.364 | | BL 207 Z | BL 207 ZZ | 41.5 | 44.5 | 65.5 | 1 | 0.307 | | BL 307 Z | BL 307 ZZ | 43 | 44.5 | 72 | 1.5 | 0.486 | | BL 208 Z | BL 208 ZZ | 46.5 | 50 | 73.5 | 1 | 0.394 | | BL 308 Z | BL 308 ZZ | 48 | 52.5 | 82 | 1.5 | 0.685 | | BL 209 Z | BL 209 ZZ | 51.5 | 55.5 | 78.5 | 1 | 0.449 | | BL 309 Z | BL 309 ZZ | 53 | 61.5 | 92 | 1.5 | 0.883 | | BL 210 Z | BL 210 ZZ | 56.5 | 60 | 83.5 | 1 | 0.504 | | BL 310 Z | BL 310 ZZ | 59 | 68 | 101 | 2 | 1.16 | | BL 211 Z | BL 211 ZZ | 63 | 66.5 | 92 | 1.5 | 0.667 | | BL 311 Z | BL 311 ZZ | 64 | 72.5 | 111 | 2 | 1.49 | | BL 212 Z | BL 212 ZZ | 68 | 74.5 | 102 | 1.5 | 0.856 | | BL 312 Z | BL 312 ZZ | 71 | 79 | 119 | 2 | 1.88 | | BL 213 Z | BL 213 ZZ | 73 | 80 | 112 | 1.5 | 1.09 | | BL 313 Z | BL 313 ZZ | 76 | 85.5 | 129 | 2 | 2.36 | | BL 214 Z | BL 214 ZZ | 78 | 84 | 117 | 1.5 | 1.19 | | BL 314 Z | BL 314 ZZ | 81 | 92 | 139 | 2 | 2.87 | | BL 215 Z | BL 215 ZZ | 83 | 90 | 122 | 1.5 | 1.29 | | BL 315 Z | BL 315 ZZ | 86 | 98.5 | 149 | 2 | 3.43 | | BL 216 Z | BL 216 ZZ | 89 | 95.5 | 131 | 2 | 1.61 | | BL 316 Z | BL 316 ZZ | 91 | 104.5 | 159 | | 4.08 | | BL 217 Z | BL 217 ZZ | 94 | 102 | 141 | 2 | 1.97 | | BL 317 Z | BL 317 ZZ | 98 | 110.5 | 167 | 2.5 | 4.77 | | BL 218 Z | BL 218 ZZ | 99 | 107.5 | 151 | 2 | 2.43 | | BL 318 Z | BL 318 ZZ | 103 | 117 | 177 | 2.5 | 5.45 | | BL 219 Z | BL 219 ZZ | 106 | 114 | 159 | 2 | 2.95 | | BL 319 Z | BL 319 ZZ | 108 | 124 | 187 | 2.5 | 6.4 | | BL 220 Z | BL 220 ZZ | 111 | 121.5 | 169 | 2 | 3.54 | | BL 221 Z | BL 221 ZZ | 116 | 127.5 | 179 | | 4.23 | | _ | _ | 121 | _ | 189 | 2 | 4.84 | B 26 B 27 ## Bore Diameter 4 - 20 mm ### Outside Diameter Tolerance (Class N) Units : μm Single Plane Mean Outside Diameter Nominal Outside Diameter D (mm) E Series **EN Series** Over Incl. High Low High Low 10 18 30 10 18 - 8 + 8 0 0 - 8 30 50 + 9 +11 0 0 - 9 -11 ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | P | | |---------------|------------|---------------|-----|-----| | X | X Y | | Y | e | | 1 | 0 | 0.5 | 2.5 | 0.2 | | | | | | | I | | | | 1 | | | | |----------|----------------|----------------|-------------------|---------------------|-------------------------|-------------------------|-------------------|-------------------|----------------------------|----------------------------|--------------------|---------------------| | | Bound | dary Dim | ensions | | 1 | Basic Loa | | | Limiting | • | Bearing | Numbers | | | | (mm) | | | 1) | 1) | {kg | gt} | (mir | n ⁻¹) | | | | <i>d</i> | D | B,C,T | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | E Series | EN Series | | 4 | 16 | 5 | 0.15 | 0.1 | 1 650 | 288 | 168 | 29 | 34 000 | 40 000 | E 4 | EN 4 | | 5 | 16 | 5 | 0.15 | 0.1 | 1 650 | 288 | 168 | 29 | 34 000 | 40 000 | E 5 | EN 5 | | 6 | 21 | 7 | 0.3 | 0.15 | 2 490 | 445 | 254 | 46 | 30 000 | 36 000 | E 6 | EN 6 | | 7 | 22 | 7 | 0.3 | 0.15 | 2 490 | 445 | 254 | 46 | 30 000 | 36 000 | E 7 | EN 7 | | 8 | 24 | 7 | 0.3 | 0.15 | 3 450 | 650 | 350 | 66 | 28 000 | 34 000 | E 8 | EN 8 | | 9 | 28 | 8 | 0.3 | 0.15 | 4 550 | 880 | 465 | 90 | 24 000 | 30 000 | E 9 | EN 9 | | 10 | 28 | 8 | 0.3 | 0.15 | 4 550 | 880 | 465 | 90 | 24 000 | 30 000 | E 10 | EN 10 | | 11 | 32 | 7 | 0.3 | 0.15 | 4 400 | 845 | 450 | 86 | 22 000 | 26 000 | E 11 | EN 11 | | 12 | 32 | 7 | 0.3 | 0.15 | 4 400 | 845 | 450 | 86 | 22 000 | 26 000 | E 12 | EN 12 | | 13 | 30 | 7 | 0.3 | 0.15 | 4 400 | 845 | 450 | 86 | 22 000 | 26 000 | E 13 | EN 13 | | 14 | 35 | 8 | 0.3 | 0.15 | 5 800 | 1 150 | 590 | 117 | 19 000 | 22 000 | — | EN 14 | | 15
16 | 35
40
38 | 8
10
10 | 0.3
0.6
0.6 | 0.15
0.3
0.2 | 5 800
7 400
6 900 | 1 150
1 500
1 380 | 590
750
705 | 117
153
141 | 19 000
17 000
17 000 | 22 000
20 000
22 000 | E 15
BO 15
— | EN 15
—
EN 16 | | 17 | 40
44
44 | 10
11
11 | 0.6
0.6
0.6 | 0.3
0.3
0.3 | 7 400
7 350
7 350 | 1 500
1 500
1 500 | 750
750
750 | 153
153
153 | 17 000
16 000
16 000 | 20 000
19 000
19 000 | L 17
BO 17 | EN 17 | | 18 | 40 | 9 | 0.6 | 0.2 | 5 050 | 1 030 | 515 | 105 | 17 000 | 20 000 | E 19 | EN 18 | | 19 | 40 | 9 | 0.6 | 0.2 | 5 050 | 1 030 | 515 | 105 | 17 000 | 20 000 | | EN 19 | | 20 | 47 | 12 | 1 | 0.6 | 11 000 | 2 380 | 1 120 | 243 | 14 000 | 17 000 | E 20 | EN 20 | | | 47 | 14 | 1 | 0.6 | 11 000 | 2 380 | 1 120 | 243 | 14 000 | 17 000 | L 20 | — |
Remarks 1. The outside diameters of Magneto Bearings Series E always have plus tolerances. 2. When using Magneto Bearings other than E, please contact NSK. | Abut
Dim | Mass
(kg) | | | | | | | | | |-----------------|-----------------|-------------------------------|---------|--|--|--|--|--|--| | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | | | | | | | 5.2 | 14.8 | 0.15 | 0.005 | | | | | | | | 6.2 | 14.8 | 0.15 | 0.004 | | | | | | | | 8 | 19 | 0.3 | 0.011 | | | | | | | | 9 | 20 | 0.3 | 0.013 | | | | | | | | 10 | 22 | 0.3 | 0.014 | | | | | | | | 11 | 26 | 0.3 | 0.022 | | | | | | | | 12 | 26 | 0.3 | 0.021 | | | | | | | | 13 | 30 | 0.3 | 0.029 | | | | | | | | 14 | 30 | 0.3 | 0.028 | | | | | | | | 15 | 28 | 0.3 | 0.021 | | | | | | | | 16 | 33 | 0.3 | 0.035 | | | | | | | | 17 | 33 | 0.3 | 0.034 | | | | | | | | 19 | 36 | 0.6 | 0.055 | | | | | | | | 20 | 34 | 0.6 | 0.049 | | | | | | | | 21 | 36 | 0.6 | 0.051 | | | | | | | | 21 | 40 | 0.6 | 0.080 | | | | | | | | 21 | 40 | 0.6 | 0.080 | | | | | | | | 22 | 36 | 0.6 | 0.051 | | | | | | | | 23 | 36 | 0.6 | 0.049 | | | | | | | | 25
25 | 42
42 | 1 | | | | | | | | # **EXTRA SMALL BALL BEARINGS AND MINIATURE BALL BEARINGS** ## **EXTRA SMALL BALL BEARINGS · MINIATURE BALL BEARINGS** | Metric Design | | | Bore Diameter 1 – 9mm····· | B34 | |---------------|-------------|-------|-------------------------------------|-----| | | With F | lange | Bore Diameter 1 – 9mm····· | B38 | | | Inch Design | | Bore Diameter 1.016 – 9.525mm ····· | B42 | | | With Fl | lange | Bore Diameter 1 191 – 9 525mm | B44 | ### **DESIGN AND TYPES** The size ranges of extra small and miniature ball bearings are shown in Table 1. The design, types, and type symbols are shown in Table 2. Those types among them that are listed in the bearing tables are indicated by the shading in Table 2. Table 1 Size Ranges of Bearings Units: mm | Design | Extra Small Ball Bearings | Miniature Ball Bearings | |--------|--------------------------------|----------------------------| | Design | Latia Siliali Dali Dealligs | Williature Dali Dearings | | Metric | Outside diameter $D \ge 9$ | Outside diameter $D<9$ | | | Bore diameter $d < 10$ | | | Inch | Outside diameter $D \ge 9.525$ | Outside diameter $D<9.525$ | | | Bore diameter $d < 10$ | | Please refer to NSK Miniature Ball Bearings (CAT. No. E126) for details. ZZS B 31 Table 2 Design, Types, and Type Symbols | Necian Types | | Туре о | · | ncial | Remarks | |---|---|--|--|---|--| | resigii · Types | Metric | Inch | | ı | nemarks | | | 600 | R | MR | — | Shielded · sealed
bearings are
available. | | Thin section | _ | _ | SMT | _ | | | With flange | F6 0 0 | FR | MF | _ | Shielded - sealed
bearings are
available. | | Extended inner ring | _ | _ | _ | RW | Shielded bearings are available. | | With flange
and extended
inner ring | _ | _ | _ | FRW | Shielded bearings are available. | | For synchro motors | _ | _ | _ | SR00X00 | Shielded bearings are available. | | | _ | _ | BCF | _ | | | | _ | _ | F | _ | | | | With flange Extended inner ring With flange and extended inner ring For synchro motors | Metric 600 With flange Extended inner ring With flange and extended inner ring For synchro motors | Design · Types Metric Inch R Thin section F6 0 FR With flange Extended inner ring With flange and extended inner ring For synchro motors | Metric Inch Metric R MR MR SMT Thin section F600 FR MF With flange and extended inner ring With flange and extended inner ring For synchro motors BCF | Nesign - Types Metric Inch Special Metric Inch Metric Inch Metric Inch Metric Inch MR — SMT — With flange With flange and extended inner ring With flange and extended inner ring — BCF — BCF — ME SROOXOO | **Remarks** Single-row angular contact ball bearings are available besides those shown above. ### TOLERANCES AND RUNNING ACCURACY METRIC DESIGN BEARINGSTable 8.2(Pages A60 to A63) The flange tolerances for metric design bearings are listed in Table 3. Table 3 Flange Tolerances for Metric Flanged Bearings | | (1) Tolerances of Flange Outside Diameter | | | | | | | | | |----------------|---|----------|------|-------------|------|-----|--|--|--| | Nominal Flange | | | | er | | | | | | | | Outside [| Diameter | | | | | | | | | D_1 (mm) | | | (1 | D | (| 2) | | | | | | over | incl. | high | low | high | low | | | | | | | 10 | +220 | -36 | 0 | -36 | | | | | | 10 | 18 | +270 | -43 | 0 | -43 | | | | | | 18 | 30 | +330 | - 52 | 0 | -52 | | | | **Remarks** ②is applied when the flange outside diameter is used for positioning. (2) Flange Width Tolerances and Running Accuracies Related to Flange Units : µm | | Nomi
Bearing C
Diame
D | Outside
eter | Flange | ition of
Width
C18 | | ariation
Width,
VC _{1S} | | | Outside
Genera | on of Bea
e Surface
etrix Inclir
ange Bac
S_{D1} | nation | | Backface
with Rai | | |---|---------------------------------|-----------------|----------------------|--------------------------|--|--|---------|---------|-------------------|--|---------|---------|----------------------|---------| | | (1111) | 11) | Normal and | Classes 6,5,4,2 | Normal and class 6 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | | | over | incl. | high | low | | max. | | | | max. | | | max. | | | | 2.5(1) | 6 | Use the ΔB_S | tolerance for d | Use the $\varDelta \mathit{V}_{\mathrm{BS}}$ | 5 | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | | - | 6 | 18 | | bearing of the | tolerance for d of the same bearing | 5 | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | | | 18 | 30 | same class | | of the same class | 5 | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | Notes (1) 2.5 mm is included INCH DESIGN BEARINGSTable 8.2 (Pages A60 to A63) The flange tolerances for inch design flanged bearings are listed in Table 8.8(2) (Pages A76 and A77). **INSTRUMENT BALL BEARINGS**Table 8.8 (Pages A76 to A77) ### **RECOMMENDED FITS** Please refer to NSK Miniature Ball Bearings (CAT.No.E126). INTERNAL CLEARANCESTable 9.10 (Page A89) ## LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing toad conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information Metric Design Bore Diameter 1 – 4 mm Open Type Shielded Type ZZ · ZZ1 **Remarks** When using bearings with a rotating outer ring, please contact NSK if they are shielded. | Bearing Numbers | Abutment and Fillet Dimensions (mm) | Mass
(g) | |--|--|---| | Shielded Sealed | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | approx.
Open Shielded | | = = = | 1.4 — 2.6 — 0.05 —
1.4 — 2.6 — 0.05 —
1.8 — 3.2 — 0.1 — | 0.03 —
0.04 —
0.09 — | | MR 41 XZZ — — | 2.0 1.9 3.2 3.5 0.1 0.1 | 0.10 0.14 | | 681 XZZ — —
691 XZZ — —
601 XZZ — — | 1.9 2.1 3.6 3.6 0.05 0.05 2.7 2.5 3.8 4.3 0.15 0.15 2.7 3.0 4.8 5.4 0.15 0.15 | 0.07 0.11
0.17 0.20
0.33 0.38 | | 682 ZZ — —
MR 52 BZZ — —
692 ZZ — — | 2.6 2.7 4.4 4.2 0.08 0.08 2.8 2.7 4.2 4.4 0.1 0.1 3.2 3.0 4.8 5.4 0.15 0.15 | 0.12 0.17
0.16 0.23
0.28 0.38 | | MR 62 ZZ — —
MR 72 ZZ — —
602 ZZ — — | 3.2 3.0 4.8 5.2 0.15 0.15 3.2 3.8 5.8 6.2 0.15 0.15 3.2 3.8 5.8 6.2 0.15 0.15 | 0.30 0.29
0.45 0.49
0.51 0.58 | | 682 XZZ — —
692 XZZ — —
— — — —
602 XZZ — — | 3.1 3.7 5.4 5.4 0.08 0.08
3.7 3.8 5.8 6.2 0.15 0.15
4.1 — 6.4 — 0.2 —
3.7 4.1 6.8 7.0 0.15 0.15 | 0.23 0.29
0.41 0.55
0.56 —
0.63 0.83 | | MR 63 ZZ — — — 683 AZZ — — — | 3.8 3.7 5.2 5.4 0.1 0.1
3.8 4.0 6.2 6.4 0.1 0.1
4.2 — 6.8 — 0.15 — | 0.20 0.27
0.32 0.45
0.54 — | | 693 ZZ — —
MR 93 ZZ — —
603 ZZ — — | 4.2 4.3 6.8 7.3 0.15 0.15 4.6 4.3 7.4 7.9 0.2 0.15 4.2 4.3 7.8 7.9 0.15 0.15 | 0.61 0.83
0.73 1.18
0.87 1.45 | | 623 ZZ — —
633 ZZ — — | 4.2 4.3 8.8 8.0 0.15 0.15 4.6 6.0 11.4 11.3 0.2 0.2 | 1.65 1.66
3.38 3.33 | | MR 74 ZZ — — — — — — — — — — — — — — — — — — | 4.8 — 6.2 — 0.1 — — 4.8 — 6.3 — 0.1 5.2 5.0 6.8 7.4 0.15 0.1 4.8 5.2 8.2 8.1 0.1 0.1 | 0.22 — 0.29
0.36 0.56
0.63 1.01 | | MR 104 BZZ — —
694 ZZ — —
604 ZZ — — | 5.6 5.9 8.4 8.8 0.2 0.15 5.2 5.6 9.8 9.9 0.15 0.15 5.6 5.6 10.4 9.9 0.2 0.2 | 1.04 1.42
1.7 1.75
2.25 2.29 | | 624 ZZ — —
634 ZZ1 — — | 5.6 6.0 11.4 11.3 0.2 0.2 6.0 7.5 14.0 13.8 0.3 0.3 | 3.03 3.04
5.24 5.21 | ## **Metric Design** Bore Diameter 5 – 9 mm | | Open | Туре | | | Shielded
ZZ · Z | | | | Non-Co
Sealed
V | Type | | Conta
Sealed T
DD | | |---|----------------------|-----------------------|--------------------
----------------------------|------------------------------|----------------------------------|---------------------------------|----------------------------|----------------------------|--|--------------------------------------|--|----------------------------------| | | Е | Boundary
(r | Dimens | ions | | B
(N | asic Load
1) | Ratings
{kg | ιf} | Limitir
Grea | ng Speeds (r
ise | min ⁻¹)
Oil | | | d | D | В | B_1 | ૪ (¹)
min. | $ m \emph{r}_{1}(^{1})$ min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Open
Z · ZZ
V · VV | D · DD | Open
Z | Open | | 5 | 8
9
10
11 | 2

2.5
3
 | 2.5
3
4
4 | 0.1
0.15
0.15
— | 0.1
0.15
0.15
0.15 | 310
278
430
430
715 | 120
131
168
168
276 | 31
28
44
44
73 | 12
13
17
17
28 | 53 000
53 000
50 000
50 000
48 000 | _
_
_
_ | 63 000
63 000
60 000
60 000
56 000 | MR 85
MR 95
MR 105 | | | 11
13
14
16 | 3
4
5 | 5
4
5 | 0.15
0.2
0.2
0.3 | 0.15
0.2
0.2
0.3 | 715
1 080
1 330
1 730 | 281
430
505
670 | 73
110
135
177 | 29
44
52
68 | 45 000
43 000
40 000
36 000 | 40 000
38 000
32 000 | 53 000
50 000
50 000
43 000 | 685
695
605
625 | | 6 | 19
10
12
13 | 6
2.5
3
3.5 | 6
3
4
5 | 0.3
0.15
0.2
0.15 | 0.3
0.1
0.15
0.15 | 2 340
495
715
1 080 | 885
218
292
440 | 238
51
73
110 | 90
22
30
45 | 32 000
45 000
43 000
40 000 | 30 000
—
40 000
38 000 | 40 000
53 000
50 000
50 000 | 635
MR 106
MR 126
686 A | | | 15
17
19
22 | 5
6
6
7 | 5
6
6
7 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 1 730
2 260
2 340
3 300 | 670
835
885
1 370 | 177
231
238
335 | 68
85
90
140 | 40 000
38 000
32 000
30 000 | 36 000
34 000
30 000
28 000 | 45 000
45 000
40 000
36 000 | 696
606
626
636 | | 7 | 11
13
14
17 | 2.5
3
3.5
5 | 3
4
5
5 | 0.15
0.2
0.15
0.3 | 0.1
0.15
0.15
0.3 | 455
540
1 170
1 610 | 201
276
510
710 | 47
55
120
164 | 21
28
52
73 | 43 000
40 000
40 000
36 000 | —
34 000
28 000 | 50 000
48 000
45 000
43 000 | MR 117
MR 137
687
697 | | | 19
22
26 | 6
7
9 | 6
7
9 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 2 340
3 300
4 550 | 885
1 370
1 970 | 238
335
465 | 90
140
201 | 36 000
30 000
28 000 | 32 000
28 000
22 000 | 43 000
36 000
34 000 | 607
627
637 | | 8 | 12
14
16
19 | 2.5
3.5
4 | 3.5
4
5
6 | 0.15
0.2
0.2
0.3 | 0.1
0.15
0.2 | 545
820
1 610
2 240 | 274
385
710 | 56
83
164 | 28
39
73
93 | 40 000
38 000
36 000 | 32 000
28 000 | 48 000
45 000
43 000 | MR 128
MR 148
688 A | | | 22
24
28 | 6
7
8
9 | 7
8
9 | 0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 3 300
3 350
4 550 | 910
1 370
1 430
1 970 | 228
335
340
465 | 140
146
201 | 36 000
34 000
28 000
28 000 | 28 000
28 000
24 000
22 000 | 43 000
40 000
34 000
34 000 | 698
608
628
638 | | 9 | 17
20
24
26 | 4
6
7
8 | 5
6
7
8 | 0.2
0.3
0.3
(0.6) | 0.2
0.3
0.3
(0.6) | 1 330
1 720
3 350
4 550 | 665
840
1 430
1 970 | 136
175
340
465 | 68
86
146
201 | 36 000
34 000
32 000
28 000 | 24 000
24 000
24 000
22 000 | 43 000
40 000
38 000
34 000 | 689
699
609
629 | | | 30 | 10 | 10 | 0.6 | 0.6 | 5 100 | 2 390 | 520 | 244 | 24 000 | _ | 30 000 | 639 | **Remarks** 1. When using bearings with a rotating outer ring, please contact NSK if they are sealed or shielded. | Bearing Numbers | | Abutr | nent and F
(m | | ensions | | Ma
(g | | |--|---------------------------------|---|--|--|--|---|---|--| | Shielded Sealer | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $D_{ m b}$ min. | ${m \gamma}_{ m a}$ max. | $ m \emph{r}_b$ max. | app
Open | rox.
Shielded | | MR 85 ZZ — — — — — — — — — — — — — — — — — — | 6.2
- 6.2
- 6.2 | 5.8
6.0
6.0
6.3
6.2 | 7.2
—
7.8
8.8
—
9.8
11.4 | 7.4
8.2
8.4
9.8
9.9 | 0.1
0.15
0.15

0.15 | 0.1
0.15
0.15
0.15
0.15 | 0.26
—
0.50
0.95
—
1.2
2.45 | 0.34
0.58
1.29
1.49
1.96
2.5 | | 635 ZZ VV DI
605 ZZ — DI
625 ZZ1 VV DI
635 ZZ1 VV DI
MR 106 ZZ1 — — | 6.6
7.0
7.0 | 6.6
6.9
7.5
8.5
7.0 | 11.4
12.4
14.0
17.0
8.8 | 12.2
13.8
16.5
9.3 | 0.2
0.2
0.3
0.3 | 0.2
0.2
0.3
0.3 | 3.54
4.95
8.56
0.56 | 2.5
3.48
4.86
8.34
0.68 | | MR 126 ZZ — Di
686 AZZ VV Di
696 ZZ1 VV Di
606 ZZ VV Di
626 ZZ1 VV Di | 7.6
7.2
7.6
8.0
8.0 | 7.2
7.4
7.9
8.2
8.5 | 10.4
11.8
13.4
15.0
17.0 | 10.9
11.7
13.3
14.8
16.5 | 0.2
0.15
0.2
0.3
0.3 | 0.15
0.15
0.2
0.3
0.3 | 1.27
1.91
3.88
5.97
8.15 | 1.74
2.69
3.72
6.08
7.94 | | 636 ZZ VV DI
MR 117 ZZ — —
MR 137 ZZ — —
687 ZZ1 VV DI
697 ZZ1 VV DI | 8.2
8.6
8.2 | 10.5
8.0
9.0
8.5
10.2 | 20.0
9.8
11.4
12.8
15.0 | 19.0
10.5
11.6
12.7
14.8 | 0.3
0.15
0.2
0.15
0.3 | 0.3
0.1
0.15
0.15
0.3 | 0.62
1.58
2.13
5.26 | 14
0.72
2.02
2.97
5.12 | | 607 ZZ1 VV DI
627 ZZ VV DI
637 ZZ1 VV DI
MR 128 ZZ1 — — | 9.0 | 9.1
10.5
12.8
9.0 | 17.0
20.0
24.0
10.8 | 16.5
19.0
22.8
11.3 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 7.67
12.7
24
0.71 | 7.51
12.9
25
0.97 | | MR 148 ZZ VV DI
688 AZZ1 VV DI
698 ZZ VV DI
608 ZZ VV DI
628 ZZ VV DI
638 ZZ1 VV DI | 9.6
10.0
10.0
10.0 | 9.2
10.2
10.0
10.5
12.0
12.8 | 12.4
14.4
17.0
20.0
22.0
26.0 | 12.8
14.2
16.5
19.0
20.5
22.8 | 0.2
0.2
0.3
0.3
0.3
0.3 | 0.15
0.2
0.3
0.3
0.3
0.3 | 1.86
3.12
7.23
12.1
17.2
28.3 | 2.16
4.02
7.18
12.2
17.4
28.6 | | 689 ZZ1 VV DI
699 ZZ1 VV DI
609 ZZ VV DI
629 ZZ VV DI
639 ZZ VV — | 11.0
11.0
11.0 | 11.5
12.0
12.0
12.8
16.1 | 15.4
18.0
22.8
24.0
26.0 | 15.2
17.2
20.5
22.8
25.6 | 0.2
0.3
0.3
0.3
0.6 | 0.2
0.3
0.3
0.3
0.6 | 3.53
8.45
14.5
19.5
36.5 | 4.43
8.33
14.7
19.3
36 | B 36 B 37 ^{2.} Bearings with snap rings are also available, please contact NSK. ## Metric Design With Flange Bore Diameter 1 – 4 mm Open Type $\begin{array}{c} \text{Shielded Type} \\ \text{ZZ} \cdot \text{ZZ1} \end{array}$ | | | | Bour | | Dimens | ions | | | | | | ad Ratings | | Limiting | | |----------|-------------------------|-----------------------------------|-----------------------------------|--------------------------|-----------------------|--------------------------|------------------------|------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|-----------------------------|----------------------------|--|--| | | | | | (m | m) | | | | | 1) | 1) | {k | gf} | (mi | | | <i>d</i> | D | D_1 | D_2 | В | B_1 | C_1 | C_2 | γ (¹)
min. | r_1 (1) min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease
Open
Z · ZZ | Oil
Open
Z | | 1 | 3
4 | 3.8
5 | _ | 1
1.6 | _ | 0.3
0.5 | _ | 0.05
0.1 | _ | 80
140 | 23
36 | 8
14 | 2.5
3.5 | 130 000
100 000 | 150 000
120 000 | | 1.2 | 4 | 4.8 | _ | 1.8 | _ | 0.4 | _ | 0.1 | _ | 138 | 35 | 14 | 3.5 | 110 000 | 130 000 | | 1.5 | 4
5
6 | 5
6.5
7.5 | 5
6.5
7.5 | 1.2
2
2.5 | 2
2.6
3 | 0.4
0.6
0.6 | 0.6
0.8
0.8 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 112
237
330 | 33
69
98 | 11
24
34 | 3.5
7
10 | 100 000
85 000
75 000 | 120 000
100 000
90 000 | | 2 | 5
5
6 | 6.1
6.2
7.5 | 6.1
6.2
7.5 | 1.5
2
2.3 | 2.3
2.5
3 | 0.5
0.6
0.6 | 0.6
0.6
0.8 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 169
187
330 | 50
58
98 | 17
19
34 | 5
6
10 | 85 000
85 000
75 000 | 100 000
100 000
90 000 | | | 6
7
7 | 7.2
8.2
8.5 | 8.2
8.5 | 2.5
2.5
2.8 | —
3
3.5 | 0.6
0.6
0.7 | 0.6
0.9 | 0.15
0.15
0.15 | —
0.15
0.15 | 330
385
385 | 98
127
127 | 34
39
39 | 10
13
13 | 75 000
63 000
63 000 | 90 000
75 000
75 000 | | 2.5 | 6
7
8
8 | 7.1
8.5
9.2
9.5 | 7.1
8.5
—
9.5 | 1.8
2.5
2.5
2.8 | 2.6
3.5
—
4 | 0.5
0.7
0.6
0.7 | 0.8
0.9
—
0.9 | 0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 208
385
560
550 | 74
127
179
175 | 21
39
57
56 | 7.5
13
18
18 | 71 000
63 000
60 000
60 000 | 80 000
75 000
67 000
71 000
| | 3 | 6
7
8 | 7.2
8.1
9.2 | 7.2
8.1
— | 2
2
2.5 | 2.5
3
— | 0.6
0.5
0.6 | 0.6
0.8
— | 0.1
0.1
0.15 | 0.1
0.1
— | 208
390
560 | 74
130
179 | 21
40
57 | 7.5
13
18 | 71 000
63 000
60 000 | 80 000
75 000
67 000 | | | 8
9
9
10
13 | 9.5
10.2
10.5
11.5
15 | 9.5
10.6
10.5
11.5
15 | 3
2.5
3
4
5 | 4
4
5
4
5 | 0.7
0.6
0.7
1 | 0.9
0.8
1
1 | 0.15
0.2
0.15
0.15
0.2 | 0.15
0.15
0.15
0.15
0.2 | 560
570
570
630
1 300 | 179
187
187
218
485 | 57
58
58
64
133 | 18
19
19
22
49 | 60 000
56 000
56 000
50 000
36 000 | 67 000
67 000
67 000
60 000
43 000 | | 4 | 7
7
8
9 | 8.2
—
9.2
10.3 | 8.2
9.2
10.3 | 2
2
2.5 | 2.5
3
4 | 0.6

0.6
0.6 | 0.6
0.6
1 | 0.1
0.15
(0.15) | 0.1
0.1
(0.15) | 310
255
395
640 | 115
107
139
225 | 32
26
40
65 | 12
11
14
23 | 60 000
60 000
56 000
53 000 | 67 000
71 000
67 000
63 000 | | | 10
11
12 | 11.2
12.5
13.5 | 11.6
12.5
13.5 | 3
4
4 | 4
4
4 | 0.6
1
1 | 0.8
1
1 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 710
960
960 | 270
345
345 | 73
98
98 | 28
35
35 | 50 000
48 000
48 000 | 60 000
56 000
56 000 | | | 13
16 | 15
18 | 15
18 | 5
5 | 5
5 | 1
1 | 1
1 | 0.2
0.3 | 0.2
0.3 | 1 300
1 730 | 485
670 | 133
177 | 49
68 | 40 000
36 000 | 48 000
43 000 | | | Bearing Numbers | | Abutme | | illet Dim
m) | ensions | | ass
g) | |---|--|------------|---------------------------------|---------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | Open | Shielded | Sealed | $d_{ m a}$ min. | $d_{ m b}$ max. | $\pmb{\gamma}_{\mathrm{a}}$ max. | $ m \emph{r}_b$ max. | | orox.
Shielded | | F 681
F 691 | _ | | 1.4
1.8 | _ | 0.05
0.1 | _ | 0.04
0.14 | _ | | MF 41 X | _ | | 2.0 | _ | 0.1 | _ | 0.12 | _ | | F 681 X
F 691 X
F 601 X | F 681 XZZ
F 691 XZZ
F 601 XZZ | = = | 1.9
2.7
2.7 | 2.1
2.5
3.0 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 0.09
0.23
0.42 | 0.14
0.28
0.52 | | F 682
MF 52 B
F 692 | F 682 ZZ
MF 52 BZZ
F 692 ZZ | = = | 2.6
2.8
3.2 | 2.7
2.7
3.0 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 0.16
0.21
0.35 | 0.22
0.27
0.48 | | MF 62
MF 72
F 602 | MF 72 ZZ
F 602 ZZ | = = | 3.2
3.2
3.2 | 3.8
3.1 | 0.15
0.15
0.15 | 0.15
0.15 | 0.36
0.52
0.60 | 0.56
0.71 | | F 682 X
F 692 X
MF 82 X
F 602 X | F 682 XZZ
F 692 XZZ
—
F 602 XZZ | = = | 3.1
3.7
4.1
3.7 | 3.7
3.8
—
3.5 | 0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 0.25
0.51
0.62
0.74 | 0.36
0.68
—
0.98 | | MF 63
F 683 A
MF 83 | MF 63 ZZ
F 683 AZZ | = = | 3.8
3.8
4.2 | 3.7
4.0
— | 0.1
0.1
0.15 | 0.1
0.1
— | 0.27
0.37
0.56 | 0.33
0.53
— | | F 693
MF 93
F 603
F 623
F 633 | F 693 ZZ
MF 93 ZZ
F 603 ZZ
F 623 ZZ
F 633 ZZ | | 4.2
4.6
4.2
4.2
4.6 | 4.3
4.3
4.3
4.3
6.0 | 0.15
0.2
0.15
0.15
0.2 | 0.15
0.15
0.15
0.15
0.2 | 0.70
0.81
1.0
1.85
3.73 | 0.97
1.34
1.63
1.86
3.59 | | MF 74
—
MF 84
F 684 | MF 74 ZZ
MF 84 ZZ
F 684 ZZ | = =
= = | 4.8
—
5.2
4.8 |
4.8
5.0
5.2 | 0.1
0.15
0.1 | 0.1
0.1
0.1 | 0.29

0.44
0.70 |
0.35
0.63
1.14 | | MF 104 B
F 694
F 604 | MF 104 BZZ
F 694 ZZ
F 604 ZZ | = = | 5.6
5.2
5.6 | 5.9
5.6
5.6 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 1.13
1.91
2.53 | 1.59
1.96
2.53 | | F 624
F 634 | F 624 ZZ
F 634 ZZ1 | = = | 5.6
6.0 | 6.0
7.5 | 0.2
0.3 | 0.2
0.3 | 3.38
5.73 | 3.53
5.62 | Note (1) The values in parentheses are not based on ISO 15. **Remarks** When using bearings with a rotating outer ring, please contact NSK if they are shielded. | | Op | en Type | | | | | iaea i
Z · ZZ1 | | | | Sealed T
VV | ype | | ; | Sealed Type
DD | е | |---|----------------------|--------------------------|----------------------|--------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|----------------------------|--------------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | | Boun | idary D
(mr | | ons | | | | Ba
(N | ısic Load
1) | Ratings
{kg | gf} | Limiting
Grea | g Speeds (r
se | min ⁻¹)
Oil | | d | D | D_1 | D_2 | В | B_1 | C_1 | C_2 | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | C_{0r} | C_{r} | C_{0r} | Open
Z · ZZ
V · VV | D · DD | Open
Z | | 5 | 8
8
9
10 | 9.2
—
10.2
11.2 | 9.2
10.2
11.6 | 2
—
2.5
3 |
2.5
3
4 | 0.6
—
0.6
0.6 | 0.6
0.6
0.8 | 0.1
—
0.15
0.15 | 0.1
0.15
0.15 | 310
278
430
430 | 120
131
168
168 | 31
28
44
44 | 12
13
17
17 | 53 000
53 000
50 000
50 000 | _
_
_ | 63 000
63 000
60 000
60 000 | | | 11
13
14 | 12.5
15
16 | 12.5
15
16 | 3
4
5 | 5
4
5 | 0.8
1
1 | 1
1
1 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 715
1 080
1 330 | 281
430
505 | 73
110
135 | 29
44
52 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | | | 16
19 | 18
22 | 18
22 | 5
6 | 5
6 | 1
1.5 | 1
1.5 | 0.3
0.3 | 0.3
0.3 | 1 730
2 340 | 670
885 | 177
238 | 68
90 | 36 000
32 000 | 32 000
30 000 | 43 000
40 000 | | 6 | 10
12
13 | 11.2
13.2
15 | 11.2
13.6
15 | 2.5
3
3.5 | 3
4
5 | 0.6
0.6
1 | 0.6
0.8
1.1 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 495
715
1 080 | 218
292
440 | 51
73
110 | 22
30
45 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | | | 15
17
19
22 | 17
19
22
25 | 17
19
22
25 | 5
6
6
7 | 5
6
6
7 | 1.2
1.2
1.5
1.5 | 1.2
1.2
1.5
1.5 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 1 730
2 260
2 340
3 300 | 670
835
885
1 370 | 177
231
238
335 | 68
85
90
140 | 40 000
38 000
32 000
30 000 | 36 000
34 000
30 000
28 000 | 45 000
45 000
40 000
36 000 | | 7 | 11
13
14 | 12.2
14.2
16 | 12.2
14.6
16 | 2.5
3
3.5 | 3
4
5 | 0.6
0.6
1 | 0.6
0.8
1.1 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 455
540
1 170 | 201
276
510 | 47
55
120 | 21
28
52 | 43 000
40 000
40 000 | <u> </u> | 50 000
48 000
45 000 | | | 17
19
22 | 19
22
25 | 19
22
25 | 5
6
7 | 5
6
7 | 1.2
1.5
1.5 | 1.2
1.5
1.5 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 1 610
2 340
3 300 | 715
885
1 370 | 164
238
335 | 73
90
140 | 36 000
36 000
30 000 | 28 000
32 000
28 000 | 43 000
43 000
36 000 | | 8 | 12
14
16 | 13.2
15.6
18 | 13.6
15.6
18 | 2.5
3.5
4 | 3.5
4
5 | 0.6
0.8
1 | 0.8
0.8
1.1 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 545
820
1 610 | 274
385
710 | 56
83
164 | 28
39
73 | 40 000
38 000
36 000 | 32 000
30 000 | 48 000
45 000
43 000 | | | 19
22 | 22
25 | 22
25 | 6
7 | 6
7 | 1.5
1.5 | 1.5
1.5 | 0.3
0.3 | 0.3
0.3 | 2 240
3 300 | 910
1 370 | 228
335 | 93
140 | 36 000
34 000 | 28 000
28 000 | 43 000
40 000 | | 9 | 17
20 | 19
23 | 19
23 | 4
6 | 5
6 | 1
1.5 | 1.1
1.5 | 0.2
0.3 | 0.2
0.3 | 1 330
1 720 | 665
840 | 136
175 | 68
86 | 36 000
34 000 | 24 000
24 000 | 43 000
40 000 | **Remarks** When using bearings with a rotating outer ring, please contact NSK if they are shielded. | | Bearing Numbers | | | | | and Fille | | Ma
(g | | |----------------------------------|--|----------------|----------------------|--------------------------|---------------------------|---------------------------|--------------------------|------------------------------|------------------------------| | Open | Shielded | Sea | aled | $d_{ m a}$ min. | $d_{ m b}$ max. | ${m \gamma}_{\rm a}$ max. | $ m \emph{r}_b$ max. | appi
Open | rox.
Shielded | | MF 85
MF 95
MF 105 | MF 85 ZZ
MF 95 ZZ1
MF 105 ZZ | _
_
_ | _ | 5.8
—
6.2
6.2 | 5.8
6.0
6.0 | 0.1

0.15
0.15 | —
0.1
0.15
0.15 | 0.33
—
0.59
1.05 | —
0.41
0.66
1.46 | | F 685
F 695
F 605 | F 685 ZZ
F 695 ZZ
F 605 ZZ |
VV
 | DD
DD | 6.2
6.6
6.6 | 6.2
6.6
6.9 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 1.37
2.79
3.9 | 2.18
2.84
3.85 | | F 625
F 635 | F 625 ZZ1
F 635 ZZ1 | VV
VV | DD
DD | 7.0
7.0 | 7.5
8.5 | 0.3
0.3 | 0.3
0.3 | 5.37
9.49 | 5.27
9.49 | | MF 106
MF 126
F 686 A | MF 106 ZZ1
MF 126 ZZ
F 686 AZZ | _
_
VV | DD
DD | 7.2
7.6
7.2 | 7.0
7.2
7.4 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.65
1.38
2.25 | 0.77
1.94
3.04 | | F 696
F 606
F 626
F 636 | F 696 ZZ1
F 606 ZZ
F 626 ZZ1
F
636 ZZ | VV
VV
VV | DD
DD
DD
DD | 7.6
8.0
8.0
8.0 | 7.9
8.2
8.5
10.5 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 4.34
6.58
9.09
14.6 | 4.26
6.61
9.09
14.7 | | MF 117
MF 137
F 687 | MF 117 ZZ
MF 137 ZZ
F 687 ZZ1 | _
_
VV | _
_
DD | 8.2
8.6
8.2 | 8.0
9.0
8.5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.72
1.7
2.48 | 0.82
2.23
3.37 | | F 697
F 607
F 627 | F 697 ZZ1
F 607 ZZ1
F 627 ZZ | VV
VV
VV | DD
DD
DD | 9.0
9.0
9.0 | 10.2
9.1
10.5 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 5.65
8.66
14.2 | 5.65
8.66
14.2 | | MF 128
MF 148
F 688 A | MF 128 ZZ1
MF 148 ZZ
F 688 AZZ | VV
VV | DD
DD | 9.2
9.6
9.6 | 9.0
9.2
10.2 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 0.82
2.09
3.54 | 1.15
2.39
4.47 | | F 698
F 608 | F 698 ZZ
F 608 ZZ | VV
VV | DD
DD | 10.0
10.0 | 10.0
10.5 | 0.3
0.3 | 0.3
0.3 | 8.35
13.4 | 8.3
13.5 | | F 689
F 699 | F 689 ZZ1
F 699 ZZ1 | VV
VV | DD
DD | 10.6
11.0 | 11.5
12.0 | 0.2
0.3 | 0.2
0.3 | 3.97
9.51 | 4.91
9.51 | ## Inch Design Bore Diameter 1.016 - 9.525 mm Open Type Shielded Type ZZ · ZZS | | Bound | ary Dimens | ions | | 1 | Basic Lo | ad Ratings | gf} | Limiting
(mi | Speeds | Bearing | |-------|--------------------------|-------------------------|-------------------------|--------------------|---------------------|-------------------|-----------------|-----------------|----------------------------|----------------------------|-------------------------| | d | D | В | B_1 | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease
Open
Z · ZZ | Oil
Open
Z | Open | | 1.016 | 3.175 | 1.191 | _ | 0.1 | 80 | 23 | 8 | 2.5 | 130 000 | 150 000 | R 09 | | 1.191 | 3.967 | 1.588 | 2.380 | 0.1 | 138 | 35 | 14 | 3.5 | 110 000 | 130 000 | R 0 | | 1.397 | 4.762 | 1.984 | 2.779 | 0.1 | 231 | 66 | 24 | 6.5 | 90 000 | 110 000 | R 1 | | 1.984 | 6.350 | 2.380 | 3.571 | 0.1 | 310 | 108 | 32 | 11 | 67 000 | 80 000 | R 1-4 | | 2.380 | 4.762
4.762
7.938 | 1.588
—
2.779 | 2.380
3.571 | 0.1
0.1
0.15 | 188
143
550 | 60
52
175 | 19
15
56 | 6
5.5
18 | 80 000
80 000
60 000 | 95 000
95 000
71 000 | R 133

R 1-5 | | 3.175 | 6.350
7.938
9.525 | 2.380
2.779
2.779 | 2.779
3.571
3.571 | 0.1
0.1
0.15 | 283
560
640 | 95
179
225 | 29
57
65 | 9.5
18
23 | 67 000
60 000
53 000 | 80 000
67 000
63 000 | R 144
R 2-5
R 2-6 | | | 9.525
12.700 | 3.967
4.366 | 3.967
4.366 | 0.3
0.3 | 630
640 | 218
225 | 64
65 | 22
23 | 56 000
53 000 | 67 000
63 000 | R 2
R 2A | | 3.967 | 7.938 | 2.779 | 3.175 | 0.1 | 360 | 149 | 37 | 15 | 53 000 | 63 000 | R 155 | | 4.762 | 7.938
9.525
12.700 | 2.779
3.175
3.967 | 3.175
3.175
4.978 | 0.1
0.1
0.3 | 360
710
1 300 | 149
270
485 | 37
73
133 | 15
28
49 | 53 000
50 000
43 000 | 63 000
60 000
53 000 | R 156
R 166
R 3 | | 6.350 | 9.525
12.700 | 3.175
3.175 | 3.175
4.762 | 0.1
0.15 | 420
1 080 | 204
440 | 43
110 | 21
45 | 48 000
40 000 | 56 000
50 000 | R 168B
R 188 | | | 15.875
19.050 | 4.978
5.558 | 4.978
7.142 | 0.3
0.4 | 1 610
2 620 | 660
1 060 | 164
267 | 68
108 | 38 000
36 000 | 45 000
43 000 | R 4B
R 4AA | | 7.938 | 12.700 | 3.967 | 3.967 | 0.15 | 540 | 276 | 55 | 28 | 40 000 | 48 000 | R 1810 | | 9.525 | 22.225 | 5.558 | 7.142 | 0.4 | 3 350 | 1 410 | 340 | 144 | 32 000 | 38 000 | R 6 | | Numbers | А | butment a | nd Fillet D
(mm) | imension | S | | lass
(g) | |-----------------------------------|-------------------|-------------------|---------------------|--------------------|---------------------|----------------------|----------------------| | Shielded | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $D_{ m b}$ min. | ${m \gamma}_a$ max. | ap
Open | prox.
Shielded | | _ | 1.9 | _ | 2.3 | _ | 0.1 | 0.04 | _ | | R 0 ZZ | 2.0 | 1.9 | 3.1 | 3.5 | 0.1 | 0.09 | 0.11 | | R 1 ZZ | 2.2 | 2.3 | 3.9 | 4.1 | 0.1 | 0.15 | 0.19 | | R 1-4 ZZ | 2.8 | 3.9 | 5.5 | 5.9 | 0.1 | 0.35 | 0.50 | | R 133 ZZS
R 1-5 ZZ | 3.2
—
3.6 | 3.0
4.1 | 3.9
—
6.7 | 4.2
7.0 | 0.1
0.1
0.15 | 0.10
—
0.60 | 0.13
0.72 | | R 144 ZZ
R 2-5 ZZ
R 2-6 ZZS | 4.0
4.0
4.4 | 3.9
4.3
4.6 | 5.5
7.1
8.3 | 5.9
7.3
8.2 | 0.1
0.1
0.15 | 0.25
0.55
0.96 | 0.27
0.72
1.13 | | R 2 ZZ
R 2A ZZ | 5.2
5.2 | 4.8
4.6 | 7.5
10.7 | 8.0
8.2 | 0.3
0.3 | 1.36
3.3 | 1.39
3.23 | | R 155 ZZS | 4.8 | 5.5 | 7.1 | 7.3 | 0.1 | 0.51 | 0.56 | | R 156 ZZS
R 166 ZZ
R 3 ZZ | 5.6
5.6
6.8 | 5.5
5.9
6.5 | 7.1
8.7
10.7 | 7.3
8.8
11.2 | 0.1
0.1
0.3 | 0.39
0.81
2.21 | 0.42
0.85
2.79 | | R 168 BZZ
R 188 ZZ | 7.2
7.6 | 7.0
7.4 | 8.7
11.5 | 8.9
11.6 | 0.1
0.15 | 0.58
1.53 | 0.62
2.21 | | R 4B ZZ
R 4AA ZZ | 8.4
9.4 | 8.4
9.0 | 13.8
16.0 | 13.8
16.6 | 0.3
0.4 | 4.5
7.48 | 4.43
9.17 | | R 1810 ZZ | 9.2 | 9.0 | 11.5 | 11.6 | 0.15 | 1.56 | 1.48 | | R 6 ZZ | 12.6 | 11.9 | 19.2 | 20.0 | 0.4 | 9.02 | 11 | Inch Design With Flange Bore Diameter 1.191 – 9.525 mm Shielded Type ZZ · ZZS | | | Е | Boundary Di | | | | | | | oad Ratings | | |-------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|--------------------------|-------------------------|----------------------|-----------------------| | | | | (mn | n) | | | | 1) | 1) | { | kgf} | | d | D | D_1 | В | B_1 | C_1 | C_2 | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | | 1.191 | 3.967 | 5.156 | 1.588 | 2.380 | 0.330 | 0.790 | 0.1 | 138 | 35 | 14 | 3.5 | | 1.397 | 4.762 | 5.944 | 1.984 | 2.779 | 0.580 | 0.790 | 0.1 | 231 | 66 | 24 | 6.5 | | 1.984 | 6.350 | 7.518 | 2.380 | 3.571 | 0.580 | 0.790 | 0.1 | 310 | 108 | 32 | 11 | | 2.380 | 4.762
4.762
7.938 | 5.944
5.944
9.119 | 1.588
—
2.779 |
2.380
3.571 | 0.460
—
0.580 | —
0.790
0.790 | 0.1
0.1
0.15 | 188
143
550 | 60
52
175 | 19
15
56 | 6
5.5
18 | | 3.175 | 6.350
7.938
9.525
9.525 | 7.518
9.119
10.719
11.176 | 2.380
2.779
2.779
3.967 | 2.779
3.571
3.571
3.967 | 0.580
0.580
0.580
0.760 | 0.790
0.790
0.790
0.760 | 0.1
0.1
0.15
0.3 | 283
560
640
630 | 95
179
225
218 | 29
57
65
64 | 9.5
18
23
22 | | 3.967 | 7.938 | 9.119 | 2.779 | 3.175 | 0.580 | 0.910 | 0.1 | 360 | 149 | 37 | 15 | | 4.762 | 7.938
9.525
12.700 | 9.119
10.719
14.351 | 2.779
3.175
4.978 | 3.175
3.175
4.978 | 0.580
0.580
1.070 | 0.910
0.790
1.070 | 0.1
0.1
0.3 | 360
710
1 300 | 149
270
485 | 37
73
133 | 15
28
49 | | 6.350 | 9.525
12.700
15.875 | 10.719
13.894
17.526 | 3.175
3.175
4.978 | 3.175
4.762
4.978 | 0.580
0.580
1.070 | 0.910
1.140
1.070 | 0.1
0.15
0.3 | 420
1 080
1 610 | 204
440
660 | 43
110
164 | 21
45
68 | | 7.938 | 12.700 | 13.894 | 3.967 | 3.967 | 0.790 | 0.790 | 0.15 | 540 | 276 | 55 | 28 | | 9.525 | 22.225 | 24.613 | 7.142 | 7.142 | 1.570 | 1.570 | 0.4 | 3 350 | 1 410 | 340 | 144 | ^{2.} Bearings with double shields (ZZ, ZZS) are also available with single shields (Z, ZS). | Limiting
(mi | • | Beari | ng Numbers | | ment and
ensions (n | | | ass
g) | |--------------------------------------|--------------------------------------|------------------------------------|---|--------------------------|--------------------------|---------------------------|------------------------------|------------------------------| | Grease
Open
Z · ZZ | Oil
Open
Z | Open | Shielded | $d_{ m a}$ min. | $d_{ m b}$ max. | ${m \gamma}_{ m a}$ max. | app
Open | rox.
Shielded | | 110 000 | 130 000 | FR 0 | FR 0 ZZ | 2.0 | 1.9 | 0.1 | 0.11 | 0.16 | | 90 000 | 110 000 | FR 1 | FR 1 ZZ | 2.2 | 2.3 | 0.1 | 0.20 | 0.25 | | 67 000 | 80 000 | FR 1-4 | FR 1-4 ZZ | 2.8 | 3.9 | 0.1 | 0.41 | 0.58 | | 80 000
80 000
60 000 | 95 000
95 000
71 000 | FR 133

FR 1-5 |
FR 133 ZZS
FR 1-5 ZZ | 3.2
—
3.6 | 3.0
4.1 | 0.1
0.1
0.15 | 0.13
—
0.68 | 0.19
0.82 | | 67 000
60 000
53 000
56 000 | 80 000
67 000
63 000
67 000 | FR 144
FR 2-5
FR 2-6
FR 2 | FR 144 ZZ
FR 2-5 ZZ
FR 2-6 ZZS
FR 2 ZZ | 4.0
4.0
4.4
5.2 | 3.9
4.3
4.6
4.8 | 0.1
0.1
0.15
0.3 | 0.31
0.62
1.04
1.51 | 0.35
0.81
1.25
1.55 | | 53 000 | 63 000 | FR 155 | FR 155 ZZS | 4.8 | 5.5 | 0.1 | 0.59 | 0.67 | | 53 000
50 000
43 000 | 63 000
60 000
53 000 | FR 156
FR 166
FR 3 | FR 156 ZZS
FR 166 ZZ
FR 3 ZZ | 5.6
5.6
6.8 | 5.5
5.9
6.5 | 0.1
0.1
0.3 | 0.47
0.90
2.97 | 0.53
0.98
3.09 | | 48 000
40 000
38 000 | 56 000
50 000
45 000 | FR 168B
FR 188
FR 4B | FR 168 BZZ
FR 188 ZZ
FR 4B ZZ | 7.2
7.6
8.4 | 7.0
7.4
8.4 | 0.1
0.15
0.3 | 0.66
1.64
4.78 | 0.75
2.49
4.78 | | 40 000 | 48 000 | FR 1810 | FR 1810 ZZ | 9.2 | 9.0 | 0.15 | 1.71 | 1.63 | | 32 000 | 38 000 | FR 6 | FR 6 ZZ | 12.6 | 11.9 | 0.4 | 10.1 | 12.1 | ## ANGULAR CONTACT BALL BEARINGS # SINGLE-ROW AND MATCHED ANGULAR CONTACT BALL BEARINGS | | Bore Diameter | 10 – | 65mm | B50 | |-------------------------------|---------------|---------|-------|-----| | | Bore Diameter | 70 – |
120mm | B60 | | | Bore Diameter | 130 – 2 | 200mm | B66 | | DOUBLE-ROW ANGULAR CONTACT | Bore Diameter | 10 – | 85mm | B70 | | BALL BEARINGS | | | | | | FOUR-POINT CONTACT BALL BEARI | NGS | | | | | | Bore Diameter | 30 - 2 | 200mm | B72 | ## **DESIGN, TYPES, AND FEATURES** ### SINGLE-ROW ANGULAR CONTACT BALL BEARINGS Since these bearings have a contact angle, they can sustain significant axial loads in one direction together with radial loads. Because of their design, when a radial load is applied, an axial force component is produced; therefore, two opposed bearings or a combination of more than two must be used. Since the rigidity of single-row angular contact ball bearings can be increased by preloading, they are often used in the main spindles of machine tools, for which high running accuracy is required. (Refer to Chapter 10, Preload, Page A96). Usually, the cages for angular contact ball bearings with a contact angle of 30° (Symbol A) or 40°(Symbol B) are in accordance with Table 1,but depending on the application, machined synthetic resin cages or molded polyamide resin cages are also used. The basic load ratings given in the bearing tables are based on the cage classification listed in Table 1. Though the figures in the bearing tables (Pages B50 to B65; bearing bore diameters of 10 to 120) show bearings with single-shoulder-type inner rings, both-shoulder-type bearings are also available. Please consult NSK for more detailed information. Table 1 Standard Cages for Angular Contact Ball Bearings | Series | Pressed Steel Cages | Machined Brass Cages | |---------|---------------------|----------------------| | 79A5, C | _ | 7900 – 7940 | | 70A | 7000 – 7018 | 7019 – 7040 | | 70C | _ | 7000 – 7022 | | 72A, B | 7200 – 7222 | 7224 – 7240 | | 72C | _ | 7200 – 7240 | | 73A, B | 7300 – 7320 | 7321 – 7340 | In addition, for bearings with the same serial number, if the type of cages are different, the number of balls may also be different. In such a case, the load rating will differ from the one listed in the bearing tables. Angular Contact Ball Bearings with contact angles of 15° (Symbol C) and Angular Contact Ball Bearings with contact angles of 15° (Symbol **C**) and 25° (Symbol **A5**) are primarily for high precision or high speed applications, and machined brass or synthetic resin cages or molded polyamide cages are used. The maximum operating temperature of molded polyamide cages is 120°C. ### MATCHED ANGULAR CONTACT BALL BEARINGS The types and features of matched angular contact ball bearings are shown in Table 2. Table 2 Types and Features of Matched Angular Contact Ball Bearings | Figure | Arrangement | Features | | | | | |----------------|--|--|--|--|--|--| | a ₀ | Back-to-back
(DB)
(Example)
7208 A DB | Radial loads and axial loads in both direction can be sustained. Since the distance between the effective load centers a_0 is big, this type is suitable moments are applied. | | | | | | -a0- | Face-to-face
(DF)
(Example)
7208 B DF | Radial loads and axial loads in both directions can be sustained. Compared with the DB Type, the distance between the effective load centers is small, so the capacity to sustain moments is inferior to the DB Type. | | | | | | | Tandem
(DT)
(Example)
7208 A DT | Radial loads and axial loads in one direction can be sustained. Since two bearings share the axial load, this arrangement is used when the load in one direction is heavy. | | | | | ### **NSKHPS ANGULAR CONTACT BALL BEARINGS** In comparison with standard angular contact ball bearings, these bearings have high capacity, high limiting speed, and highly accurate universal matching as the features. The molded polyamide cages are standard specification for the HPS type. ### DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS This is basically a back-to-back mounting of two single-row angular contact ball bearings, but their inner and outer rings are each integrated into one. Axial loads in both directions can be sustained, and the capacity to sustain moments is good. This type is used as fixed-end bearings. Their cages are pressed steel. ### FOUR-POINT CONTACT BALL BEARINGS The inner ring is split radially into two pieces. Their design allows one bearing to sustain significant axial loads in either direction. The contact angle is 35°, so the axial load capacity is high. This type is suitable for carrying pure axial loads or combined loads where the axial loads are high. The cages are made of machined brass. # PRECAUTIONS FOR USE OF ANGULAR CONTACT BALL BEARINGS Under severe operating conditions where the speed and temperature are close to their limits, lubrication is marginal, vibration and moment loads are heavy, they may not be suitable, particularly for certain types of cages. In such a case, please consult with NSK beforehand. And if the load on angular contact ball bearings becomes too small, or if the ratio of the axial and radial loads for matched bearings exceeds 'e' (e is listed in the bearings tables) during operation, slippage occurs between the balls and raceways, which may result in smearing. Especially with large bearings since the weight of the balls and cage is high. If such load conditions are expected, please consult with NSK for selection of the bearings. ### TOLERANCES AND RUNNING ACCURACY | SINGLE-ROW ANGULAR CONTACT | | | | |---------------------------------------|---------------|--------------|-------------| | BALL BEARINGS | Table 8.2 | (Pages A | 60 to A63) | | NSKHPS ANGULAR CONTACT BALL BEARINGS | | , - | ŕ | | Tolerance for Dimensions: Class 6, | | | | | Running Accuracy: Class 5 | Table 8.2 | (Pages A | 60 to A63) | | MATCHED ANGULAR CONTACT | 14510 0.2 | - (1 ugoo 71 | 00 10 7100) | | BALL BEARINGS | Table 9 (|) (Dagge A | 60 to A62) | | DOUBLE-ROW ANGULAR CONTACT | ··· lable 0.2 | (rayes A | 00 to A03) | | | T.I. 0.0 | \ /D | 00 400) | | BALL BEARINGS | lable 8.2 | 2 (Pages A | 60 to A63) | | FOUR-POINT CONTACT BALL | | | | | BEARINGS | ···Table 8.2 | ? (Pages A | 60 to A63) | | RECOMMENDED FITS | | | | | | | | | | SINGLE-ROW ANGULAR CONTACT BALL | | | | | BEARINGS AND HPS ANGULAR CONTACT | | | | | BALL BEARINGS | ···Table 9.2 | ? (Page A8 | 4) | | | | l (Page A8 | | | MATCHED ANGULAR CONTACT BALL BEARINGS | Table 9.2 | Page A8 | 4) | | | | Page A8 | | | DOUBLE-ROW ANGULAR CONTACT BALL | | (| -, | | BEARINGS | Tahle 9 3 | Page Δ8 | 4) | | DEMINIO | | l (Page A8 | | | FOUR-POINT CONTACT BALL BEARINGS | Table 0. | r (rayt Au | 4) | | FUUN-FUINT GUNTAGT DALL DEANINGS | | | | | | Table 9.4 | l (Page A8 | 5) | ### INTERNAL CLEARANCES ### MATCHED ANGULAR CONTACT BALL BEARINGS..... Table 9. 17 (Page A94) Matched angular contact ball bearings with precision better than P5 are primarily used in the main spindles of machine tools, so they are used with a preload for rigidity. For convenience of selection, internal clearances are adjusted to produce Very Light, Light, Medium, and Heavy Preloads. Their fitting is also special. Concerning these matters, please refer to Tables 10.1 and 10.2 (Pages A98 and A99). The clearance (or preload) of matched bearings is obtained by axially tightening a pair of bearings till the side faces of their inner or outer rings are pressed against each other. ### NSKHPS ANGULAR CONTACT BALL BEARINGS | Axial Internal Clearance (Measured Clearances) Units : μm | | | | | | | | | | | | | |---|-------|------|------|------|------|--|--|--|--|--|--|--| | Nominal Bore Diameter Axial Internal Clearance | | | | | | | | | | | | | | d (mm) CNB GA | | | | | | | | | | | | | | over | incl. | min. | max. | min. | max. | | | | | | | | | 12 | 18 | 17 | 25 | | | | | | | | | | | 18 | 30 | 20 | 28 | -2 | 6 | | | | | | | | | 30 | 50 | 24 | 32 | | | | | | | | | | | 50 | 80 | 29 | 41 | -3 | 9 | | | | | | | | ### DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS For the clearance in double-row angular contact ball bearings, please consult with NSK. FOUR-POINT CONTACT BALL BEARINGS.....Table 9.18 (Page A94) LIMITING SPEEDS In cases of single-row and matched angular contact ball bearings, the Limiting speeds listed in the bearing table are for bearings with machined cage. For those with pressed cages, the listed speeds must be reduced by 20%. The limiting speeds of bearings with contact angles of 15° (Symbol **C**) and 25° (Symbol **A5**) are for bearings with precision of P5 and better (with machined synthetic-resin cages or molded polyamide cages). The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. B 48 B 49 ## SINGLE/MATCHED MOUNTINGS Bore Diameter 10 – 15 mm Single Back-to-Back DB Face-to-Face DT | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | or DF | | |---------|--------------------------------|------|---------|------------|---------|-------|---------|------|---------|-------| | Angle | $\frac{\iota J_0 P_a}{C_{or}}$ | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | r≤e | F_a/F | r > e | | Allyle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 |
 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB o | or DF | | |---------|-----------------------|-------|-----------------------|-------|-------------------------| | Angle | <i>X</i> ₀ | Y_0 | <i>X</i> ₀ | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0=F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | 0 -1 | | Bearing | Numb | ers (²) | | Basic
(1 | : Load Ratings | (Matched) | | Speeds (1) | iting
(Matched) | Load C
Spacing | s (mm) | | ent and
nsions (r | | |------------------------------|------|---------|-------------|----------------------------|-------------------------|-------------------------|-------------------|----------------------------|----------------------------|----------------------|--------------------|---------------------|---------------------------|--------------------------------| | Single | D | uplex | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | n ⁻¹)
Oil | DB | O DF | $d_{ m b}$ (3) min. | $D_{\rm b} \\ {\rm max.}$ | γ _b (³) max. | | 7900 A5
7900 C
7000 A | DB | DF D | T
T | 4 700
4 900
8 750 | 2 900
3 050
5 200 | 475
500
890 | 296
310
530 | 32 000
38 000
24 000 | 43 000
53 000
34 000 | 13.5
10.3
18.4 | 1.5
1.7
2.4 | —
—
11.2 | 20.8
20.8
24.8 | 0.15
0.15
0.15 | | 7000 C
7200 A
7200 B | DB | DF D | T
T
T | 8 650
8 800
8 100 | 5 000
5 400
5 000 | 880
900
825 | 510
555
510 | 36 000
22 000
16 000 | 50 000
30 000
22 000 | 12.8
20.5
25.8 | 3.2
2.5
7.8 | —
12.5
12.5 | 24.8
27.5
27.5 | 0.15
0.3
0.3 | | 7200 C
7300 A
7300 B | DB | DF D | T
T
T | 8 800
15 100
14 200 | 5 200
8 600
8 100 | 895
1 540
1 450 | 530
880
825 | 32 000
16 000
14 000 | 45 000
22 000
20 000 | 14.4
24.0
29.9 | 3.6
2.0
7.9 | —
12.5
12.5 | 27.5
32.5
32.5 | 0.3
0.3
0.3 | | 7901 A5
7901 C
7001 A | DB | DF D | T
T
T | 5 200
5 450
9 400 | 3 550
3 700
5 950 | 530
555
955 | 360
380
610 | 30 000
36 000
22 000 | 43 000
50 000
30 000 | 14.4
10.8
19.5 | 2.4
1.2
3.5 | —
—
13.2 | 22.8
22.8
26.8 | 0.15
0.15
0.15 | | 7001 C
7201 A
7201 B | DB | DF D | T
T
T | 9 400
13 000
12 100 | 5 800
8 050
7 500 | 960
1 330
1 230 | 590
820
765 | 32 000
20 000
15 000 | 45 000
28 000
20 000 | 13.4
22.7
28.5 | 2.6
2.7
8.5 | —
14.5
14.5 | 26.8
29.5
29.5 | 0.15
0.3
0.3 | | *7201 BE
7201 C
7301 A | DB | |)T | 12 800
15 400 | 7 700
9 000 | 1 310
1 570 | —
785
915 | 16 000
30 000
15 000 | 24 000
40 000
20 000 | 28.5
15.9
26.1 | 8.5
4.1
2.1 | 14.5
—
17 | 29.5
29.5
32 | 0.3
0.3
0.6 | | 7301 B
*7301 BE | | DF C | т | 14 400
— | 8 400
— | 1 460
— | 855
— | 13 000
15 000 | 18 000
22 000 | 32.6
32.6 | 8.6
8.6 | 17
17 | 32
32 | 0.6
0.6 | | 7902 A5
7902 C
7002 A | | DF D | T
T | 7 400
7 750
9 950 | 5 050
5 300
6 850 | 755
790
1 010 | 515
540
700 | 26 000
30 000
19 000 | 34 000
43 000
26 000 | 17.0
12.8
22.6 | 3.0
1.2
4.6 | —
—
16.2 | 26.8
26.8
30.8 | 0.15
0.15
0.15 | | 7002 C
7202 A
7202 B | | DF D | T
T
T | 10 100
14 000
12 900 | 6 750
9 300
8 600 | 1 030
1 430
1 310 | 690
950
875 | 28 000
18 000
13 000 | 38 000
24 000
18 000 | 15.3
25.4
32.0 | 2.7
3.4
10.0 | —
17.5
17.5 | 30.8
32.5
32.5 | 0.15
0.3
0.3 | | *7202 BE
7202 C
7302 A | DB | DF C |)T |
14 100
21 800 | 9 050
14 200 | 1 440
2 220 | 925
1 440 | 14 000
26 000
13 000 | 20 000
36 000
17 000 | 32.0
17.7
29.5 | 10.0
4.3
3.5 | 17.5
—
20 | 32.5
32.5
37 | 0.3
0.3
0.6 | | 7302 B
*7302 BE | | DF C | т | 20 200
— | 13 200
— | 2 060
— | 1 340
— | 11 000
13 000 | 15 000
18 000 | 36.9
36.9 | 10.9
10.9 | 20
20 | 37
37 | 0.6
0.6 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. **Remarks** The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. | Во | undar | y Dim
(mm) | nensio | ons | | Basic Load Ratings (Single) (N) {kgf} | | | Factor | Lim
Spee
(mi | ds (¹) | Eff.Load
Centers | | ent and
nsions (r | | Mass
(kg) | |----|----------------|----------------|-------------------|----------------------|--------------------------|---------------------------------------|-------------|-------------------|----------------|----------------------------|----------------------------|---------------------|----------------------|----------------------|------------------------|-------------------------| | d | D | B | γ
min. | $ eals_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${\it r}_{\rm a}$ max. | approx. | | 10 | 22
22
26 | 6
6
8 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 2 880
3 000
5 350 | 1 450
1 520
2 600 | 305 | 148
155
266 | —
14.1
— | 40 000
48 000
32 000 | 56 000
63 000
43 000 | 6.7
5.1
9.2 | 12.5
12.5
12.5 | 19.5
19.5
23.5 | 0.3
0.3
0.3 | 0.009
0.009
0.019 | | | 26
30
30 | 8
9
9 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 5 300
5 400
5 000 | 2 490
2 710
2 500 | 555 | 254
276
255 | 12.6
—
— | 45 000
28 000
20 000 | 63 000
38 000
28 000 | 6.4
10.3
12.9 | 12.5
15
15 | 23.5
25
25 | 0.3
0.6
0.6 | 0.021
0.032
0.032 | | | 30
35
35 | 9
11
11 | 0.6
0.6
0.6 | 0.3
0.3
0.3 | 5 400
9 300
8 750 | 2 610
4 300
4 050 | 950 | 266
440
410 | 13.2
—
— | 40 000
20 000
18 000 | 56 000
26 000
24 000 | 7.2
12.0
14.9 | 15
15
15 | 25
30
30 | 0.6
0.6
0.6 | 0.036
0.053
0.054 | | 12 | 24
24
28 | 6
6
8 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 3 200
3 350
5 800 | 1 770
1 860
2 980 | 340 | 181
189
305 | _
14.7
_ | 38 000
45 000
28 000 | 53 000
63 000
38 000 | 7.2
5.4
9.8 | 14.5
14.5
14.5 | 21.5
21.5
25.5 | 0.3
0.3
0.3 | 0.011
0.011
0.021 | | | 28
32
32 | 8
10
10 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 5 800
8 000
7 450 | 2 900
4 050
3 750 | 815 | 296
410
380 | 13.2
—
— | 40 000
26 000
18 000 | 56 000
34 000
26 000 | 6.7
11.4
14.2 | 14.5
17
17 | 25.5
27
27 | 0.3
0.6
0.6 | 0.024
0.037
0.038 | | | 32
32
37 | 10
10
12 | 0.6
0.6
1 | 0.3
0.3
0.6 | 8 150
7 900
9 450 | 3 750
3 850
4 500 | 805 | 380
395
460 |
12.5
 | 20 000
36 000
18 000 | 30 000
50 000
24 000 | 14.2
7.9
13.1 | 17
17
18 | 27
27
31 | 0.6
0.6
1 | 0.036
0.041
0.060 | | | 37
37 | 12
12 | 1
1 | 0.6
0.6 | 8 850
11 100 | 4 200
4 950 | | 425
505 | _ | 16 000
18 000 | 22 000
26 000 | 16.3
16.3 | 18
18 | 31
31 | 1
1 | 0.062
0.061 | | 15 | 28
28
32 | 7
7
9 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 4 550
4 750
6 100 | 2 530
2 640
3 450 | 485 | 258
270
350 | —
14.5
— | 32 000
38 000
24 000 | 43 000
53 000
32 000 | 8.5
6.4
11.3 | 17.5
17.5
17.5 | 25.5
25.5
29.5 | 0.3
0.3
0.3 | 0.015
0.015
0.030 | | | 32
35
35 | 9
11
11 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 6 250
8 650
7 950 | 3 400
4 650
4 300 | 880 | 345
475
440 | 14.1
—
— | 34 000
22 000
16 000 | 48 000
30 000
22 000 | 7.6
12.7
16.0 | 17.5
20
20 | 29.5
30
30 | 0.3
0.6
0.6 | 0.034
0.045
0.046 | | | 35
35
42 | 11
11
13 | 0.6
0.6
1 | 0.3
0.3
0.6 | 9 800
8 650
13 400 | 4 800
4 550
7 100 | 885 | 490
460
720 | —
13.2
— | 18 000
32 000
16 000 | 26 000
45 000
22 000 | 16.0
8.8
14.7 | 20
20
21 | 30
30
36 | 0.6
0.6
1 | 0.044
0.052
0.084 | | | 42
42 | 13
13 | 1
1 | 0.6
0.6 | 12 500
14 300 | 6 600
6 900 | | 670
705 | _ | 14 000
16 000 | 19 000
22 000 | 18.5
18.5 | 21
21 | 36
36 | 1
1 | 0.086
0.084 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 17 - 25 mm Single Back-to-Back DB Face-to-Face Tandem DT ### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB o | r DF | | |---------|-------------|------|---------|------------|---------|-------|------------------|------|---------------|------| | Contact | | e | F_a/I | $r \leq e$ | F_a/I | r > e | $F_a/F_r \leq e$ | | $F_a/F_r > e$ | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 |
1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB o | r DF | | |---------|-----------------------|-------|-----------------------|-------|-------------------------| | Angle | <i>X</i> ₀ | Y_0 | <i>X</i> ₀ | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | Bearing Numbers (2) | | C Load Ratings | | iting
(Matched) | Load (
Spacing
<i>a</i> | s (mm) | | ent and
nsions (r | | | | |---|------------------|------------------|----------------|--------------------|-------------------------------|----------------------------|----------------------|----------------------|---------------------|--------------------|-----------------------------------| | Single Duplex | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | γ _b (³)
max. | | 7903 A5 DB DF DT | 7 750 | 5 600 | 790 | 570 | 24 000 | 32 000 | 18.0 | 4.0 | — | 28.8 | 0.15 | | 7903 C DB DF DT | 8 150 | 5 850 | 830 | 600 | 28 000 | 38 000 | 13.3 | 0.7 | — | 28.8 | 0.15 | | 7003 A DB DF DT | 10 400 | 7 650 | 1 060 | 780 | 17 000 | 24 000 | 25.0 | 5.0 | 18.2 | 33.8 | 0.15 | | 7003 C DB DF DT | 10 700 | 7 600 | 1 100 | 775 | 26 000 | 34 000 | 17.0 | 3.0 | — | 33.8 | 0.15 | | 7203 A DB DF DT | 17 600 | 12 000 | 1 790 | 1 220 | 16 000 | 22 000 | 28.5 | 4.5 | 19.5 | 37.5 | 0.3 | | 7203 B DB DF DT | 16 100 | 11 000 | 1 650 | 1 130 | 11 000 | 15 000 | 35.9 | 11.9 | 19.5 | 37.5 | 0.3 | | *7203 BEA
7203 C DB DF DT
7303 A DB DF DT | 17 600
25 900 | 11 700
17 300 | 1 800
2 640 | 1 190
1 760 | 13 000
22 000
11 000 | 18 000
32 000
15 000 | 36.3
19.6
32.5 | 12.3
4.4
4.5 | 19.5
—
22 | 37.5
37.5
42 | 0.3
0.3
0.6 | | 7303 B DB DF DT | 24 000 | 16 000 | 2 450 | 1 640 | 10 000 | 14 000 | 40.9 | 12.9 | 22 | 42 | 0.6 | | *7303 BEA | — | — | — | — | 11 000 | 16 000 | 40.9 | 12.9 | 22 | 42 | 0.6 | | 7904 A5 DB DF DT | 10 700 | 8 100 | 1 090 | 825 | 19 000 | 26 000 | 22.3 | 4.3 | _ | 35.8 | 0.15 | | 7904 C DB DF DT | 11 300 | 8 500 | 1 150 | 865 | 22 000 | 32 000 | 16.6 | 1.4 | | 35.8 | 0.15 | | 7004 A DB DF DT | 17 600 | 13 200 | 1 800 | 1 340 | 15 000 | 20 000 | 29.9 | 5.9 | 22.5 | 39.5 | 0.3 | | 7004 C DB DF DT | 18 000 | 13 100 | 1 840 | 1 330 | 20 000 | 30 000 | 20.3 | 3.7 | — | 39.5 | 0.3 | | 7204 A DB DF DT | 23 500 | 16 600 | 2 400 | 1 690 | 13 000 | 19 000 | 33.3 | 5.3 | 25 | 42 | 0.6 | | 7204 B DB DF DT | 21 600 | 15 300 | 2 210 | 1 560 | 9 500 | 13 000 | 42.1 | 14.1 | 25 | 42 | 0.6 | | *7204 BEA
7204 C DB DF DT
7304 A DB DF DT | 23 600
30 500 | 16 100
20 800 | 2 410
3 100 | 1 650
2 130 | 11 000
19 000
10 000 | 16 000
26 000
13 000 | 42.1
23.0
35.8 | 14.1
5.0
5.8 | 25
—
25 | 42
42
47 | 0.6
0.6
0.6 | | 7304 B DB DF DT | 28 200 | 19 300 | 2 870 | 1 970 | 9 000 | 12 000 | 45.2 | 15.2 | 25 | 47 | 0.6 | | *7304 BEA | — | — | — | — | 10 000 | 14 000 | 45.2 | 15.2 | 25 | 47 | 0.6 | | 7905 A5 DB DF DT | 12 100 | 10 300 | 1 230 | 1 050 | 16 000 | 22 000 | 24.6 | 6.6 | _ | 40.8 | 0.15 | | 7905 C DB DF DT | 12 700 | 10 800 | 1 300 | 1 110 | 19 000 | 26 000 | 18.0 | 0.0 | | 40.8 | 0.15 | | 7005 A DB DF DT | 18 300 | 14 800 | 1 870 | 1 510 | 13 000 | 17 000 | 32.8 | 8.8 | 27.5 | 44.5 | 0.3 | | 7005 C DB DF DT | 19 000 | 14 800 | 1 940 | 1 510 | 18 000 | 26 000 | 21.6 | 2.4 | | 44.5 | 0.3 | | 7205 A DB DF DT | 26 300 | 20 500 | 2 690 | 2 090 | 12 000 | 16 000 | 37.2 | 7.2 | 30 | 47 | 0.6 | | 7205 B DB DF DT | 24 000 | 18 800 | 2 450 | 1 920 | 8 500 | 11 000 | 47.3 | 17.3 | 30 | 47 | 0.6 | | *7205 BEA
7205 C DB DF DT
7305 A DB DF DT | 27 000
43 000 | 20 400
31 500 | 2 750
4 400 | 2 080
3 250 | 9 500
17 000
8 500 | 14 000
24 000
11 000 | 47.3
25.3
42.1 | 17.3
4.7
8.1 | 30
—
30 | 47
47
57 | 0.6
0.6
0.6 | | Note (3) For hearing | ago markad | in the colum | on for d d | and | for obotto | | :n\ and | (100.014) 11 | | h., | | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. | Во | | nry Dimensions
(mm) | | ns | Basi
(N | | ngs (Single)
{kg | | Factor | Spee | iting
ds (¹) | Eff.Load
Centers | | ent and
Isions (r | | Mass
(kg) | |----|----------------|------------------------|-------------------|----------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------|----------------------------|----------------------------|----------------------|----------------------|------------------------------|---------------------------|-------------------------| | d | D | В | r
min. | $ eals_1$ min. | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Grease | n ⁻¹)
Oil | (mm)
a | $d_{ m a}$ min. | $D_{\rm a} \atop {\rm max.}$ | ${m \gamma}_{\rm a}$ max. | approx. | | 17 | 30
30
35 | 7
7
10 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 4 750
5 000
6 400 | 2 800
2 940
3 800 | 485
510
655 | 286
299
390 | _
14.8
_ | 30 000
34 000
22 000 | 40 000
48 000
30 000 | 9.0
6.6
12.5 | 19.5
19.5
19.5 | 27.5
27.5
32.5 | 0.3
0.3
0.3 | 0.017
0.017
0.040 | | | 35
40
40 | 10
12
12 | | 0.15
0.3
0.3 | 6 600
10 800
9 950 | 3 800
6 000
5 500 | 675
1 100
1 010 | 390
610
565 | 14.5
—
— | 32 000
20 000
14 000 | 43 000
28 000
19 000 | 8.5
14.2
18.0 | 19.5
22
22 | 32.5
35
35 | 0.3
0.6
0.6 | 0.044
0.067
0.068 | | | 40
40
47 | 12
12
14 | 0.6
0.6
1 | 0.3
0.3
0.6 | 11 600
10 900
15 900 | 6 100
5 850
8 650 | 1 180
1 110
1 630 | 625
595
880 | 13.3
— | 16 000
28 000
14 000 | 22 000
38 000
19 000 | 18.2
9.8
16.2 | 22
22
23 | 35
35
41 | 0.6
0.6
1 | 0.065
0.075
0.116 | | | 47
47 | 14
14 | 1
1 | 0.6
0.6 | 14 800
16 800 | 8 000
8 300 | 1 510
1 720 | 820
850 | _ | 13 000
14 000 | 17 000
20 000 | 20.4
20.4 | 23
23 | 41
41 | 1
1 | 0.118
0.113 | | 20 | 37
37
42 | 9
9
12 | 0.3
0.3
0.6 | 0.15
0.15
0.3 | 6 600
6 950
10 800 | 4 050
4 250
6 600 | 675
710
1 110 | 410
430
670 | 14.9
— | 24 000
28 000
18 000 | 32 000
38 000
24 000 | 11.1
8.3
14.9 | 22.5
22.5
25 | 34.5
34.5
37 | 0.3
0.3
0.6 | 0.036
0.036
0.068 | | | 42
47
47 | 12
14
14 | 0.6
1
1 | 0.3
0.6
0.6 | 11 100
14 500
13 300 | 6 550
8 300
7 650 | 1 130
1 480
1 360 | 665
845
780 | 14.0
— | 26 000
17 000
12 000 | 36 000
22 000
16 000 | 10.1
16.7
21.1 | 25
26
26 | 37
41
41 | 0.6
1
1 | 0.076
0.106
0.109 | | | 47
47
52 | 14
14
15 | 1
1
1.1 | 0.6
0.6
0.6 | 15 600
14 600
18 700 | 8 150
8 050
10 400 | 1 590
1 480
1 910 | 830
825
1 060 | 13.3
— | 13 000
24 000
13 000 | 19 000
34 000
17 000 | 21.1
11.5
17.9 | 26
26
27 | 41
41
45 | 1
1
1 | 0.103
0.118
0.146 | | | 52
52 | 15
15 | 1.1
1.1 | 0.6
0.6 | 17 300
19 800 | 9 650
10 500 | 1 770
2 020 | 985
1 070 | = | 11 000
13 000 | 15 000
18 000 | 22.6
22.6 | 27
27 | 45
45 | 1
1 | 0.15
0.149 | | 25 | 42
42
47 | 9
9
12 | 0.3
0.3
0.6 | 0.15
0.15
0.3 | 7 450
7 850
11 300 | 5 150
5 400
7 400 | 760
800
1 150 | 525
555
750 | 15.5
— | 20 000
24 000
16 000 | 28 000
34 000
22 000 | 12.3
9.0
16.4 | 27.5
27.5
30 | 39.5
39.5
42 | 0.3
0.3
0.6 | 0.043
0.042
0.079 | | | 47
52
52 | 12
15
15 | 0.6
1
1 | 0.3
0.6
0.6 | 11 700
16 200
14 800 | 7 400
10 300
9 400 | 1 190
1 650
1 510 | 755
1 050
960 | 14.7
—
— | 22 000
15 000
10 000 | 30 000
20 000
14 000 | 10.8
18.6
23.7 | 30
31
31 | 42
46
46 | 0.6
1
1 | 0.089
0.13
0.133 | | | 52
52
62 | 15
15
17 | 1
1
1.1 | 0.6
0.6
0.6 | 17 600
16 600
26 400 | 10 200
10 200
15 800 | 1 790
1 690
2 690 | 1 040
1 040
1 610 | 14.0
— | 12 000
22 000
10 000 | 17 000
28 000
14 000 | 23.7
12.7
21.1 | 31
31
32 | 46
46
55 | 1
1
1 | 0.127
0.143
0.235 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 25 - 40 mm Back-to-Back DB Face-to-Face Tandem DT ### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact if E * Single, DT DB or [| DI |
---|---------------| | Contact Angle C_{or} e | $F_a/F_r > e$ | | Allyle Cor X Y X Y X Y | X = Y | | 0.178 0.38 1 0 0.44 1.47 1 1.65 0 | 0.72 2.39 | | 0.357 0.40 1 0 0.44 1.40 1 1.57 0 | 0.72 2.28 | | 0.714 0.43 1 0 0.44 1.30 1 1.46 0 | 0.72 2.11 | | 15° 1.07 0.46 1 0 0.44 1.23 1 1.38 0 | 0.72 2.00 | | 15 1.43 0.47 1 0 0.44 1.19 1 1.34 0 | 0.72 1.93 | | 2.14 0.50 1 0 0.44 1.12 1 1.26 0 | 0.72 1.82 | | 3.57 0.55 1 0 0.44 1.02 1 1.14 0 | 0.72 1.66 | | 5.35 0.56 1 0 0.44 1.00 1 1.12 0 | 0.72 1.63 | | 25° — 0.68 1 0 0.41 0.87 1 0.92 0 | 0.67 1.41 | | | 0.63 1.24 | | 40° 1.14 1 0 0.35 0.57 1 0.55 0 | 0.57 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB o | or DF | | |---------|-----------------------|-------|-------|-------|------------------| | Angle | <i>X</i> ₀ | Y_0 | X_0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | X_0 | | Y_0 | | X | 0 | | Y_0 | Single o | | | | | |---|------------------|----------------------------------|-------------|---------------|----------------------------|----------|------|--------------------|-----------------|--------|--------------------------------|--|--| | | 0.5 | | 0.46 | | | | |).92 | mountin
When | g | | | | | | 0.5 | | 0.38 | 3 | 1 0.76 | | | | | 5 F. | $+Y_0F_a$ | | | | | 0.5 | | 0.33 1 0.66 | | | | | use Pn= | | 1101 a | | | | | | 0.5 | | 0.26 | 6 | 1 0.52 | |).52 | | • | | | | | | | | | | .0 1 0.02 | | | | | | | | | | |) | Limi
eeds (¹) | (Ma | atched) | | oad (
acing
<i>a</i> | s (m | | | | | | | | | | Grease | (min ⁻¹)
ease Oil | | | DB | O DI | = | $d_{ m b}$ (3 min. |) $D_{ m ma}$ | | γ _b (³) max. | | | | | 7 500
8 500 | | 000 000 | | 3.5
3.5 | 19
19 | | 30
30 | 57
57 | | 0.6
0.6 | | | | Во | undar | y Dim
mm) | | ons | Bas
(1 | | ngs (Single)
{k | gf} | Factor | Spee | iting
ds (¹) | Eff.Load
Centers | | ent and
isions (i | | Mass
(kg) | |----|----------------|----------------|-------------------|----------------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------|----------------------------|----------------------------|----------------------|--------------------|----------------------|--------------------------|-------------------------| | d | D | В | ∤
min. | $oldsymbol{\gamma}_1$ min. | C_{r} | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | f_0 | (mi
Grease | n-¹)
Oil | (mm)
<i>a</i> | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{ m a}$ max. | approx. | | 25 | 62
62 | 17
17 | 1.1
1.1 | 0.6
0.6 | 24 400
27 200 | 14 600
14 900 | 2 490
2 770 | 1 490
1 520 | _ | 9 000
10 000 | 13 000
15 000 | 26.7
26.8 | 32
32 | 55
55 | 1 | 0.241
0.229 | | 30 | 47
47
55 | 9
9
13 | 0.3
0.3
1 | 0.15
0.15
0.6 | 7 850
8 300
14 500 | 5 950
6 250
10 100 | 800
845
1 480 | 605
640
1 030 |
15.9
 | 18 000
22 000
13 000 | 24 000
28 000
18 000 | 13.5
9.7
18.8 | 32.5
32.5
36 | 44.5
44.5
49 | 0.3
0.3
1 | 0.049
0.049
0.116 | | | 55
62
62 | 13
16
16 | 1
1
1 | 0.6
0.6
0.6 | 15 100
22 500
20 500 | 10 300
14 800
13 500 | 1 540
2 300
2 090 | 1 050
1 510
1 380 | 14.9
— | 19 000
12 000
8 500 | 26 000
17 000
12 000 | 12.2
21.3
27.3 | 36
36
36 | 49
56
56 | 1
1
1 | 0.134
0.197
0.202 | | | 62
62
72 | 16
16
19 | 1
1
1.1 | 0.6
0.6
0.6 | 23 700
23 000
33 500 | 14 300
14 700
20 900 | 2 420
2 350
3 450 | 1 460
1 500
2 130 | 13.9
— | 10 000
18 000
9 000 | 14 000
24 000
12 000 | 27.3
14.2
24.2 | 36
36
37 | 56
56
65 | 1
1
1 | 0.194
0.222
0.346 | | | 72
72 | 19
19 | 1.1
1.1 | 0.6
0.6 | 31 000
36 500 | 19 300
20 600 | 3 150
3 700 | 1 960
2 100 | _ | 8 000
9 000 | 11 000
13 000 | 30.9
30.9 | 37
37 | 65
65 | 1
1 | 0.354
0.336 | | 35 | 55
55
62 | 10
10
14 | 0.6
0.6
1 | 0.3
0.3
0.6 | 11 400
12 100
18 300 | 8 700
9 150
13 400 | 1 170
1 230
1 870 | 885
930
1 370 | _
15.7
_ | 15 000
18 000
12 000 | 20 000
24 000
16 000 | 15.5
11.0
21.0 | 40
40
41 | 50
50
56 | 0.6
0.6
1 | 0.074
0.074
0.153 | | | 62
72
72 | 14
17
17 | 1
1.1
1.1 | 0.6
0.6
0.6 | 19 100
29 700
27 100 | 13 700
20 100
18 400 | 1 950
3 050
2 760 | 1 390
2 050
1 870 | 15.0
— | 17 000
10 000
7 500 | 22 000
14 000
10 000 | 13.5
23.9
30.9 | 41
42
42 | 56
65
65 | 1
1
1 | 0.173
0.287
0.294 | | | 72
72
80 | 17
17
21 | 1.1
1.1
1.5 | 0.6
0.6
1 | 32 500
30 500
40 000 | 19 600
19 900
26 300 | 3 300
3 100
4 050 | 1 990
2 030
2 680 | 13.9
— | 8 500
15 000
8 000 | 12 000
20 000
10 000 | 30.9
15.7
27.1 | 42
42
44 | 65
65
71 | 1
1
1.5 | 0.271
0.32
0.464 | | | 80
80 | 21
21 | | 1 | 36 500
40 500 | 24 200
24 400 | 3 750
4 100 | 2 460
2 490 | _ | 7 100
8 000 | 9 500
11 000 | 34.6
34.6 | 44
44 | 71
71 | 1.5
1.5 | 0.474
0.451 | | 40 | 62
62
68 | 12
12
15 | 0.6
0.6
1 | 0.3
0.3
0.6 | 14 300
15 100
19 500 | 11 200
11 700
15 400 | 1 460
1 540
1 990 | 1 140
1 200
1 570 |
15.7
 | 14 000
16 000
10 000 | 18 000
22 000
14 000 | 17.9
12.8
23.1 | 45
45
46 | 57
57
62 | 0.6
0.6
1 | 0.11
0.109
0.19 | | | 68
80
80 | 15
18
18 | 1
1.1
1.1 | 0.6
0.6
0.6 | 20 600
35 500
32 000 | 15 900
25 100
23 000 | 2 100
3 600
3 250 | 1 620
2 560
2 340 | 15.4
— | 15 000
9 500
6 700 | 20 000
13 000
9 000 | 14.7
26.3
34.2 | 46
47
47 | 62
73
73 | 1
1
1 | 0.213
0.375
0.383 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing | Bearing Numbers (2) Single Duplex | | c Load Ratings | s (Matched)
{kg | | Speeds (1) | iting
(Matched) | Load (
Spacing | s (mm) | | ent and
nsions (r | | |-------------------------------|-----------------------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------------------|----------------------------|----------------------|---------------------|---------------------|----------------------|-----------------------------------| | Single | Duplex | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | in ⁻¹)
Oil | DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | γ _b (³)
max. | | 7305 B
*7305 BE | DB DF DT | 39 500
— | 29 300
— | 4 050
— | 2 980
— | 7 500
8 500 | 10 000
12 000 | 53.5
53.5 | 19.5
19.5 | 30
30 | 57
57 |
0.6
0.6 | | 7906 A5
7906 C
7006 A | DB DF DT
DB DF DT
DB DF DT | 12 800
13 500
23 600 | 11 900
12 500
20 200 | 1 300
1 380
2 410 | 1 210
1 280
2 060 | 14 000
17 000
11 000 | 19 000
24 000
15 000 | 27.0
19.3
37.5 | 9.0
1.3
11.5 | —
—
35 | 45.8
45.8
50 | 0.15
0.15
0.6 | | 7006 C
7206 A
7206 B | DB DF DT
DB DF DT
DB DF DT | 24 600
36 500
33 500 | 20 500
29 500
27 000 | 2 510
3 750
3 400 | 2 090
3 000
2 760 | 15 000
10 000
7 100 | 22 000
13 000
9 500 | 24.4
42.6
54.6 | 1.6
10.6
22.6 | —
35
35 | 50
57
57 | 0.6
0.6
0.6 | | *7206 BEA
7206 C
7306 A | DB DF DT
DB DF DT | 37 500
54 500 | 29 300
41 500 | 3 800
5 600 | 2 990
4 250 | 8 000
14 000
7 100 | 11 000
20 000
9 500 | 54.6
28.3
48.4 | 22.6
3.7
10.4 | 35
—
35 | 57
57
67 | 0.6
0.6
0.6 | | 7306 B
*7306 BE | DB DF DT | 50 500
— | 38 500
— | 5 150
— | 3 950
— | 6 300
7 100 | 8 500
10 000 | 61.8
61.8 | 23.8
23.8 | 35
35 | 67
67 | 0.6
0.6 | | 7907 A5
7907 C
7007 A | DB DF DT
DB DF DT
DB DF DT | 18 600
19 600
29 700 | 17 400
18 300
26 800 | 1 890
2 000
3 050 | 1 770
1 860
2 740 | 12 000
14 000
9 500 | 17 000
20 000
13 000 | 31.0
22.1
42.0 | 11.0
2.1
14.0 | _
40 | 52.5
52.5
57 | 0.3
0.3
0.6 | | 7007 C
7207 A
7207 B | DB DF DT
DB DF DT
DB DF DT | 31 000
48 500
44 000 | 27 300
40 000
36 500 | 3 150
4 900
4 500 | 2 790
4 100
3 750 | 13 000
8 500
6 000 | 19 000
12 000
8 000 | 27.0
47.9
61.9 | 1.0
13.9
27.9 | —
40
40 | 57
67
67 | 0.6
0.6
0.6 | | *7207BEA
7207 C
7307 A | DB DF DT
DB DF DT | 49 500
65 000 | 40 000
52 500 | 5 050
6 600 | 4 050
5 350 | 6 700
12 000
6 300 | 9 500
17 000
8 500 | 61.9
31.3
54.2 | 27.9
2.7
12.2 | 40
—
41 | 67
67
74 | 0.6
0.6
1 | | 7307 B
*7307 BE | DB DF DT | 59 500
— | 48 500
— | 6 100
— | 4 950
— | 5 600
6 300 | 7 500
9 000 | 69.2
69.2 | 27.2
27.2 | 41
41 | 74
74 | 1
1 | | 7908 A5
7908 C
7008 A | DB DF DT
DB DF DT
DB DF DT | 23 300
24 600
31 500 | 22 300
23 500
31 000 | 2 370
2 510
3 250 | 2 270
2 390
3 150 | 11 000
13 000
8 500 | 15 000
18 000
11 000 | 35.8
25.7
46.2 | 11.8
1.7
16.2 | —
45 | 59.5
59.5
63 | 0.3
0.3
0.6 | | 7008 C
7208 A
7208 B | DB DF DT
DB DF DT
DB DF DT | 33 500
57 500
52 000 | 32 000
50 500
46 000 | 3 400
5 850
5 300 | 3 250
5 150
4 700 | 12 000
7 500
5 300 | 17 000
10 000
7 500 | 29.5
52.6
68.3 | 0.5
16.6
32.3 | —
45
45 | 63
75
75 | 0.6
0.6
0.6 | | | (2) 5 1 | | | | | | 1 / | | () | | | | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 40 - 55 mm Single Back-to-Back DB Face-to-Face Tandem DT ### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | | | | DB c | r DF | | |---------|-------------|------|---------|------------|---------|-------|---------|------------|---------|-------| | | | e | F_a/F | $r \leq e$ | F_a/I | r > e | F_a/F | $r \leq e$ | F_a/F | r > e | | Angle | C_{or} | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-------|-------|-------|-------|-------------------------| | Angle | X_0 | Y_0 | X_0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0=F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | Bearing Numbers (2) | | Basic
(N | : Load Ratings | s (Matched)
{kg | , | Speeds (1) | iting
(Matched) | Load (
Spacing | s (mm) | | nent and
nsions (r | | |-----------------------------|-------------|----------------------------|----------------------------|-------------------------|-------------------------|--------------------------|----------------------------|----------------------|---------------------|---------------------|-----------------------|-----------------------------------| | Single Duplex | | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | n ⁻¹)
Oil | DB DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | γ _b (³)
max. | | | T
T | 59 000
79 500 | 50 500
66 000 | 6 000
8 100 | 5 150
6 700 | 6 000
11 000
5 600 | 8 500
15 000
7 500 | 68.3
34.1
60.5 | 32.3
1.9
14.5 | 45
—
46 | 75
75
84 | 0.6
0.6
1 | | 7308 B DB DF I
*7308 BEA | TC | 73 000
— | 60 500
— | 7 400
— | 6 200
— | 5 000
5 600 | 6 700
8 000 | 77.5
77.5 | 31.5
31.5 | 46
46 | 84
84 | 1
1 | | 7909 C DB DF I | T
T
T | 24 600
26 000
37 500 | 25 400
26 800
37 500 | 2 510
2 660
3 850 | 2 590
2 730
3 800 | 9 500
12 000
7 500 | 13 000
16 000
10 000 | 38.4
27.1
50.6 | 14.4
3.1
18.6 | —
—
50 | 65.5
65.5
70 | 0.3
0.3
0.6 | | 7209 A DB DF I | T
T
T | 39 500
64 500
58 500 | 38 500
57 500
52 500 | 4 050
6 550
5 950 | 3 950
5 850
5 350 | 11 000
7 100
5 000 | 15 000
9 500
6 700 | 32.1
56.5
73.5 | 0.1
18.5
35.5 | —
50
50 | 70
80
80 | 0.6
0.6
0.6 | | | DT
DT | 66 500
103 000 | 57 500
87 000 | 6 750
10 500 | 5 850
8 900 | 5 600
10 000
5 000 | 8 000
14 000
6 700 | 73.5
36.4
66.9 | 35.5
1.6
16.9 | 50
—
51 | 80
80
94 | 0.6
0.6
1 | | 7309 B DB DF
*7309 BEA | TC | 95 000
— | 80 500
— | 9 650
— | 8 200
— | 4 500
5 000 | 6 000
7 100 | 85.8
85.8 | 35.8
35.8 | 51
51 | 94
94 | 1
1 | | 7910 C DB DF I | T
T
T | 25 900
27 400
40 000 | 28 400
30 000
42 000 | 2 640
2 800
4 050 | 2 900
3 050
4 300 | 9 000
11 000
7 100 | 12 000
15 000
9 500 | 40.5
28.3
53.5 | 16.5
4.3
21.5 | —
—
55 | 69.5
69.5
75 | 0.3
0.3
0.6 | | 7210 A DB DF I | T
T
T | 42 000
67 000
60 500 | 44 000
63 000
57 000 | 4 300
6 850
6 200 | 4 450
6 400
5 850 | 10 000
6 300
4 500 | 14 000
9 000
6 300 | 33.4
60.4
78.7 | 1.4
20.4
38.7 | —
55
55 | 75
85
85 | 0.6
0.6
0.6 | | | DT
DT | 69 500
121 000 | 63 500
104 000 | 7 100
12 300 | 6 450
10 600 | 5 000
9 500
4 500 | 7 500
13 000
6 000 | 78.7
38.7
73.2 | 38.7
1.3
19.2 | 55
—
56 | 85
85
104 | 0.6
0.6
1 | | 7310 B DB DF I
*7310 BEA | TC | 111 000 | 96 000
— | 11 300
— | 9 800 | 4 000
4 500 | 5 600
6 700 | 94.1
94.1 | 40.1
40.1 | 56
56 | 104
104 | 1
1 | | | TOT
TOT | 29 300
31 000
52 500 | 33 500
35 500
55 500 | 2 990
3 150
5 350 | 3 400
3 600
5 650 | 8 000
9 500
6 300 | 11 000
13 000
8 500 | 44.5
31.1
59.9 | 18.5
5.1
23.9 | —
60 | 75
75
85 | 0.6
0.6
0.6 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. | Во | oundar | y Din
(mm) | | ons | Basi
(N | | ngs (Single)
{kg | | Factor | Spee | iting
ds (¹) | Eff.Load
Centers | | nent and
nsions (| | Mass
(kg) | |----|-----------------|----------------|-------------------|-----------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------|---------------------------|----------------------------|----------------------|-----------------|----------------------|--------------------|-------------------------| | d | D | В | γ
min. | $oldsymbol{r}_1$ min. | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Grease | n ⁻¹)
Oil | (mm)
<i>a</i> | $d_{ m a}$ min. | $D_{ m a}$ max. | r a
max. | approx. | | 40 | 80
80
90 | 18
18
23 | 1.1
1.1
1.5 | 0.6
0.6
1 | 38 500
36 500
49 000 | 24 500
25 200
33 000 | 3 900
3 700
5 000 | 2 500
2 570
3 350 |
14.1
 | 7 500
14 000
7 100 | 11 000
19 000
9 000 | 34.2
17.0
30.3 | 47
47
49 | 73
73
81 | 1
1
1.5 | 0.357
0.418
0.633 | | | 90
90 | 23
23 | 1.5
1.5 | 1 | 45 000
53 000 | 30 500
33 000 | 4 550
5 400 | 3 100
3 350 | _ | 6 300
7 100 | 8 500
10 000 | 38.8
38.8 | 49
49 | 81
81 |
1.5
1.5 | 0.648
0.619 | | 45 | 68
68
75 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 15 100
16 000
23 100 | 12 700
13 400
18 700 | 1 540
1 630
2 360 | 1 290
1 360
1 910 | 16.0
— | 12 000
14 000
9 500 | 17 000
20 000
13 000 | 19.2
13.6
25.3 | 50
50
51 | 63
63
69 | 0.6
0.6
1 | 0.13
0.129
0.25 | | | 75
85
85 | 16
19
19 | 1
1.1
1.1 | 0.6
0.6
0.6 | 24 400
39 500
36 000 | 19 300
28 700
26 200 | 2 490
4 050
3 650 | 1 960
2 930
2 680 | 15.4
— | 14 000
8 500
6 300 | 19 000
12 000
8 500 | 16.0
28.3
36.8 | 51
52
52 | 69
78
78 | 1
1
1 | 0.274
0.411
0.421 | | | 85
85
100 | 19
19
25 | 1.1
1.1
1.5 | 0.6
0.6
1 | 40 500
41 000
63 500 | 27 100
28 800
43 500 | 4 100
4 150
6 450 | 2 760
2 940
4 450 | 14.2
— | 7 100
12 000
6 300 | 10 000
17 000
8 500 | 36.8
18.2
33.4 | 52
52
54 | 78
78
91 | 1
1
1.5 | 0.40
0.468
0.848 | | | 100
100 | 25
25 | 1.5
1.5 | 1 | 58 500
62 500 | 40 000
39 500 | 5 950
6 400 | 4 100
4 050 | _ | 5 600
6 300 | 7 500
9 000 | 42.9
42.9 | 54
54 | 91
91 | 1.5
1.5 | 0.869
0.823 | | 50 | 72
72
80 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 15 900
16 900
24 500 | 14 200
15 000
21 100 | 1 630
1 720
2 500 | 1 450
1 530
2 150 | 16.2
— | 11 000
13 000
8 500 | 15 000
18 000
12 000 | 20.2
14.2
26.8 | 55
55
56 | 67
67
74 | 0.6
0.6
1 | 0.132
0.13
0.263 | | | 80
90
90 | 16
20
20 | 1
1.1
1.1 | 0.6
0.6
0.6 | 26 000
41 500
37 500 | 21 900
31 500
28 600 | 2 650
4 200
3 800 | 2 230
3 200
2 920 | 15.7
—
— | 12 000
8 000
5 600 | 17 000
11 000
8 000 | 16.7
30.2
39.4 | 56
57
57 | 74
83
83 | 1
1
1 | 0.293
0.466
0.477 | | | 90
90
110 | 20
20
27 | 1.1
1.1
2 | 0.6
0.6
1 | 42 000
43 000
74 000 | 29 700
31 500
52 000 | 4 300
4 350
7 550 | 3 050
3 250
5 300 | 14.5
— | 6 300
12 000
5 600 | 9 500
16 000
7 500 | 39.4
19.4
36.6 | 57
57
60 | 83
83
100 | 1
1
2 | 0.453
0.528
1.1 | | | 110
110 | 27
27 | 2 | 1 | 68 000
78 000 | 48 000
50 500 | 6 950
7 950 | 4 900
5 150 | _ | 5 000
5 600 | 6 700
8 000 | 47.1
47.1 | 60
60 | 100
100 | 2 | 1.12
1.07 | | 55 | 80
80
90 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 18 100
19 100
32 500 | 16 800
17 700
27 700 | 1 840
1 950
3 300 | 1 710
1 810
2 830 | 16.3
— | 10 000
12 000
7 500 | 14 000
16 000
11 000 | 22.2
15.5
29.9 | 61
61
62 | 74
74
83 | 1
1
1 | 0.184
0.182
0.391 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 55 - 65 mm Single Back-to-Back DB Face-to-Face Tandem DT ### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | $F_a/F_r \leq e$ | | e, DT | | | DB c | or DF | | |---------|-------------|------|------------------|------------|---------|-------|---------|------|---------|-------| | | | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | r≤e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | | | | | | | | | | | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-----------------------|-------|-----------------------|-------|------------------| | Angle | <i>X</i> ₀ | Y_0 | <i>X</i> ₀ | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r +$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | $+Y_0F_a$ | | | | | | | ,,, | | DI | | | Di | | | | | | |----|-------------------|----------------|-------------------|----------------------|-----------------------------|----------------------------|----------------------------|-------------------------|----------------|--------------------------|----------------------------|----------------------|-----------------|--------------------|--------------------------|-------------------------| | Во | undar | y Dim
(mm) | | ns | Basi
(N | | ngs (Single)
{kg | f} | Factor | Limi
Spee
(mi | | Eff.Load
Centers | | nent and
nsions | | Mass
(kg) | | d | D | В | γ
min. | $ m \emph{r}_1$ min. | C_{r} | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | f_0 | Grease | Oil | a (mm) | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{ m a}$ max. | approx. | | 55 | 90
100
100 | 18
21
21 | 1.1
1.5
1.5 | 0.6
1
1 | 34 000
51 000
46 500 | 28 600
39 500
36 000 | 3 500
5 200
4 700 | 2 920
4 050
3 700 | 15.5
— | 11 000
7 100
5 300 | 15 000
10 000
7 100 | 18.7
32.9
43.0 | 62
64
64 | 83
91
91 | 1
1.5
1.5 | 0.43
0.613
0.627 | | | 100
100
120 | 21
21
29 | 1.5
1.5
2 | 1
1
1 | 51 500
53 000
86 000 | 37 000
40 000
61 500 | 5 250
5 400
8 750 | 3 800
4 100
6 250 | 14.5
— | 6 000
10 000
5 000 | 8 500
14 000
6 700 | 43.0
20.9
39.8 | 64
64
65 | 91
91
110 | 1.5
1.5
2 | 0.596
0.688
1.41 | | | 120
120 | 29
29 | 2 | 1 | 79 000
89 000 | 56 500
58 500 | 8 050
9 100 | 5 750
6 000 | _ | 4 500
5 000 | 6 300
7 500 | 51.2
51.2 | 65
65 | 110
110 | 2 2 | 1.45
1.36 | | 60 | 85
85
95 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 18 300
19 400
33 000 | 17 700
18 700
29 500 | 1 870
1 980
3 350 | 1 810
1 910
3 000 | 16.5
— | 9 500
11 000
7 100 | 13 000
15 000
10 000 | 23.4
16.2
31.4 | 66
66
67 | 79
79
88 | 1
1
1 | 0.197
0.194
0.417 | | | 95
110
110 | 18
22
22 | 1.1
1.5
1.5 | 0.6
1
1 | 35 000
62 000
56 000 | 30 500
48 500
44 500 | 3 600
6 300
5 700 | 3 150
4 950
4 550 | 15.7
—
— | 10 000
6 700
4 800 | 14 000
9 000
6 300 | 19.4
35.5
46.7 | 67
69
69 | 88
101
101 | 1
1.5
1.5 | 0.46
0.798
0.815 | | | 110
110
130 | 22
22
31 | 1.5 | 1
1
1.1 | 61 500
64 000
98 000 | 45 000
49 000
71 500 | 6 300
6 550
10 000 | 4 600
5 000
7 250 | 14.4
— | 5 300
9 500
4 800 | 7 500
13 000
6 300 | 46.7
22.4
42.9 | 69
69
72 | 101
101
118 | 1.5
1.5
2 | 0.791
0.889
1.74 | | | 130
130 | 31
31 | 2.1
2.1 | 1.1
1.1 | 90 000
102 000 | 65 500
68 500 | 9 200
10 500 | 6 700
7 000 | _ | 4 300
4 800 | 5 600
6 700 | 55.4
55.4 | 72
72 | 118
118 | 2 | 1.78
1.7 | | 65 | 90
90
100 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 19 100
20 200
35 000 | 19 400
20 500
33 000 | 1 940
2 060
3 550 | 1 980
2 090
3 350 | 16.7
— | 9 000
10 000
6 700 | 12 000
14 000
9 500 | 24.6
16.9
32.8 | 71
71
72 | 84
84
93 | 1
1
1 | 0.211
0.208
0.455 | | | 100
120
120 | 18
23
23 | 1.1
1.5
1.5 | 1 | 37 000
70 500
63 500 | 34 500
58 000
52 500 | 3 800
7 150
6 500 | 3 500
5 900
5 350 | 15.9
—
— | 10 000
6 000
4 300 | 13 000
8 500
6 000 | 20.0
38.2
50.3 | 72
74
74 | 93
111
111 | 1
1.5
1.5 | 0.493
1.03
1.05 | | | 120
120
140 | 23
23
33 | 1.5
1.5
2.1 | 1 | 70 000
73 000
111 000 | 53 500
58 500
82 000 | 7 150
7 450
11 300 | 5 450
6 000
8 350 | 14.6
— | 4 800
9 000
4 300 | 7 100
12 000
6 000 | 50.3
23.9
46.1 | 74
74
77 | 111
111
128 | 1.5
1.5
2 | 1.01
1.14
2.12 | | | 140
140 | 33
33 | 2.1
2.1 | 1.1
1.1 | 102 000
114 000 | 75 500
77 000 | 10 400
11 600 | 7 700
7 850 | _ | 3 800
4 300 | 5 300
6 300 | 59.5
59.5 | 77
77 | 128
128 | 2 2 | 2.17
2.09 | | Notes | (1) | For applications | operating nea | r the limiting | speed, refer | to Page B49. | |-------|-----|------------------|---------------|----------------|--------------|--------------| |-------|-----|------------------|---------------|----------------|--------------|--------------| (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing | Numbers (2) | Basi
(N | c Load Rating | s (Matched
{kg | | Speeds (1) | iting
(Matched) | Load (
Spacing | s (mm) | | nent and
nsions (| | |------------------------------|---------------------------|--------------|------------------------------|---------------------------|---------------------------|-------------------------|---------------------------|-----------------------|---------------------|---------------------|----------------------
-----------------------------------| | Single | Duplex | $C_{ m r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | in ⁻¹)
Oil | DB DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | γ _b (³)
max. | | 7011 C
7211 A
7211 B | DB DF DT DB DF DT | 83 000 | 57 500
79 000
72 000 | 5 650
8 450
7 650 | 5 850
8 050
7 350 | 9 000
6 000
4 000 | 12 000
8 000
5 600 | 37.4
65.7
86.0 | 1.4
23.7
44.0 | —
61
61 | 85
94
94 | 0.6
1
1 | | *7211 BE
7211 C
7311 A | A
DB DF DT
DB DF DT | | 80 000
123 000 | 8 800
14 200 | 8 150
12 500 | 4 500
8 500
4 000 | 6 700
12 000
5 600 | 86.0
41.7
79.5 | 44.0
0.3
21.5 | 61
—
61 | 94
94
114 | 1
1
1 | | 7311 B
*7311 BE | DB DF DT
A | 128 000 | 113 000
— | 13 100
— | 11 500
— | 3 600
4 000 | 5 000
6 000 | 102.4
102.4 | 44.4
44.4 | 61
61 | 114
114 | 1
1 | | 7912 A5
7912 C
7012 A | DB DF DT DB DF DT | 31 500 | 35 500
37 500
59 000 | 3 050
3 200
5 450 | 3 600
3 800
6 000 | 7 500
9 000
6 000 | 10 000
12 000
8 000 | 46.8
32.4
62.7 | 20.8
6.4
26.7 | —
—
65 | 80
80
90 | 0.6
0.6
0.6 | | 7012 C
7212 A
7212 B | DB DF DT DB DF DT | 100 000 | 61 500
97 500
89 000 | 5 800
10 200
9 300 | 6 250
9 950
9 050 | 8 500
5 300
3 800 | 12 000
7 100
5 300 | 38.8
71.1
93.3 | 2.8
27.1
49.3 | —
66
66 | 90
104
104 | 0.6
1
1 | | *7212 BE
7212 C
7312 A | A
DB DF D1
DB DF D1 | | 98 500
143 000 | 10 600
16 200 | 10 000
14 500 | 4 300
7 500
3 800 | 6 000
11 000
5 000 | 93.3
44.8
85.9 | 49.3
0.8
23.9 | 66
—
67 | 104
104
123 | 1
1
1 | | 7312 B
*7312 BE | DB DF DT
A | 146 000 | 131 000 | 14 900
— | 13 400 | 3 400
3 800 | 4 500
5 600 | 110.7
110.7 | 48.7
48.7 | 67
67 | 123
123 | 1
1 | | 7913 A5
7913 C
7013 A | DB DF DT DB DF DT | 33 000 | 39 000
41 000
65 500 | 3 150
3 350
5 750 | 3 950
4 200
6 700 | 7 100
8 500
5 600 | 9 500
12 000
7 500 | 49.1
33.8
65.6 | 23.1
7.8
29.6 | —
70 | 85
85
95 | 0.6
0.6
0.6 | | 7013 C
7213 A
7213 B | DB DF DT DB DF DT | 114 000 | 68 500
116 000
105 000 | 6 150
11 600
10 500 | 7 000
11 800
10 700 | 8 000
4 800
3 400 | 11 000
6 700
4 800 | 40.1
76.4
100.6 | 4.1
30.4
54.6 | 71
71 | 95
114
114 | 0.6
1
1 | | *7213 BE
7213 C
7313 A | A
DB DF DT
DB DF DT | | 117 000
164 000 | 12 100
18 400 | 12 000
16 700 | 3 800
7 100
3 600 | 5 600
9 500
4 800 | 100.6
47.8
92.2 | 54.6
1.8
26.2 | 71
—
72 | 114
114
133 | 1
1
1 | | 7313 B
*7313 BE | DB DF DT
A | 166 000
— | 151 000
— | 16 900
— | 15 400
— | 3 200
3 600 | 4 300
5 000 | 119.0
119.0 | 53.0
53.0 | 72
72 | 133
133 | 1
1 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 70 - 80 mm Back-to-Back DB Face-to-Face Tandem DT *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-------|-------|-------|-------|-------------------------| | Angle | X_0 | Y_0 | X_0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0=F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | В | Bearing Numbers (2) Single Duplex | | Basi
(N | c Load Rating | s (Matched
{kç | | Speeds (1) | iting
(Matched) | Load (
Spacing | s (mm) | | nent and
nsions (| | |------------|--|----------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|---------------------------------|-----------------------------|---------------------|--------------------------|--------------------------| | Si | ngle | Duplex | C_{r} | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | n ⁻¹)
Oil | DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | $ m \emph{r}_b$ (3) max. | | 791 | 14 A5
14 C
14 A | DB DF DT
DB DF DT
DB DF DT | 43 000
45 500
71 500 | 52 500
55 500
82 500 | 4 400
4 650
7 300 | 5 350
5 650
8 450 | 6 300
7 500
5 000 | 9 000
11 000
6 700 | 55.6
38.8
72.0 | 23.6
6.8
32.0 | —
—
75 | 95
95
105 | 0.6
0.6
0.6 | | 721 | 14 C
14 A
14 B | DB DF DT
DB DF DT
DB DF DT | 76 000
124 000
112 000 | 86 000
127 000
116 000 | 7 750
12 600
11 500 | 8 750
13 000
11 800 | 7 100
4 500
3 200 | 10 000
6 300
4 500 | 44.1
80.3
105.8 | 4.1
32.3
57.8 | —
76
76 | 105
119
119 | 0.6
1
1 | | 721 | 14 BE <i>l</i>
14 C
14 A | DB DF DT
DB DF DT | 129 000
203 000 | 129 000
187 000 | 13 200
20 700 | 13 200
19 100 | 3 600
6 700
3 200 | 5 300
9 000
4 300 | 105.8
50.1
98.5 | 57.8
2.1
28.5 | 76
—
77 | 119
119
143 | 1
1
1 | | | 14 B
14 BE | DB DF DT | 186 000
— | 172 000
— | 19 000
— | 17 500
— | 2 800
3 200 | 4 000
4 800 | 127.3
127.3 | 57.3
57.3 | 77
77 | 143
143 | 1 | | 791 | 15 A5
15 C
15 A | DB DF DT
DB DF DT
DB DF DT | 44 000
46 500
73 000 | 55 500
58 500
87 500 | 4 450
4 750
7 450 | 5 650
5 950
8 900 | 6 000
7 100
4 800 | 8 500
10 000
6 700 | 58.0
40.1
74.8 | 26.0
8.1
34.8 | —
80 | 100
100
110 | 0.6
0.6
0.6 | | 721 | 15 C
15 A
15 B | DB DF DT
DB DF DT
DB DF DT | 78 000
123 000
112 000 | 91 500
129 000
117 000 | 7 950
12 600
11 400 | 9 300
13 100
11 900 | 6 700
4 300
3 200 | 9 500
6 000
4 300 | 45.4
84.2
111.0 | 5.4
34.2
61.0 | —
81
81 | 110
124
124 | 0.6
1
1 | | 721
731 | 15 BE <i>l</i>
15 C
15 A
15 B | DB DF DT
DB DF DT
DB DF DT | 134 000
221 000
202 000 | 140 000
212 000
195 000 | 13 700
22 500
20 600 | 14 200
21 600
19 800 | 3 600
6 300
3 000
2 800 | 5 000
9 000
4 000
3 800 | 111.0
52.4
104.8
135.6 | 61.0
2.4
30.8
61.6 | 81
—
82
82 | 124
124
153
153 | 1
1
1
1 | | 791 | 16 A5
16 C
16 A | DB DF DT
DB DF DT
DB DF DT | 44 500
47 000
89 500 | 58 000
61 500
106 000 | 4 550
4 800
9 150 | 5 900
6 250
10 800 | 5 600
6 700
4 300 | 8 000
9 500
6 000 | 60.3
41.5
81.2 | 28.3
9.5
37.2 | —
—
85 | 105
105
120 | 0.6
0.6
0.6 | | 721 | 16 C
16 A
16 B | DB DF DT
DB DF DT
DB DF DT | 95 500
145 000
131 000 | 111 000
152 000
139 000 | 9 700
14 700
13 300 | 11 300
15 600
14 100 | 6 300
4 000
2 800 | 9 000
5 600
4 000 | 49.4
89.5
118.3 | 5.4
37.5
66.3 | —
86
86 | 120
134
134 | 0.6
1
1 | | 721
731 | 16 BE A
16 C
16 A
16 B | DB DF DT
DB DF DT
DB DF DT | 151 000
239 000
219 000 | 155 000
238 000
218 000 | 15 400
24 400
22 400 | 15 800
24 200
22 300 | 3 200
6 000
2 800
2 600 | 4 800
8 000
3 800
3 400 | 118.3
55.5
111.2
143.9 | 66.3
3.5
33.2
65.9 | 82
—
87
87 | 153
134
163
163 | 1
1
1 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. | В | oundar | y Din
(mm) | | ns | Bas
(N | | tings (Single)
{kg |)
gf} | Factor | | ds (¹) | Eff.Load
Centers | | nent and
nsions (| | Mass
(kg) | |----|--------------------------|----------------------|--------------------------|----------------------------|--|--|------------------------------------|------------------------------------|----------------|----------------------------------|-----------------------------------|------------------------------|----------------------|--------------------------|----------------------|------------------------------| | d | D | В | ∤
min. | $oldsymbol{\gamma}_1$ min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | f_0 | Grease | n ⁻¹)
Oil | (mm)
<i>a</i> | $d_{ m a}$ min. | $D_{ m a}$ max. | r a
max. | approx. | | 70 | 100
100
110 | 16
16
20 | 1
1
1.1 | 0.6
0.6
0.6 | 26 500
28 100
44 000 | 26 300
27 800
41 500 | 2 710
2 870
4 500 | 2 680
2 830
4 200 | 16.4
— | 8 000
9 500
6 300 | 11 000
13 000
8 500 | 27.8
19.4
36.0 | 76
76
77 | 94
94
103 | 1
1
1 | 0.341
0.338
0.625 | | | 110
125
125 | 20
24
24 | 1.1
1.5
1.5 | 0.6
1
1 | 47 000
76 500
69 000 | 43 000
63 500
58 000 | 4 800
7 800
7 050 | 4 400
6 500
5 900 | 15.7
—
— | 9 000
5 600
4 000 | 12 000
8 000
5 600 | 22.1
40.1
52.9 | 77
79
79 | 103
116
116 | 1
1.5
1.5 | 0.698
1.11
1.14 | | | 125
125
150 | 24
24
35 | 1.5
1.5
2.1 |
1
1
1.1 | 75 500
79 500
125 000 | 58 500
64 500
93 500 | 7 700
8 100
12 700 | 6 000
6 600
9 550 | 14.6
— | 4 500
8 500
4 000 | 6 700
11 000
5 300 | 52.9
25.1
49.3 | 79
79
82 | 116
116
138 | 1.5
1.5
2 | 1.08
1.24
2.6 | | | 150
150 | 35
35 | 2.1
2.1 | 1.1
1.1 | 114 000
124 000 | 86 000
87 500 | 11 700
12 600 | 8 750
8 900 | _ | 3 600
4 000 | 5 000
6 000 | 63.6
63.7 | 82
82 | 138
138 | 2 | 2.65
2.53 | | 75 | 105
105
115 | 16
16
20 | 1
1
1.1 | 0.6
0.6
0.6 | 26 900
28 600
45 000 | 27 700
29 300
43 500 | 2 750
2 910
4 600 | 2 820
2 980
4 450 | 16.6
— | 7 500
9 000
6 000 | 10 000
12 000
8 000 | 29.0
20.1
37.4 | 81
81
82 | 99
99
108 | 1
1
1 | 0.355
0.357
0.661 | | | 115
130
130 | 20
25
25 | 1.1
1.5
1.5 | 0.6
1
1 | 48 000
76 000
68 500 | 45 500
64 500
58 500 | 4 900
7 750
7 000 | 4 650
6 550
5 950 | 15.9
—
— | 8 500
5 600
3 800 | 12 000
7 500
5 300 | 22.7
42.1
55.5 | 82
84
84 | 108
121
121 | 1
1.5
1.5 | 0.748
1.19
1.22 | | | 130
130
160
160 | 25
25
37
37 | 1.5
1.5
2.1
2.1 | 1
1
1.1
1.1 | 78 500
83 000
136 000
125 000 | 63 500
70 000
106 000
97 500 | 8 000
8 450
13 800
12 700 | 6 450
7 100
10 800
9 900 | 14.8
— | 4 300
8 000
3 800
3 400 | 6 300
11 000
5 000
4 800 | 55.5
26.2
52.4
67.8 | 84
84
87
87 | 121
121
148
148 | 1.5
1.5
2
2 | 1.18
1.36
3.13
3.19 | | 80 | 110
110
125 | 16
16
22 | 1
1
1.1 | 0.6
0.6
0.6 | 27 300
29 000
55 000 | 29 000
30 500
53 000 | 2 790
2 960
5 650 | 2 960
3 150
5 400 | 16.7
— | 7 100
8 500
5 600 | 10 000
12 000
7 500 | 30.2
20.7
40.6 | 86
86
87 | 104
104
118 | 1
1
1 | 0.38
0.376
0.88 | | | 125
140
140 | 22
26
26 | 1.1
2
2 | 0.6
1
1 | 58 500
89 000
80 500 | 55 500
76 000
69 500 | 6 000
9 100
8 200 | 5 650
7 750
7 050 | 15.7
—
— | 8 000
5 000
3 600 | 11 000
7 100
5 000 | 24.7
44.8
59.1 | 87
90
90 | 118
130
130 | 1
2
2 | 0.966
1.46
1.49 | | | 140
140
170
170 | 26
26
39
39 | 2
2
2.1
2.1 | 1
1
1.1
1.1 | 87 500
93 000
147 000
135 000 | 70 000
77 500
119 000
109 000 | 8 950
9 450
15 000
13 800 | 7 150
7 900
12 100
11 100 | 14.7
— | 4 000
7 500
3 600
3 200 | 6 000
10 000
4 800
4 300 | 59.2
27.7
55.6
71.9 | 87
90
92
92 | 148
130
158
158 | 2
2
2
2 | 1.42
1.63
3.71
3.79 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 85 - 100 mm **Boundary Dimensions** DB Basic Load Ratings (Single) Face-to-Face DF Factor Tandem DT Limiting Eff.Load Abutment and Fillet Mass ## Dynamic Equivalent Load $P = XF_r + YF_a$ | | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |-------|-------------|------|---------|-------|---------|-------|---------|------|---------|-------| | | | e | F_a/F | r≤e | F_a/F | r > e | F_a/F | r≤e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-------|-------|-------|-------|-------------------------| | Angle | X_0 | Y_0 | X_0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0=F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | Bearing | Numbers (2) | Basi
(N | c Load Rating | s (Matched
{kg | , | Limi
Speeds (1) | (Matched) | Load (
Spacing | s (mm) | | nent and
nsions (| | |-----------------------------|----------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------|-------------------------|------------------------|----------------------|---------------------|----------------------|-----------------------------------| | Single | Duplex | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | (mir
Grease | Oil | DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | г _ь (³)
max. | | 7917 A5
7917 C
7017 A | DB DF DT
DB DF DT
DB DF DT | 59 500
63 000
91 500 | 77 000
81 500
112 000 | 6 100
6 450
9 350 | 7 850
8 300
11 400 | 5 300
6 300
4 300 | 7 500
9 000
5 600 | 65.8
45.5
84.1 | 29.8
9.5
40.1 | —
90 | 115
115
125 | 0.6
0.6
0.6 | | 7017 C
7217 A
7217 B | DB DF DT
DB DF DT
DB DF DT | 98 000
167 000
151 000 | 117 000
178 000
162 000 | 9 950
17 100
15 400 | 12 000
18 200
16 500 | 6 000
3 800
2 800 | 8 500
5 300
3 800 | 50.8
95.8
126.6 | 6.8
39.8
70.6 | 91
91 | 125
144
144 | 0.6
1
1 | | 7217 C
7317 A
7317 B | DB DF DT
DB DF DT
DB DF DT | 174 000
258 000
236 000 | 181 000
265 000
244 000 | 17 800
26 300
24 100 | 18 500
27 000
24 800 | 5 600
2 600
2 400 | 7 500
3 600
3 200 | 59.5
117.5
152.2 | 3.5
35.5
70.2 | 92
92 | 144
173
173 | 1
1
1 | | 7918 A5
7918 C
7018 A | DB DF DT
DB DF DT
DB DF DT | 64 000
67 500
109 000 | 87 000
92 000
133 000 | 6 500
6 900
11 200 | 8 900
9 400
13 500 | 5 000
6 000
3 800 | 7 100
8 500
5 300 | 68.1
46.8
90.4 | 32.1
10.8
42.4 | —
—
96 | 120
120
134 | 0.6
0.6
1 | | 7018 C
7218 A
7218 B | DB DF DT
DB DF DT
DB DF DT | 116 000
191 000
173 000 | 138 000
206 000
188 000 | 11 900
19 500
17 700 | 14 100
21 000
19 100 | 5 600
3 600
2 600 | 8 000
5 000
3 400 | 54.8
102.2
134.9 | 6.8
42.2
74.9 | 96
96 | 134
154
154 | 1
1
1 | | 7218 C
7318 A
7318 B | DB DF DT
DB DF DT
DB DF DT | 199 000
277 000
254 000 | 209 000
294 000
270 000 | 20 300
28 300
25 900 | 21 400
30 000
27 600 | 5 300
2 600
2 200 | 7 100
3 400
3 000 | 63.5
123.8
160.5 | 3.5
37.8
74.5 | 97
97 | 154
183
183 | 1
1
1 | | 7919 A5
7919 C
7019 A | DB DF DT
DB DF DT
DB DF DT | 64 500
68 500
109 000 | 91 000
96 000
134 000 | 6 600
7 000
11 100 | 9 250
9 800
13 600 | 4 800
5 600
3 800 | 6 700
8 000
5 000 | 70.5
48.1
93.3 | 34.5
12.1
45.3 | _
_
_ | 125
125
139 | 0.6
0.6
1 | | 7019 C
7219 A
7219 B | DB DF DT
DB DF DT
DB DF DT | 119 000
208 000
188 000 | 146 000
221 000
202 000 | 12 200
21 200
19 200 | 14 900
22 600
20 500 | 5 300
3 400
2 400 | 7 500
4 500
3 200 | 56.1
108.5
143.2 | 8.1
44.5
79.2 | 102
102 | 139
163
163 | 1
1
1 | | 7219 C
7319 A
7319 B | DB DF DT
DB DF DT
DB DF DT | 216 000
297 000
272 000 | 224 000
325 000
298 000 | 22 000
30 500
27 700 | 22 800
33 000
30 500 | 4 800
2 400
2 200 | 6 700
3 200
3 000 | 67.5
130.2
168.7 | 3.5
40.2
78.7 | 102
102 | 163
193
193 | 1
1
1 | | 7920 A5
7920 C
7020 A | DB DF DT
DB DF DT
DB DF DT | 77 000
81 500
111 000 | 103 000
108 000
141 000 | 7 850
8 300
11 300 | 10 500
11 100
14 400 | 4 500
5 300
3 600 | 6 300
7 500
5 000 | 76.0
52.2
96.2 | 36.0
12.2
48.2 | _
_
_ | 135
135
144 | 0.6
0.6
1 | (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. | (mm) | | ONS | | (N) {kgf} | | | Factor | Spee | ds (¹) | Centers | Additional parameters and Fillet Dimensions (mm) $d_a = D_a = r_a$ min. $d_a = 0$ max. | | (kg) | | | | |------|-------------------|----------------|-------------------|----------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|----------------|-------------------------
--|----------------------|-------------------|-------------------|-----------------|-------------------------| | d | D | В | ∤
min. | $oldsymbol{\gamma}_1$ min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | f_0 | (mi
Grease | n-¹)
Oil | (mm)
a | | | | approx. | | 85 | 120
120
130 | 18
18
22 | 1.1
1.1
1.1 | 0.6
0.6
0.6 | 36 500
39 000
56 500 | 38 500
40 500
56 000 | 3 750
3 950
5 750 | 3 900
4 150
5 700 | —
16.5
— | 6 700
8 000
5 300 | 9 000
11 000
7 100 | 32.9
22.7
42.0 | 92 | 113 | 1 | 0.541
0.534
0.913 | | | 130
150
150 | 22
28
28 | 1.1
2
2 | 0.6
1
1 | 60 000
103 000
93 000 | 58 500
89 000
81 000 | 6 150
10 500
9 500 | 6 000
9 100
8 250 | 15.9
—
— | 7 500
4 800
3 400 | 10 000
6 700
4 800 | 25.4
47.9
63.3 | 92
95
95 | 123
140
140 | 1
2
2 | 1.01
1.83
1.87 | | | 150
180
180 | 28
41
41 | 2
3
3 | 1
1.1
1.1 | 107 000
159 000
146 000 | 90 500
133 000
122 000 | 10 900
16 200
14 800 | 9 250
13 500
12 400 | 14.7
— | 6 700
3 400
3 000 | 9 500
4 500
4 000 | 29.7
58.8
76.1 | 95
99
99 | 140
166
166 | 2
2.5
2.5 | 2.04
4.33
4.42 | | 90 | 125
125
140 | 18
18
24 | 1.1
1.1
1.5 | 0.6
0.6
1 | 39 500
41 500
67 500 | 43 500
46 000
66 500 | 4 000
4 250
6 850 | 4 450
4 700
6 750 | 16.6
— | 6 300
7 500
4 800 | 8 500
10 000
6 700 | 34.1
23.4
45.2 | 97
97
99 | 118
118
131 | 1
1
1.5 | 0.56
0.563
1.19 | | | 140
160
160 | 24
30
30 | 1.5
2
2 | 1
1
1 | 71 500
118 000
107 000 | 69 000
103 000
94 000 | 7 300
12 000
10 900 | 7 050
10 500
9 550 | 15.7
—
— | 7 100
4 500
3 200 | 9 500
6 000
4 300 | 27.4
51.1
67.4 | 99
100
100 | 131
150
150 | 1.5
2
2 | 1.34
2.25
2.29 | | | 160
190
190 | 30
43
43 | 2
3
3 | 1
1.1
1.1 | 123 000
171 000
156 000 | 105 000
147 000
135 000 | 12 500
17 400
15 900 | 10 700
15 000
13 800 | 14.6
— | 6 300
3 200
2 800 | 9 000
4 300
3 800 | 31.7
61.9
80.2 | 100
104
104 | 150
176
176 | 2
2.5
2.5 | 2.51
5.06
5.17 | | 95 | 130
130
145 | 18
18
24 | 1.1
1.1
1.5 | 0.6
0.6
1 | 40 000
42 500
67 000 | 45 500
48 000
67 000 | 4 050
4 300
6 800 | 4 650
4 900
6 800 | —
16.7
— | 6 000
7 100
4 500 | 8 500
10 000
6 300 | 35.2
24.1
46.6 | 102
102
104 | 123
123
136 | 1
1
1.5 | 0.597
0.591
1.43 | | | 145
170
170 | 24
32
32 | 2.1 | | 73 500
128 000
116 000 | 73 000
111 000
101 000 | 7 500
13 000
11 800 | 7 450
11 300
10 300 | 15.9
—
— | 6 700
4 300
3 000 | 9 000
5 600
4 000 | 28.1
54.2
71.6 | 104
107
107 | 136
158
158 | 1.5
2
2 | 1.42
2.68
2.74 | | | 170
200
200 | 32
45
45 | 2.1
3
3 | 1.1
1.1
1.1 | 133 000
183 000
167 000 | 112 000
162 000
149 000 | 13 500
18 600
17 100 | 16 600 | 14.6
— | 6 000
3 000
2 600 | 8 500
4 000
3 600 | 33.7
65.1
84.3 | 107
109
109 | 158
186
186 | 2
2.5
2.5 | 3.05
5.83
5.98 | | | | | | | | | | | | | | | | | | | Notes (1) For applications operating near the limiting speed, refer to Page B49. 51 500 54 000 70 500 47 500 50 000 68 500 (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. 4 850 5 100 5 550 6 950 7 200 5 250 16.5 5 600 6 700 4 500 8 000 9 000 6 000 38.0 107 26.1 107 48.1 109 133 133 1.5 | 1.48 0.804 0.794 B 62 140 150 20 1.1 0.6 20 1.1 0.6 24 1.5 1 **100** 140 ## SINGLE/MATCHED MOUNTINGS Bore Diameter 100 - 120 mm Back-to-Back DB Face-to-Face Tandem DT Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | ; f F * | | | Singl | e, DT | | | DB c | or DF | | |---------|----------------------------|------|---------|------------|---------|-------|---------|------|---------|-------| | | $\frac{i J_0 P_a}{C_{or}}$ | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | r≤e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-------|-------|-------|-------|-------------------------------| | Angle | X_0 | Y_0 | X_0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_{\rm r} > 0.5 F_{\rm r} +$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | _ | Single or DT | |---|---| | _ | mounting | | _ | When | | _ | $F_{\rm r} > 0.5F_{\rm r} + Y_0F_{\rm a}$ | | _ | use $P_0 = F_r$ | | | | | Во | oundar | y Din
(mm) | | ons | Bas
(1 | | ings (Single) |)
gf} | Factor | Limit
Speed
(mir | ls (¹) | Eff.Load
Centers | | nent and | | Mass
(kg) | |-----|--------------------------|----------------------|----------------------|----------------------------|--|--|--------------------------------------|--------------------------------------|------------------|----------------------------------|----------------------------------|-------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | d | D | В | γ
min. | $oldsymbol{\gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{ m a}$ max. | approx. | | 100 | 150
180
180 | 24
34
34 | 1.5
2.1
2.1 | 1
1.1
1.1 | 75 500
144 000
130 000 | 77 000
126 000
114 000 | 7 700
14 700
13 300 | 7 900
12 800
11 700 | 16.0
— | 6 300
4 000
2 800 | 9 000
5 300
3 800 | 28.7
57.4
75.7 | 109
112
112 | 141
168
168 | 1.5
2
2 | 1.46
3.22
3.28 | | | 180
215
215 | 34
47
47 | 2.1
3
3 | 1.1
1.1
1.1 | 149 000
207 000
190 000 | 127 000
193 000
178 000 | 15 200
21 100
19 400 | 12 900
19 700
18 100 | 14.5
—
— | 5 600
2 800
2 400 | 8 000
3 800
3 400 | 35.7
69.0
89.6 | 112
114
114 | 168
201
201 | 2
2.5
2.5 | 3.65
7.29
7.43 | | 105 | 145
145
160 | 20
20
26 | 1.1
1.1
2 | 0.6
0.6
1 | 48 000
51 000
80 000 | 54 000
57 000
81 500 | 4 900
5 200
8 150 | 5 500
5 800
8 350 | 16.6
— | 5 600
6 300
4 300 | 7 500
9 000
5 600 | 39.2
26.7
51.2 | 112
112
115 | 138
138
150 | 1
1
2 | 0.82
0.826
1.84 | | | 160
190
190 | 26
36
36 | 2
2.1
2.1 | 1
1.1
1.1 | 88 000
157 000
142 000 | 89 500
142 000
129 000 | 9 000
16 000
14 500 | 9 100
14 400
13
100 | 15.9
—
— | 6 000
3 800
2 600 | 8 500
5 000
3 600 | 30.7
60.6
79.9 | 115
117
117 | 150
178
178 | 2
2
2 | 1.82
3.84
3.92 | | | 190
225
225 | 36
49
49 | 2.1
3
3 | 1.1
1.1
1.1 | 162 000
208 000
191 000 | 143 000
193 000
177 000 | 16 600
21 200
19 400 | 14 600
19 700
18 100 | 14.5
—
— | 5 300
2 600
2 400 | 7 500
3 600
3 200 | 37.7
72.1
93.7 | 117
119
119 | 178
211
211 | 2
2.5
2.5 | 4.33
9.34
9.43 | | 110 | 150
150
170 | 20
20
28 | 1.1
1.1
2 | 0.6
0.6
1 | 49 000
52 000
96 500 | 56 000
59 500
95 500 | 5 000
5 300
9 850 | 5 750
6 050
9 700 | —
16.7
— | 5 300
6 300
4 000 | 7 100
8 500
5 300 | 40.3
27.4
54.4 | 117
117
120 | 143
143
160 | 1
1
2 | 0.877
0.867
2.28 | | | 170
200
200 | 28
38
38 | 2
2.1
2.1 | 1
1.1
1.1 | 106 000
170 000
154 000 | 104 000
158 000
144 000 | 10 800
17 300
15 700 | 10 600
16 100
14 700 | 15.6
— | 5 600
3 600
2 600 | 8 000
4 800
3 400 | 32.7
63.7
84.0 | 120
122
122 | 160
188
188 | 2
2
2 | 2.26
4.49
4.58 | | | 200
240
240 | 38
50
50 | 2.1
3
3 | 1.1
1.1
1.1 | 176 000
220 000
201 000 | 160 000
215 000
197 000 | 17 900
22 500
20 500 | 16 300
21 900
20 100 | 14.5
—
— | 5 000
2 600
2 200 | 7 100
3 400
3 000 | 39.8
75.5
98.4 | 122
124
124 | 188
226
226 | 2
2.5
2.5 | 5.1
11.1
11.2 | | 120 | 165
165
180 | 22
22
28 | 1.1
1.1
2 | 0.6
0.6
1 | 67 500
72 000
102 000 | 77 000
81 000
107 000 | 6 900
7 300
10 400 | 7 850
8 300
10 900 | 16.5
— | 4 800
5 600
3 600 | 6 300
7 500
5 000 | 44.2
30.1
57.3 | 127
127
130 | 158
158
170 | 1
1
2 | 1.15
1.15
2.45 | | | 215
215
260
260 | 40
40
55
55 | 2.1
2.1
3
3 | 1.1
1.1
1.1
1.1 | 183 000
165 000
246 000
225 000 | 177 000
162 000
252 000
231 000 | 18 600
16 900
25 100
23 000 | 18 100
16 500
25 700
23 600 | _
_
_
_ | 3 200
2 400
2 200
2 000 | 4 500
3 200
3 000
2 800 | 68.3
90.3
82.3
107.2 | 132
132
134
134 | 203
203
246
246 | 2
2
2.5
2.5 | 6.22
6.26
14.5
14.4 | | Notes | (1) | For applications operating near the limiting speed, refer to Page B49 . | |-------|-----|--| |-------|-----|--| (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing Numbers (2) Single Duplex | | Basi
(N | c Load Rating | s (Matched | , | Limi
Speeds (¹) | (Matched) | Load (
Spacing | s (mm) | | nent and
nsions (| | |--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------|---------------------|--------------------------|-----------------------------------| | Single | Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | (mii
Grease | Oil | DB | O DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | γ _b (³)
max. | | 7020 C | DB DF DT | 122 000 | 154 000 | 12 500 | 15 800 | 5 300 | 7 100 | 57.5 | 9.5 | — | 144 | 1 | | 7220 A | DB DF DT | 233 000 | 251 000 | 23 800 | 25 600 | 3 200 | 4 300 | 114.8 | 46.8 | 107 | 173 | 1 | | 7220 B | DB DF DT | 212 000 | 229 000 | 21 600 | 23 300 | 2 200 | 3 000 | 151.5 | 83.5 | 107 | 173 | 1 | | 7220 C | DB DF DT | 242 000 | 254 000 | 24 700 | 25 900 | 4 500 | 6 300 | 71.5 | 3.5 | — | 173 | 1 | | 7320 A | DB DF DT | 335 000 | 385 000 | 34 500 | 39 500 | 2 200 | 3 000 | 137.9 | 43.9 | 107 | 208 | 1 | | 7320 B | DB DF DT | 310 000 | 355 000 | 31 500 | 36 000 | 2 000 | 2 800 | 179.2 | 85.2 | 107 | 208 | 1 | | 7921 A5 | DB DF DT | 78 500 | 108 000 | 8 000 | 11 000 | 4 300 | 6 000 | 78.3 | 38.3 | _ | 140 | 0.6 | | 7921 C | DB DF DT | 83 000 | 114 000 | 8 450 | 11 600 | 5 300 | 7 100 | 53.5 | 13.5 | _ | 140 | 0.6 | | 7021 A | DB DF DT | 130 000 | 163 000 | 13 300 | 16 700 | 3 400 | 4 500 | 102.5 | 50.5 | _ | 154 | 1 | | 7021 C | DB DF DT | 143 000 | 179 000 | 14 600 | 18 200 | 4 800 | 6 700 | 61.5 | 9.5 | — | 154 | 1 | | 7221 A | DB DF DT | 254 000 | 283 000 | 25 900 | 28 900 | 3 000 | 4 000 | 121.2 | 49.2 | 112 | 183 | 1 | | 7221 B | DB DF DT | 231 000 | 258 000 | 23 500 | 26 300 | 2 200 | 3 000 | 159.8 | 87.8 | 112 | 183 | 1 | | 7221 C | DB DF DT | 264 000 | 286 000 | 26 900 | 29 100 | 4 300 | 6 000 | 75.5 | 3.5 | _ | 183 | 1 | | 7321 A | DB DF DT | 335 000 | 385 000 | 34 500 | 39 500 | 2 200 | 2 800 | 144.3 | 46.3 | _ | 218 | 1 | | 7321 B | DB DF DT | 310 000 | 355 000 | 31 500 | 36 000 | 1 900 | 2 600 | 187.4 | 89.4 | _ | 218 | 1 | | 7922 A5 | DB DF DT | 79 500 | 112 000 | 8 100 | 11 500 | 4 300 | 5 600 | 80.6 | 40.6 | _ | 145 | 0.6 | | 7922 C | DB DF DT | 84 500 | 119 000 | 8 600 | 12 100 | 5 000 | 6 700 | 54.8 | 14.8 | _ | 145 | 0.6 | | 7022 A | DB DF DT | 157 000 | 191 000 | 16 000 | 19 400 | 3 200 | 4 300 | 108.8 | 52.8 | _ | 164 | 1 | | 7022 C | DB DF DT | 172 000 | 208 000 | 17 600 | 21 200 | 4 500 | 6 300 | 65.5 | 9.5 | — | 164 | 1 | | 7222 A | DB DF DT | 276 000 | 315 000 | 28 100 | 32 500 | 2 800 | 4 000 | 127.5 | 51.5 | 117 | 193 | 1 | | 7222 B | DB DF DT | 250 000 | 289 000 | 25 500 | 29 400 | 2 000 | 2 800 | 168.1 | 92.1 | 117 | 193 | 1 | | 7222 C | DB DF DT | 286 000 | 320 000 | 29 200 | 32 500 | 4 000 | 5 600 | 79.5 | 3.5 | _ | 193 | 1 | | 7322 A | DB DF DT | 360 000 | 430 000 | 36 500 | 44 000 | 2 000 | 2 600 | 151.0 | 51.0 | _ | 233 | 1 | | 7322 B | DB DF DT | 325 000 | 395 000 | 33 500 | 40 000 | 1 800 | 2 400 | 196.8 | 96.8 | _ | 233 | 1 | | 7924 A5 | DB DF DT | 110 000 | 154 000 | 11 200 | 15 700 | 3 800 | 5 300 | 88.5 | 44.5 | _ | 160 | 0.6 | | 7924 C | DB DF DT | 117 000 | 162 000 | 11 900 | 16 600 | 4 500 | 6 300 | 60.2 | 16.2 | _ | 160 | 0.6 | | 7024 A | DB DF DT | 166 000 | 213 000 | 16 900 | 21 700 | 3 000 | 4 000 | 114.6 | 58.6 | _ | 174 | 1 | | 7224 A
7224 B
7324 A
7324 B | DB DF DT
DB DF DT
DB DF DT
DB DF DT | 297 000
269 000
400 000
365 000 | 355 000
325 000
505 000
460 000 | 30 500
27 400
41 000
37 500 | 36 000
33 000
51 500
47 000 | 2 600
1 900
1 800
1 600 | 3 600
2 600
2 400
2 200 | 136.7
180.5
164.7
214.4 | 56.7
100.5
54.7
104.4 | _
_
_
_ | 208
208
253
253 | 1
1
1 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. B 64 B 65 ## SINGLE/MATCHED MOUNTINGS Bore Diameter 130 - 170 mm Back-to-Back DB Single Tandem DT | Contact | $\frac{if_0F_a^*}{C_{or}}$ | | | Singl | e, DT | | | DB c | r DF | | |---------|----------------------------|------|---------------|-------|---------|-------|---------------|------------|---------------|-----------------| | Angle | | e | $F_{\rm a}/I$ | r≤e | F_a/F | r > e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | $c_{\rm r} > e$ | | Allyle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB o | or DF | | |---------|-------|-------|-------|-------|-------------------------| | Angle | X_0 | Y_0 | X_0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0=F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | 0 - 1 | | Bearing Numbers (2) | Basi
(N | c Load Rating | s (Matched | , | Limi
Speeds (1) | (Matched) | Spacing | Center
IS (mm) | | nent and
nsions (| | |---------------------|------------------|-------------------|-------------|----------|--------------------|-----------|---------|-------------------|---------------------|----------------------|-----------------------------------| | Single Duplex | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | (mii
Grease | Oil | DB | DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | γ _b (³)
max. | | 7926 A5 DB DF DT | 120 000 | 172 000 | 12 300 | 17 500 | 3 400 | 4 800 | 96.3 | 48.3 | _ | 174 | 1 | | 7926 C DB DF DT | 128 000 | 182 000 | 13 000 | 18 500 | 4 000 | 5 600 | 65.5 | 17.5 | _ | 174 | 1 | | 7026 A DB DF DT | 191 000 | 251 000 | 19 400 | 25 600 | 2 600 | 3 600 | 128.3 | 62.3 | _ | 194 | 1 | | 7226 A DB DF DT | 310 000 | 385 000 | 31 500 | 39 500 | 1 900 | 2 600 | 143.9 | 63.9 | _ | 223 | 1 | | 7226 B DB DF DT | 278 000 | 350 000 | 28 300 | 35 500 | 1 700 | 2 400 | 191.0 | 111.0 | _ | 223 | 1 | | 7326 A DB DF DT | 445 000 | 585 000 | 45 500 | 59 500 | 1 700 | 2 200 |
176.3 | 60.3 | _ | 271 | 1.5 | | 7326 B DB DF DT | 405 000 | 535 000 | 41 500 | 54 500 | 1 500 | 2 000 | 230.0 | 114.0 | _ | 271 | 1.5 | | 7928 A5 DB DF DT | 122 000 | 180 000 | 12 400 | 18 400 | 3 200 | 4 500 | 100.9 | 52.9 | _ | 184 | 1 | | 7928 C DB DF DT | 129 000 | 191 000 | 13 200 | 19 400 | 3 800 | 5 300 | 68.2 | 20.2 | _ | 184 | 1 | | 7028 A DB DF DT | 194 000 | 265 000 | 19 800 | 27 000 | 2 600 | 3 400 | 134.0 | 68.0 | _ | 204 | 1 | | 7228 A DB DF DT | 355 000 | 470 000 | 36 000 | 48 000 | 1 800 | 2 400 | 154.6 | 70.6 | _ | 243 | 1 | | 7228 B DB DF DT | 320 000 | 425 000 | 32 500 | 43 500 | 1 600 | 2 200 | 205.6 | 121.6 | _ | 243 | 1 | | 7328 A DB DF DT | 490 000 | 670 000 | 50 000 | 68 500 | 1 600 | 2 000 | 189.0 | 65.0 | _ | 291 | 1.5 | | 7328 B DB DF DT | 445 000 | 615 000 | 45 500 | 63 000 | 1 400 | 1 900 | 246.6 | 122.6 | _ | 291 | 1.5 | | 7930 A5 DB DF DT | 157 000 | 231 000 | 16 000 | 23 500 | 3 000 | 4 000 | 112.0 | 56.0 | _ | 204 | 1 | | 7930 C DB DF DT | 166 000 | 244 000 | 16 900 | 24 900 | 3 600 | 4 800 | 76.2 | 20.2 | _ | 204 | 1 | | 7030 A DB DF DT | 222 000 | 305 000 | 22 700 | 31 500 | 1 900 | 2 400 | 143.3 | 73.3 | _ | 218 | 1 | | 7230 A DB DF DT | 405 000 | 560 000 | 41 000 | 57 000 | 1 600 | 2 200 | 166.3 | 76.3 | _ | 263 | 1 | | 7230 B DB DF DT | 365 000 | 510 000 | 37 000 | 52 000 | 1 500 | 2 000 | 221.2 | 131.2 | _ | 263 | 1 | | 7330 A DB DF DT | 515 000 | 745 000 | 52 500 | 75 500 | 1 500 | 1 900 | 200.7 | 70.7 | _ | 311 | 1.5 | | 7330 B DB DF DT | 470 000 | 680 000 | 48 000 | 69 500 | 1 300 | 1 800 | 262.2 | 132.2 | _ | 311 | 1.5 | | 7932 C DB DF DT | 173 000 | 265 000 | 17 600 | 27 000 | 3 000 | 4 000 | 78.9 | 22.9 | _ | 214 | 1 | | 7032 A DB DF DT | 252 000 | 355 000 | 25 700 | 36 000 | 1 700 | 2 400 | 153.5 | 77.5 | _ | 233 | 1 | | 7232 A DB DF DT | 425 000 | 615 000 | 43 500 | 62 500 | 1 500 | 2 000 | 177.9 | 81.9 | _ | 283 | 1 | | 7232 B DB DF DT | 385 000 | 555 000 | 39 500 | 57 000 | 1 400 | 1 900 | 236.8 | 140.8 | _ | 283 | 1 | | 7332 A DB DF DT | 565 000 | 845 000 | 57 500 | 86 000 | 1 400 | 1 800 | 212.3 | 76.3 | _ | 331 | 1.5 | | 7332 B DB DF DT | 515 000 | 770 000 | 52 500 | 78 500 | 1 200 | 1 700 | 277.8 | 141.8 | _ | 331 | 1.5 | | 7934 C DB DF DT | 183 000 | 297 000 | 18 700 | 30 000 | 2 800 | 3 800 | 81.6 | 25.6 | _ | 224 | 1 | | 7034 A DB DF DT | 300 000 | 430 000 | 31 000 | 43 500 | 1 600 | 2 200 | 166.1 | 82.1 | _ | 253 | 1 | | 7234 A DB DF DT | 480 000 | 715 000 | 49 000 | 73 000 | 1 400 | 1 900 | 190.6 | 86.6 | _ | 301 | 1.5 | | 7234 B DB DF DT | 435 000 | 650 000 | 44 000 | 66 500 | 1 300 | 1 700 | 253.4 | 149.4 | _ | 301 | 1.5 | | 7334 A DB DF DT | 630 000 | 970 000 | 64 500 | 99 000 | 1 300 | 1 700 | 225.0 | 81.0 | _ | 351 | 1.5 | | 7334 B DB DF DT | 575 000 | 890 000 | 59 000 | 90 500 | 1 100 | 1 600 | 294.3 | 150.3 | _ | 351 | 1.5 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. | Во | | | | ns | Bas
(N | | tings (Single)
{k |)
gf} | Factor | Limi
Speed | ls (¹) | Eff.Load
Centers | | nent and | | Mass
(kg) | |-----|--------------------------|----------------------|------------------|--------------------------|--|--|--------------------------------------|----------------------------|------------------|----------------------------------|----------------------------------|--------------------------------|--------------------------|--------------------------|----------------------------|------------------------------| | d | D | В | γ
min. | $ eals_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | (mir
Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | r _a max. | approx. | | 130 | 180 | 24 | 1.5 | 1 | 74 000 | 86 000 | 7 550 | 8 750 | — | 4 300 | 6 000 | 48.1 | 139 | 171 | 1.5 | 1.54 | | | 180 | 24 | 1.5 | 1 | 78 500 | 91 000 | 8 000 | 9 250 | 16.5 | 5 000 | 7 100 | 32.8 | 139 | 171 | 1.5 | 1.5 | | | 200 | 33 | 2 | 1 | 117 000 | 125 000 | 12 000 | 12 800 | — | 3 400 | 4 500 | 64.1 | 140 | 190 | 2 | 3.68 | | | 230
230
280
280 | 40
40
58
58 | 3
3
4
4 | 1.1
1.1
1.5
1.5 | 189 000
171 000
273 000
250 000 | 193 000
175 000
293 000
268 000 | 19 300
17 400
27 900
25 500 | 17 800 | _
_
_
_ | 2 400
2 200
2 200
1 900 | 3 200
3 000
2 800
2 600 | 72.0
95.5
88.2
115.0 | 144
144
148
148 | 216
216
262
262 | 2.5
2.5
3
3 | 7.06
7.1
17.5
17.6 | | 140 | 190
190
210 | 24
24
33 | 1.5
1.5
2 | 1
1
1 | 75 000
79 500
120 000 | 90 000
95 500
133 000 | 7 650
8 100
12 200 | 9 200
9 700
13 500 | 16.7
— | 4 000
4 800
3 200 | 5 600
6 700
4 300 | 50.5
34.1
67.0 | 149
149
150 | 181
181
200 | 1.5
1.5
2 | 1.63
1.63
3.9 | | | 250
250
300
300 | 42
42
62
62 | 3
3
4
4 | 1.1
1.1
1.5
1.5 | 218 000
197 000
300 000
275 000 | 234 000
213 000
335 000
310 000 | 22 300
20 100
30 500
28 100 | 34 500 | _
_
_ | 2 200
2 000
2 000
1 700 | 3 000
2 800
2 600
2 400 | 77.3
102.8
94.5
123.3 | 154
154
158
158 | 236
236
282
282 | 2.5
2.5
3
3 | 8.92
8.94
21.4
21.6 | | 150 | 210
210
225 | 28
28
35 | 2
2
2.1 | 1
1
1.1 | 96 500
102 000
137 000 | 115 000
122 000
154 000 | 9 850
10 400
14 000 | 11 800
12 400
15 700 | 16.6
— | 3 800
4 300
2 400 | 5 000
6 000
3 000 | 56.0
38.1
71.6 | 160
160
162 | 200
200
213 | 2
2
2 | 2.97
2.96
4.75 | | | 270 | 45 | 3 | 1.1 | 248 000 | 280 000 | 25 300 | 28 500 | _ | 2 000 | 2 800 | 83.1 | 164 | 256 | 2.5 | 11.2 | | | 270 | 45 | 3 | 1.1 | 225 000 | 254 000 | 22 900 | 25 900 | _ | 1 800 | 2 600 | 110.6 | 164 | 256 | 2.5 | 11.2 | | | 320 | 65 | 4 | 1.5 | 315 000 | 370 000 | 32 500 | 38 000 | _ | 1 800 | 2 400 | 100.3 | 168 | 302 | 3 | 26 | | | 320 | 65 | 4 | 1.5 | 289 000 | 340 000 | 29 400 | 34 500 | _ | 1 600 | 2 200 | 131.1 | 168 | 302 | 3 | 25.9 | | 160 | 220 | 28 | 2 | 1 | 106 000 | 133 000 | 10 800 | 13 500 | 16.7 | 3 800 | 5 000 | 39.4 | 170 | 210 | 2 | 3.1 | | | 240 | 38 | 2.1 | 1.1 | 155 000 | 176 000 | 15 800 | 18 000 | — | 2 200 | 2 800 | 76.7 | 172 | 228 | 2 | 5.77 | | | 290 | 48 | 3 | 1.1 | 263 000 | 305 000 | 26 800 | 31 500 | — | 1 900 | 2 600 | 89.0 | 174 | 276 | 2.5 | 14.1 | | | 290 | 48 | 3 | 1.1 | 238 000 | 279 000 | 24 200 | 28 400 | _ | 1 700 | 2 400 | 118.4 | 174 | 276 | 2.5 | 14.2 | | | 340 | 68 | 4 | 1.5 | 345 000 | 420 000 | 35 500 | 43 000 | _ | 1 700 | 2 200 | 106.2 | 178 | 322 | 3 | 30.7 | | | 340 | 68 | 4 | 1.5 | 315 000 | 385 000 | 32 000 | 39 500 | _ | 1 500 | 2 000 | 138.9 | 178 | 322 | 3 | 30.8 | | 170 | 230 | 28 | 2 | 1 | 113 000 | 148 000 | 11 500 | 15 100 | 16.8 | 3 600 | 4 800 | 40.8 | 180 | 220 | 2 | 3.36 | | | 260 | 42 | 2.1 | 1.1 | 186 000 | 214 000 | 19 000 | 21 900 | — | 2 000 | 2 600 | 83.1 | 182 | 248 | 2 | 7.9 | | | 310 | 52 | 4 | 1.5 | 295 000 | 360 000 | 30 000 | 36 500 | — | 1 800 | 2 400 | 95.3 | 188 | 292 | 3 | 17.3 | | | 310 | 52 | 4 | 1.5 | 266 000 | 325 000 | 27 200 | 33 000 | _ | 1 600 | 2 200 | 126.7 | 188 | 292 | 3 | 17.6 | | | 360 | 72 | 4 | 1.5 | 390 000 | 485 000 | 39 500 | 49 500 | _ | 1 600 | 2 200 | 112.5 | 188 | 342 | 3 | 35.8 | | | 360 | 72 | 4 | 1.5 | 355 000 | 445 000 | 36 000 | 45 500 | _ | 1 400 | 2 000 | 147.2 | 188 | 342 | 3 | 35.6 | Face-to-Face DF **Notes** (1) For applications operating near the limiting speed, refer to Page **B49**. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. ## SINGLE/MATCHED MOUNTINGS Bore Diameter 180 – 200 mm Single Back-to-Back DB Face-to-Face DF Tandem DT | Во | oundar | y Din
(mm) | | ons | l | sic Load Rati | ngs (Single
{kç | , | Factor | Limit
Speed
(mir | ls (¹) | Eff.Load
Centers | rs Dimensions (mm | | | Mass
(kg) | |-----|-------------------|----------------|------------------|-----------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-----------|-------------------------|-------------------------|----------------------|-------------------|-------------------|--------------------------|---------------------| | d | D | В | γ
min. | ${m r}_1$ min. | C_{r} | C_{0r} | C_{r} | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{ m a}$ max. | approx. | | 180 | 250
280
320 | 33
46
52 | 2
2.1
4 | 1
1.1
1.5 | 145 000
207 000
305 000 | 184 000
252 000
385 000 | 14 800
21 100
31 000 | 18 800
25 700
39 000 | 16.6
— | 3 200
1 900
1 700 | 4 500
2 400
2 200 | 45.3
89.4
98.2 | 190
192
198 | 240
268
302 | 2
2
3 | 4.9
10.5
18.1 | | | 320 | 52 | 4 | 1.5 | 276 000 | 350 000 | 28 100 | 35 500 | _ | 1 500 | 2 000 | 130.9 | 198 | 302 | 3 | 18.4 | | | 380 | 75 | 4 | 1.5 | 410 000 | 535 000 | 41 500 | 54 500 | _ | 1 500 | 2 000 | 118.3 | 198 | 362 | 3 | 42.1 | | | 380 | 75 | 4 | 1.5 | 375 000 | 490 000 | 38 000 | 50 000 | _ | 1 300 | 1 800 | 155.0 | 198 | 362 | 3 | 42.6 | | 190 | 260 | 33 | 2 | 1 | 147 000 | 192 000 | 15 000 | 19 600 | 16.7 | 3 000 | 4 300 | 46.6 | 200 | 250 | 2 | 4.98 | | | 290 | 46 | 2.1 | 1.1 | 224 000 | 280 000 | 22 800 | 28 600 | — | 1 800 | 2 400 | 92.3 | 202 | 278 | 2 | 11.3 | | | 340 | 55 | 4 | 1.5 | 315 000 | 410 000 | 32 000 | 42 000 | — | 1 600 | 2 200 | 104.0 | 208 | 322 | 3 | 22.4 | | | 340 | 55 | 4 | 1.5 | 284 000 | 375 000 | 28 900 | 38 000 | _ | 1 400 | 2 000 | 138.7 | 208 | 322 | 3 | 22.5 | | | 400 | 78 | 5 | 2 | 450 000 | 600 000 | 46 000 | 61 000 | _ | 1
400 | 1 900 | 124.2 | 212 | 378 | 4 | 47.5 | | | 400 | 78 | 5 | 2 | 410 000 | 550 000 | 42 000 | 56 000 | _ | 1 300 | 1 700 | 162.8 | 212 | 378 | 4 | 47.2 | | 200 | 280 | 38 | 2.1 | 1.1 | 189 000 | 244 000 | 19 300 | 24 900 | 16.5 | 2 800 | 4 000 | 51.2 | 212 | 268 | 2 | 6.85 | | | 310 | 51 | 2.1 | 1.1 | 240 000 | 310 000 | 24 500 | 31 500 | — | 1 700 | 2 200 | 99.1 | 212 | 298 | 2 | 13.7 | | | 360 | 58 | 4 | 1.5 | 335 000 | 450 000 | 34 500 | 46 000 | — | 1 500 | 2 000 | 109.8 | 218 | 342 | 3 | 26.5 | | | 360 | 58 | 4 | 1.5 | 305 000 | 410 000 | 31 000 | 41 500 | _ | 1 300 | 1 800 | 146.5 | 218 | 342 | 3 | 26.6 | | | 420 | 80 | 5 | 2 | 475 000 | 660 000 | 48 500 | 67 000 | _ | 1 300 | 1 800 | 129.5 | 222 | 398 | 4 | 54.4 | | | 420 | 80 | 5 | 2 | 430 000 | 600 000 | 44 000 | 61 500 | _ | 1 200 | 1 600 | 170.1 | 222 | 398 | 4 | 55.3 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. Dynamic Equivalent Load $P = XF_r + YF_a$ | | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---|---------|----------------------------|------|---------|------------|---------|-------|---------------|------------|---------|-------| | | Angle | $\frac{i j_0 r_a}{C_{or}}$ | e | F_a/F | $r \leq e$ | F_a/F | r > e | $F_{\rm a}/F$ | $r \leq e$ | F_a/F | r > e | | | Allyle | Cor | | X | Y | X | Y | X | Y | X | Y | | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | - | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | - | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | | | | | | | | | | | | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB o | r DF | | |---------|-----------------------|-------|-----------------------|-------|-------------------------| | Angle | <i>X</i> ₀ | Y_0 | <i>X</i> ₀ | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0=F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | Bearing | Numbers (2) | | Basi
(N | c Load Rating | s (Matched | , | Limi
Speeds (¹) | (Matched) | Load Center
Spacings (mm) | | | | | |----------------------------|-------------|-------------|-------------------------------|-----------------------------------|----------------------------|------------------------------|-------------------------|-------------------------|------------------------------|------------------------|---------------------|-------------------|--------------------------------| | Single | Duplex | | C_{r} | C_{0r} | C_{r} | C_{0r} | Grease | Oil | DB | DF | $d_{ m b}$ (3) min. | $D_{ m b}$ max. | 火 _b (³) max. | | 7936 C
7036 A
7236 A | DB DF D | T
T
T | 236 000
335 000
495 000 | 370 000
505 000
770 000 | 24 000
34 500
50 500 | 37 500
51 500
78 500 | 2 600
1 500
1 400 | 3 600
2 000
1 800 | 90.6
178.8
196.3 | 24.6
86.8
92.3 | _
_
_ | 244
273
311 | 1
1
1.5 | | 7236 B
7336 A
7336 B | DB DF D | T
T
T | 450 000
665 000
605 000 | 700 000
1 070 000
975 000 | 45 500
68 000
62 000 | 71 000
109 000
99 500 | 1 200
1 200
1 100 | 1 700
1 600
1 500 | 261.8
236.6
309.9 | 157.8
86.6
159.9 | _
_
_ | 311
371
371 | 1.5
1.5
1.5 | | 7938 C
7038 A
7238 A | DB DF D | T
T
T | 239 000
365 000
510 000 | 385 000
560 000
825 000 | 24 400
37 000
52 000 | 39 000
57 000
84 000 | 2 400
1 400
1 300 | 3 400
1 900
1 700 | 93.3
184.6
208.0 | 27.3
92.6
98.0 | _
_
_ | 254
283
331 | 1
1
1.5 | | 7238 B
7338 A
7338 B | DB DF D | T
T
T | 460 000
730 000
670 000 | 750 000
1 200 000
1 100 000 | | 76 000
122 000
112 000 | 1 100
1 100
1 000 | 1 600
1 500
1 400 | 277.3
248.3
325.5 | 167.3
92.3
169.5 | _
_
_ | 331
390
390 | 1.5
2
2 | | 7940 C
7040 A
7240 A | DB DF D | T
T
T | 305 000
390 000
550 000 | 490 000
620 000
900 000 | 31 500
40 000
56 000 | 50 000
63 500
92 000 | 2 200
1 300
1 200 | 3 200
1 800
1 600 | 102.3
198.2
219.6 | 26.3
96.2
103.6 | _
_
_ | 273
303
351 | 1
1
1.5 | | 7240 B
7340 A
7340 B | DB DF D | T
T
T | 495 000
770 000
700 000 | 815 000
1 320 000
1 200 000 | | 83 000
134 000
123 000 | 1 100
1 100
950 | 1 500
1 400
1 300 | 292.9
259.0
340.1 | 176.9
99.0
180.1 | _
_
_ | 351
410
410 | 1.5
2
2 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. ## Bore Diameter 10 – 85 mm | Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | | | | | | | | | |---|------------|---------------|------|------|--|--|--|--| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | e | | | | | | | X | Y | X | Y | e | | | | | | 1 0.92 | | 0.67 | 1.41 | 0.68 | | | | | Static Equivalent Load $P_0 = F_r + 0.76 F_a$ | | Boundary Dimensions | | | | | d Ratings | | Limiting | g Speeds | | |----|---------------------|------|-----------|------------|----------|------------------|----------|----------|--------------------|--------------------| | | , | | | (1) | , | | gf} | | in ⁻¹) | Bearing
Numbers | | d | D | В | γ
min. | $C_{ m r}$ | C_{0r} | C_{r} | C_{0r} | Grease | Oil | Numbers | | 10 | 30 | 14.3 | 0.6 | 7 150 | 3 900 | 730 | 400 | 17 000 | 22 000 | 5200 | | 12 | 32 | 15.9 | 0.6 | 10 500 | 5 800 | 1 070 | 590 | 15 000 | 20 000 | 5201 | | 15 | 35 | 15.9 | 0.6 | 11 700 | 7 050 | 1 190 | 715 | 13 000 | 17 000 | 5202 | | | 42 | 19 | 1 | 17 600 | 10 200 | 1 800 | 1 040 | 11 000 | 15 000 | 5302 | | 17 | 40 | 17.5 | 0.6 | 14 600 | 9 050 | 1 490 | 920 | 11 000 | 15 000 | 5203 | | | 47 | 22.2 | 1 | 21 000 | 12 600 | 2 140 | 1 280 | 10 000 | 13 000 | 5303 | | 20 | 47 | 20.6 | 1 | 19 600 | 12 400 | 2 000 | 1 270 | 10 000 | 13 000 | 5204 | | | 52 | 22.2 | 1.1 | 24 600 | 15 000 | 2 510 | 1 530 | 9 000 | 12 000 | 5304 | | 25 | 52 | 20.6 | 1 | 21 300 | 14 700 | 2 170 | 1 500 | 8 500 | 11 000 | 5205 | | | 62 | 25.4 | 1.1 | 32 500 | 20 700 | 3 350 | 2 110 | 7 500 | 10 000 | 5305 | | 30 | 62 | 23.8 | 1 | 29 600 | 21 100 | 3 000 | 2 150 | 7 100 | 9 500 | 5206 | | | 72 | 30.2 | 1.1 | 40 500 | 28 100 | 4 150 | 2 870 | 6 300 | 8 500 | 5306 | | 35 | 72 | 27 | 1.1 | 39 000 | 28 700 | 4 000 | 2 920 | 6 300 | 8 000 | 5207 | | | 80 | 34.9 | 1.5 | 51 000 | 36 000 | 5 200 | 3 700 | 5 600 | 7 500 | 5307 | | 40 | 80 | 30.2 | 1.1 | 44 000 | 33 500 | 4 500 | 3 400 | 5 600 | 7 100 | 5208 | | | 90 | 36.5 | 1.5 | 56 500 | 41 000 | 5 800 | 4 200 | 5 300 | 6 700 | 5308 | | 45 | 85 | 30.2 | 1.1 | 49 500 | 38 000 | 5 050 | 3 900 | 5 000 | 6 700 | 5209 | | | 100 | 39.7 | 1.5 | 68 500 | 51 000 | 7 000 | 5 200 | 4 500 | 6 000 | 5309 | | 50 | 90 | 30.2 | 1.1 | 53 000 | 43 500 | 5 400 | 4 400 | 4 800 | 6 000 | 5210 | | | 110 | 44.4 | 2 | 81 500 | 61 500 | 8 300 | 6 250 | 4 300 | 5 600 | 5310 | | 55 | 100 | 33.3 | 1.5 | 56 000 | 49 000 | 5 700 | 5 000 | 4 300 | 5 600 | 5211 | | | 120 | 49.2 | 2 | 95 000 | 73 000 | 9 700 | 7 450 | 3 800 | 5 000 | 5311 | | 60 | 110 | 36.5 | 1.5 | 69 000 | 62 000 | 7 050 | 6 300 | 3 800 | 5 000 | 5212 | | | 130 | 54 | 2.1 | 125 000 | 98 500 | 12 800 | 10 000 | 3 400 | 4 500 | 5312 | | 65 | 120 | 38.1 | 1.5 | 76 500 | 69 000 | 7 800 | 7 050 | 3 600 | 4 500 | 5213 | | | 140 | 58.7 | 2.1 | 142 000 | 113 000 | 14 500 | 11 500 | 3 200 | 4 300 | 5313 | | 70 | 125 | 39.7 | 1.5 | 94 000 | 82 000 | 9 600 | 8 400 | 3 400 | 4 500 | 5214 | | | 150 | 63.5 | 2.1 | 159 000 | 128 000 | 16 200 | 13 100 | 3 000 | 3 800 | 5314 | | 75 | 130 | 41.3 | 1.5 | 93 500 | 83 000 | 9 550 | 8 500 | 3 200 | 4 300 | 5215 | | 80 | 140 | 44.4 | 2 | 99 000 | 93 000 | 10 100 | 9 500 | 3 000 | 3 800 | 5216 | | 85 | 150 | 49.2 | 2 | 116 000 | 110 000 | 11 800 | 11 200 | 2 800 | 3 600 | 5217 | | Load Center
Spacings | | utment and F
mensions (m | | Mass
(kg) | |-------------------------------|-----------------|-----------------------------|---------------------------------------|--------------| | (mm)
<i>a</i> ₀ | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{\gamma}_{\mathrm{a}}$ max. | approx. | | 14.5 | 15 | 25 | 0.6 | 0.050 | | 16.7 | 17 | 27 | 0.6 | 0.060 | | 18.3 | 20 | 30 | 0.6 | 0.070 | | 22.0 | 21 | 36 | 1 | 0.11 | | 20.8 | 22 | 35 | 0.6 | 0.090 | | 25.0 | 23 | 41 | 1 | 0.14 | | 24.3 | 26 | 41 | 1 | 0.12 | | 26.7 | 27 | 45 | 1 | 0.23 | | 26.8 | 31 | 46 | 1 | 0.19 | | 31.8 | 32 | 55 | 1 | 0.34 | | 31.6 | 36 | 56 | 1 | 0.29 | | 36.5 | 37 | 65 | 1 | 0.51 | | 36.6 | 42 | 65 | 1 | 0.43 | | 41.6 | 44 | 71 | 1.5 | 0.79 | | 41.5 | 47 | 73 | 1 | 0.57 | | 45.5 | 49 | 81 | 1.5 | 1.05 | | 43.4 | 52 | 78 | 1 | 0.62 | | 50.6 | 54 | 91 | 1.5 | 1.4 | | 45.9 | 57 | 83 | 1 | 0.67 | | 55.6 | 60 | 100 | 2 | 1.95 | | 50.1 | 64 | 91 | 1.5 | 0.96 | | 60.6 | 65 | 110 | 2 | 2.3 | | 56.5 | 69 | 101 | 1.5 | 1.35 | | 69.2 | 72 | 118 | 2 | 3.15 | | 59.7 | 74 | 111 | 1.5 | 1.65 | | 72.8 | 77 | 128 | 2 | 3.85 | | 63.8 | 79 | 116 | 1.5 | 1.8 | | 78.3 | 82 | 138 | 2 | 4.9 | | 66.1 | 84 |
121 | 1.5 | 1.9 | | 69.6 | 90 | 130 | 2 | 2.5 | | 75.3 | 95 | 140 | 2 | 3.4 | ## Bore Diameter 30 - 95 mm Dynamic Equivalent Load $P_{\rm a}\!=\!F_{\rm a}$ Static Equivalent Load $P_{0\mathrm{a}}\!=\!F_{\mathrm{a}}$ | | Boundary D | | 3 | () | Basic Load | • | gf} | Limiting
(mi | | |----|------------|----|------------------|-------------|------------|------------------|----------|------------------------|--------| | d | D | В | γ
min. | $C_{\rm a}$ | C_{0a} | C_{a} | C_{0a} | Grease | Oil | | 30 | 62 | 16 | 1 | 31 000 | 45 000 | 3 150 | 4 600 | 8 500 | 12 000 | | | 72 | 19 | 1.1 | 46 000 | 63 000 | 4 700 | 6 450 | 8 000 | 11 000 | | 35 | 72 | 17 | 1.1 | 41 000 | 61 500 | 4 200 | 6 250 | 7 500 | 10 000 | | | 80 | 21 | 1.5 | 55 000 | 80 000 | 5 600 | 8 150 | 7 100 | 9 500 | | 40 | 80 | 18 | 1.1 | 49 000 | 77 500 | 5 000 | 7 900 | 6 700 | 9 000 | | | 90 | 23 | 1.5 | 67 000 | 100 000 | 6 850 | 10 200 | 6 300 | 8 500 | | 45 | 85 | 19 | 1.1 | 55 000 | 88 500 | 5 600 | 9 000 | 6 300 | 8 500 | | | 100 | 25 | 1.5 | 87 500 | 133 000 | 8 900 | 13 500 | 5 600 | 7 500 | | 50 | 90 | 20 | 1.1 | 57 000 | 97 000 | 5 850 | 9 900 | 5 600 | 8 000 | | | 110 | 27 | 2 | 102 000 | 159 000 | 10 400 | 16 200 | 5 000 | 6 700 | | 55 | 100 | 21 | 1.5 | 71 000 | 122 000 | 7 200 | 12 500 | 5 300 | 7 100 | | | 120 | 29 | 2 | 118 000 | 187 000 | 12 000 | 19 100 | 4 500 | 6 300 | | 60 | 110 | 22 | 1.5 | 85 500 | 150 000 | 8 750 | 15 300 | 4 800 | 6 300 | | | 130 | 31 | 2.1 | 135 000 | 217 000 | 13 800 | 22 200 | 4 300 | 5 600 | | 65 | 120 | 23 | 1.5 | 97 500 | 179 000 | 9 950 | 18 300 | 4 300 | 6 000 | | | 140 | 33 | 2.1 | 153 000 | 250 000 | 15 600 | 25 500 | 3 800 | 5 300 | | 70 | 125 | 24 | 1.5 | 106 000 | 197 000 | 10 800 | 20 100 | 4 000 | 5 600 | | | 150 | 35 | 2.1 | 172 000 | 285 000 | 17 500 | 29 100 | 3 600 | 5 000 | | 75 | 130 | 25 | 1.5 | 110 000 | 212 000 | 11 200 | 21 700 | 3 800 | 5 300 | | | 160 | 37 | 2.1 | 187 000 | 320 000 | 19 100 | 33 000 | 3 400 | 4 800 | | 80 | 125 | 22 | 1.1 | 77 000 | 167 000 | 7 850 | 17 000 | 3 800 | 5 300 | | | 140 | 26 | 2 | 124 000 | 236 000 | 12 600 | 24 100 | 3 600 | 5 000 | | | 170 | 39 | 2.1 | 202 000 | 360 000 | 20 600 | 37 000 | 3 200 | 4 300 | | 85 | 130 | 22 | 1.1 | 79 000 | 176 000 | 8 050 | 18 000 | 3 800 | 5 000 | | | 150 | 28 | 2 | 143 000 | 276 000 | 14 600 | 28 200 | 3 400 | 4 800 | | | 180 | 41 | 3 | 218 000 | 405 000 | 22 300 | 41 000 | 3 000 | 4 000 | | 90 | 140 | 24 | 1.5 | 94 000 | 208 000 | 9 600 | 21 200 | 3 400 | 4 800 | | | 160 | 30 | 2 | 164 000 | 320 000 | 16 700 | 32 500 | 3 200 | 4 300 | | | 190 | 43 | 3 | 235 000 | 450 000 | 23 900 | 45 500 | 2 800 | 3 800 | | 95 | 145 | 24 | 1.5 | 96 500 | 220 000 | 9 800 | 22 500 | 3 400 | 4 500 | | | 170 | 32 | 2.1 | 177 000 | 340 000 | 18 000 | 35 000 | 3 000 | 4 000 | | | 200 | 45 | 3 | 251 000 | 495 000 | 25 600 | 50 500 | 2 600 | 3 600 | | Bearing | Load Center
Spacings | | butment and I
Dimensions (n | | Mass
(kg) | |---------|-------------------------------|-----------------|--------------------------------|-------------------------------|--------------| | Numbers | (mm)
<i>a</i> ₀ | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | QJ 206 | 32.2 | 36 | 56 | 1 | 0.24 | | QJ 306 | 35.7 | 37 | 65 | 1 | 0.42 | | QJ 207 | 37.5 | 42 | 65 | 1 | 0.35 | | QJ 307 | 40.3 | 44 | 71 | 1.5 | 0.57 | | QJ 208 | 42.0 | 47 | 73 | 1 | 0.45 | | QJ 308 | 45.5 | 49 | 81 | 1.5 | 0.78 | | QJ 209 | 45.5 | 52 | 78 | 1 | 0.52 | | QJ 309 | 50.8 | 54 | 91 | 1.5 | 1.05 | | QJ 210 | 49.0 | 57 | 83 | 1 | 0.59 | | QJ 310 | 56.0 | 60 | 100 | 2 | 1.35 | | QJ 211 | 54.3 | 64 | 91 | 1.5 | 0.77 | | QJ 311 | 61.3 | 65 | 110 | 2 | 1.75 | | QJ 212 | 59.5 | 69 | 101 | 1.5 | 0.98 | | QJ 312 | 66.5 | 72 | 118 | 2 | 2.15 | | QJ 213 | 64.8 | 74 | 111 | 1.5 | 1.2 | | QJ 313 | 71.8 | 77 | 128 | 2 | 2.7 | | QJ 214 | 68.3 | 79 | 116 | 1.5 | 1.3 | | QJ 314 | 77.0 | 82 | 138 | 2 | 3.18 | | QJ 215 | 71.8 | 84 | 121 | 1.5 | 1.5 | | QJ 315 | 82.3 | 87 | 148 | 2 | 3.9 | | QJ 1016 | 71.8 | 87 | 118 | 1 | 1.05 | | QJ 216 | 77.0 | 90 | 130 | 2 | 1.85 | | QJ 316 | 87.5 | 92 | 158 | 2 | 4.6 | | QJ 1017 | 75.3 | 92 | 123 | 1 | 1.1 | | QJ 217 | 82.3 | 95 | 140 | 2 | 2.2 | | QJ 317 | 92.8 | 99 | 166 | 2.5 | 5.34 | | QJ 1018 | 80.5 | 99 | 131 | 1.5 | 1.45 | | QJ 218 | 87.5 | 100 | 150 | 2 | 2.75 | | QJ 318 | 98.0 | 104 | 176 | 2.5 | 6.4 | | QJ 1019 | 84.0 | 104 | 136 | 1.5 | 1.5 | | QJ 219 | 92.8 | 107 | 158 | 2 | 3.35 | | QJ 319 | 103.3 | 109 | 186 | 2.5 | 7.4 | **Remarks** When using four-point contact ball bearings, please contact NSK. Bore Diameter 100 - 200 mm Dynamic Equivalent Load $P_{\rm a} = F_{\rm a}$ Static Equivalent Load $P_{0\mathrm{a}}\!=\!F_{\mathrm{a}}$ | E | Boundary Dimensions
(mm) | | | | Basic Load | • | 0 | Limiting Speeds | | |-----|-----------------------------|----|------|------------------|-----------------------|------------|-------------------|-----------------|-------------| | d | D | В | r | C_{a} | (N) $C_{0\mathrm{a}}$ | $C_{ m a}$ | $C_{0\mathrm{a}}$ | (mir
Grease | n=')
Oil | | и | D | Б | min. | Ca | C_{0a} | Ca | c_{0a} | Grease | Oli | | 100 | 150 | 24 | 1.5 | 98 500 | 232 000 | 10 000 | 23 700 | 3 200 | 4 300 | | | 180 | 34 | 2.1 | 199 000 | 390 000 | 20 300 | 39 500 | 2 800 | 3 800 | | | 215 | 47 | 3 | 300 000 | 640 000 | 31 000 | 65 500 | 2 400 | 3 400 | | 105 | 160 | 26 | 2 | 115 000 | 269 000 | 11 800 | 27 400 | 3 000 | 4 000 | | | 190 | 36 | 2.1 | 217 000 | 435 000 | 22 100 | 44 500 | 2 600 | 3 600 | | | 225 | 49 | 3 | 305 000 | 640 000 | 31 000 | 65 500 | 2 400 | 3 200 | | 110 | 170 | 28 | 2 | 139 000 | 315 000 | 14 200 | 32 000 | 2 800 | 3 800 | | | 200 | 38 | 2.1 | 235 000 | 490 000 | 24 000 | 50 000 | 2 600 | 3 400 | | | 240 | 50 | 3 | 320 000 | 710 000 | 32 500 | 72 500 | 2 200 | 3 000 | | 120 | 180 | 28 | 2 | 147 000 | 350 000 | 15 000 | 36 000 | 2 600 | 3 600 | | | 215 | 40 | 2.1 | 265 000 | 585 000 | 27 000 | 60 000 | 2 400 | 3 200 | | | 260 | 55 | 3 | 360 000 | 835 000 | 36 500 | 85 500 | 2 000 | 2 800 | | 130 | 200 | 33 | 2 | 169 000 | 415 000 | 17 300 | 42 000 | 2 400 | 3 200 | | | 230 | 40 | 3 | 274 000 | 635 000 | 28 000 | 65 000 | 2 200 | 3 000 | | | 280 | 58 | 4 | 400 000 | 970 000 | 40 500 | 99 000 | 1 900 | 2 600 | | 140 | 210 | 33 | 2 | 172 000 | 435 000 | 17 600 | 44 500 | 2 200 | 3 000 | | | 250 | 42 | 3 | 239 000 | 710 000 | 29 900 | 72 500 | 2 000 | 2 800 | | | 300 | 62 | 4 | 440 000 | 1 110 000 | 44 500 | 114 000 | 1 700 | 2 400 | | 150 | 225 | 35 | 2.1 | 197 000 | 505 000 | 20 100 | 51 500 | 2 000 | 2 800 | | | 270 | 45 | 3 | 315 000 | 785 000 | 32 000 | 80 000 | 1 800 | 2 600 | | | 320 | 65 | 4 | 460 000 | 1 230 000 | 47 000 | 125 000 | 1 600 | 2 200 | | 160 | 240 | 38 | 2.1 | 224 000 | 580 000 | 22 800 | 59 000 | 1 900 | 2 600 | | | 290 | 48 | 3 | 380 000 | 1 010 000 | 39 000 | 103 000 | 1 700 | 2 400 | | | 340 | 68 | 4 | 505 000 | 1 400 000 | 51 500 | 143 000 | 1 500 | 2 000 | | 170 | 260 | 42 | 2.1 | 268 000 | 705 000 | 27 300 | 72 000 | 1 800 | 2 400 | | | 310 | 52 | 4 | 425 000 | 1 180 000 | 43 500 | 121 000 | 1 600 | 2 200 | | | 360 | 72 | 4 | 565 000 | 1 610 000 | 57 500 | 164 000 | 1 400 | 2 000 | | 180 | 280 | 46 | 2.1 | 299 000 | 830 000 | 30 500 | 84 500 | 1 700 | 2 200 | | | 320 | 52 | 4 | 440 000 | 1 270 000 | 45 000 | 130 000 | 1 500 | 2 000 | | | 380 | 75 | 4 | 595 000 | 1 770 000 | 60 500 | 180 000 | 1 300 | 1 800 | | 190 | 290 | 46 | 2.1 | 325 000 | 925 000 | 33 000 | 94 000 | 1 600 | 2 200 | | | 340 | 55 | 4 | 440 000 | 1 290 000 | 44 500 | 131 000 | 1 400 | 2 000 | | | 400 | 78 | 5 | 655 000 | 1 980 000 | 67 000 | 202 000 | 1 300 | 1 700 | | 200 | 310 | 51 | 2.1 | 345 000 | 1 020 000 | 35 500 | 104 000 | 1 500 | 2 000 | | | 360 | 58 | 4 | 490 000 | 1 480 000 | 49 500 | 151 000 | 1 300 | 1 800 | | | 420 | 80 | 5 | 690 000 | 2 180 000 | 70 500 | 222 000 | 1 200 | 1 600 | | Bearing | | Load Center
Spacings | | outment and limensions (n | | Mass
(kg) | |---------|-----------------------------|-------------------------------|-------------------|---------------------------|-------------------------------|--------------------| | | Numbers | (mm)
<i>a</i> ₀ | $d_{ m a}$ min. | D_{a} max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | | QJ 1020 | 87.5 | 109 | 141 | 1.5 | 1.6 | | | QJ 220 | 98.0 | 112 | 168 | 2 | 4.0 | | | QJ 320 | 110.3 | 114 | 201 | 2.5 | 9.3 | | | QJ 1021 | 92.8 | 115 | 150 | 2 | 2.0 | | | QJ 221 | 103.3 | 117 | 178 | 2 | 4.7 | | | QJ 321 | 115.5 | 119 | 211 | 2.5 | 10.5 | | | QJ 1022 | 98.0 | 120 | 160 | 2 | 2.5 | | | QJ 222 | 108.5 | 122 | 188 | 2 | 5.6 | | | QJ 322 | 122.5 | 124 | 226 | 2.5 | 12.5 | | | QJ 1024 | 105.0 | 130 | 170 | 2 | 2.65 | | | QJ 224 | 117.3 | 132 | 203 | 2 | 6.9 | | | QJ 324 | 133.0 | 134 | 246 | 2.5 | 15.4 | | | QJ 1026 | 115.5 | 140 | 190 | 2 | 4.0 | | | QJ 226 | 126.0 | 144 | 216 | 2.5 | 7.7 | | | QJ 326 | 143.5 | 148 | 262 | 3 | 19 | | | QJ 1028 | 122.5 | 150 | 200 | 2 | 4.3 | | | QJ 228 | 136.5 | 154 | 236 | 2.5 | 9.8 | | | QJ 328 | 154.0 | 158 | 282 | 3 | 24 | | | QJ 1030 | 131.3 | 162 | 213 | 2 | 5.2 | | | QJ 230 | 147.0 | 164 | 256 | 2.5 | 12 | | | QJ 330 | 164.5 | 168 | 302 | 3 | 29 | | | QJ 1032 | 140.0 | 172 | 228 | 2 | 6.4 | | | QJ 232 | 157.5 | 174 | 276 | 2.5 | 15 | | | QJ 332 | 175.1 | 178 | 322 | 3 | 31 | | | QJ 1034
QJ 234
QJ 334 | 150.5
168.0
185.6 | 182
188
188 | 248
292
342 | 2 3 3 | 8.6
19.5
41 | | | QJ 1036
QJ 236
QJ 336 | 161.0
175.1
196.1 | 192
198
198 | 268
302
362 | 2 3 3 | 11
20.5
48 | | | QJ 1038
QJ 238
QJ 338 | 168.0
185.6
206.6 | 202
208
212 | 278
322
378 | 2 3 4 | 11.5
23
54.5 | | | QJ 1040 | 178.6 | 212 | 298 | 2 | 15 | | | QJ 240 | 196.1 | 218 | 342 | 3 | 27 | | | QJ 340 | 217.1 | 222 | 398 | 4 | 61.5 | **Remarks** When using four-point contact ball bearings, please contact NSK. ## **SELF-ALIGNING BALL BEARINGS** ##
SELF-ALIGNING BALL BEARINGS Bore Diameter 5 – 110 mm..... B78 ## **DESIGN, TYPES, AND FEATURES** The outer ring has a spherical raceway and its center of curvature coincides with that of the bearing; therefore, the axis of the inner ring, balls and cage can deflect to some extent around the bearing center. This type is recommended when the alignment of the shaft and housing is difficult and when the shaft may bend. Since the contact angle is small, the axial load capacity is low. Pressed steel cages are usually used. ### PROTRUSION AMOUNT OF BALLS Among self-aligning ball bearings, there are some in which the balls protrude from the side face as shown below. This protrusion amount b_1 is listed in the following table. | Bearing No. | <i>b</i> ₁ (mm) | |------------------------------------|----------------------------| | 2222(K), 2316(K) | 0.5 | | 2319(K), 2320(K)
2321 , 2322(K) | 0.5 | | 1318(K) | 1.5 | | 1319(K) | 2 | | 1320(K), 1321
1322(K) | 3 | ## TOLERANCES AND RUNNING ACCURACY Table 8.2 (Pages A60 to A63) RECOMMENDED FITS Table 9.2 (Page A84) Table 9.4 (Page A85) INTERNAL CLEARANCE...... Table 9.12 (Page A90) #### PERMISSIBLE MISALIGNMENT The permissible misalignment of self-aligning ball bearings is approximately 0.07 to 0.12 radian (4° to 7°) under normal loads. However, depending on the surrounding structure, such an angle may not be possible. Use care in the structural design. ## Bore Diameter 5 – 30 mm Tapered Bore Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | |---------------|------------|---------------------------|-------|--| | X | Y | X | Y | | | 1 | Y_3 | 0.65 | Y_2 | | ## Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of $e,\,Y_2$, Y_3 , and Y_0 are listed in the table below. | Вс | | | ns | (1) | | ad Ratings | {kg | ιf} | " | | Bearing | |-------------|-------------------------|--|--|---|--|---|--|---
---|---|---| | d | D | В | γ
min. | $C_{\rm r}$ | C_{0r} | (| $C_{\rm r}$ | C_{0r} | Grease | Oil | Cylindrical
Bore | | 5
6
7 | 19
19
22 | 6
6
7 | 0.3
0.3
0.3 | 2 530
2 530
2 750 | 475
475
600 | 2 | 258 | 49
49
61 | 30 000
30 000
26 000 | 36 000
36 000
32 000 | 135
126
127 | | 8
9 | 22
26 | 7
8 | 0.3
0.6 | 2 750
4 150 | 600
895 | | | 61
91 | 26 000
26 000 | 32 000
30 000 | 108
129 | | 10 | 30
30
35
35 | 9
14
11
17 | 0.6
0.6
0.6
0.6 | 5 550
7 450
7 350
9 200 | 1 190
1 590
1 620
2 010 | - | 760
750 | 121
162
165
205 | 22 000
24 000
20 000
18 000 | 28 000
28 000
24 000
22 000 | 1200
2200
1300
2300 | | 12 | 32
32
37
37 | 10
14
12
17 | 0.6
0.6
1 | 5 700
7 750
9 650
12 100 | 1 270
1 730
2 160
2 730 | - | 790
985 | 130
177
221
278 | 22 000
22 000
18 000
17 000 | 26 000
26 000
22 000
22 000 | 1201
2201
1301
2301 | | 15 | 35
35
42
42 | 11
14
13
17 | 0.6
0.6
1 | 7 600
7 800
9 700
12 300 | 1 750
1 850
2 290
2 910 | - | 795
990 | 179
188
234
296 | 18 000
18 000
16 000
14 000 | 22 000
22 000
20 000
18 000 | 1202
2202
1302
2302 | | 17 | 40
40
47
47 | 12
16
14
19 | 0.6
0.6
1 | 8 000
9 950
12 700
14 700 | 2 010
2 420
3 200
3 550 | 1 (
1 3 | 010
300 | 205
247
325
365 | 16 000
16 000
14 000
13 000 | 20 000
20 000
17 000
16 000 | 1203
2203
1303
2303 | | 20 | 47
47
52
52 | 14
18
15
21 | 1
1
1.1
1.1 | 10 000
12 800
12 600
18 500 | 2 610
3 300
3 350
4 700 | 1 3
1 2 | 310
280 | 266
340
340
480 | 14 000
14 000
12 000
11 000 | 17 000
17 000
15 000
14 000 | 1204
2204
1304
2304 | | 25 | 52
52
62
62 | 15
18
17
24 | 1
1
1.1
1.1 | 12 200
12 400
18 200
24 900 | 3 300
3 450
5 000
6 600 | 1 2
1 8 | 270
850 | 335
350
510
675 | 12 000
12 000
10 000
9 500 | 14 000
14 000
13 000
12 000 | 1205
2205
1305
2305 | | 30 | 62
62
72
72 | 16
20
19
27 | 1
1
1.1
1.1 | 15 800
15 300
21 400
32 000 | 4 650
4 550
6 300
8 750 | 1 5
2 | 560
190 | 475
460
645
895 | 10 000
10 000
8 500
8 000 | 12 000
12 000
11 000
10 000 | 1206
2206
1306
2306 | | | d 5 6 7 8 9 10 12 15 17 | d D 5 19 6 19 7 22 8 22 9 26 10 30 30
35 35 12 32 37 37 15 35 42 42 42 17 40 40 40 47 47 47 20 47 47 52 52 25 52 62 62 30 62 72 | (mm) d D B 5 19 6 6 19 6 7 22 7 8 26 8 10 30 9 30 14 35 11 35 17 12 32 10 32 14 37 12 37 17 15 35 11 35 11 42 13 42 17 17 40 12 40 16 47 14 47 19 20 47 14 47 19 20 47 14 47 19 20 47 14 47 19 21 52 15 52 15 52 17 62 24 30 62 16 62 20 72 19 | d D B r min. 5 19 6 0.3 6 19 6 0.3 7 22 7 0.3 8 22 7 0.3 9 26 8 0.6 10 30 9 0.6 30 14 0.6 35 17 0.6 35 17 0.6 37 12 1 37 12 1 37 17 1 15 35 14 0.6 42 13 1 42 17 1 17 40 12 0.6 40 16 0.6 47 14 1 47 18 1 52 15 1.1 52 15 1.1 52 18 1 62 17 | (mm) (Nmi) (| 6 D B r min. Cr Cor 5 19 6 0.3 2 530 475 6 19 6 0.3 2 530 475 7 22 7 0.3 2 750 600 8 22 7 0.3 2 750 600 9 26 8 0.6 4 150 895 10 30 9 0.6 5 550 1 190 30 14 0.6 7 450 1 590 35 11 0.6 7 350 1 620 35 17 0.6 9 200 2 010 12 32 10 0.6 5 700 1 270 32 14 0.6 7 750 1 730 37 12 1 9 650 2 160 37 17 1 12 100 2 730 15 35 14 0.6 7 800 1 850 | (mm) d D B r Cr Cor Cor Cor Cor Cor Cor | d D B r min. Cr Cor Cor Cr 2580 2580 2580 2580 2580 2480 280 280 280 280 280 280 280 280 280 280 280 280 280 281 281 281 281 281 281 281 281 | d D B r min. Cr Cor Cor Cr Cor 5 19 6 0.3 2 530 475 258 49 6 19 6 0.3 2 530 475 258 49 7 22 7 0.3 2 750 600 280 61 8 22 7 0.3 2 750 600 280 61 9 26 8 0.6 4 150 895 425 91 10 30 9 0.6 7 450 1 590 760 121 30 14 0.6 7 450 1 590 750 162 35 11 0.6 7 350 1 620 750 165 35 17 0.6 9 200 2 010 935 205 12 32 10 0.6 5 700 1 270 580 130 35 17 <th>d D B r min. Cr Cor Cor Cr Cor Grease 5 19 6 0.3 2 530 475 258 49 30 000 7 22 7 0.3 2 530 475 258 49 30 000 8 22 7 0.3 2 750 600 280 61 26 000 9 26 8 0.6 4 150 895 425 91 26 000 10 30 9 0.6 5 550 1 190 570 121 22 000 30 14 0.6 7 450 1 590 760 162 24 000 35 11 0.6 7 450 1 590 760 162 24 000 35 17 0.6 9 200 2 010 935 205 18 000 12 32 10 0.6 5 700 1 270 580 130 22 000</th> <th> Mathematical Color Mathem</th> | d D B r min. Cr Cor Cor Cr Cor Grease 5 19 6 0.3 2 530 475 258 49 30 000 7 22 7 0.3 2 530 475 258 49 30 000 8 22 7 0.3 2 750 600 280 61 26 000 9 26 8 0.6 4 150 895 425 91 26 000 10 30 9 0.6 5 550 1 190 570 121 22 000 30 14 0.6 7 450 1 590 760 162 24 000 35 11 0.6 7 450 1 590 760 162 24 000 35 17 0.6 9 200 2 010 935 205 18 000 12 32 10 0.6 5 700 1 270 580 130 22 000 | Mathematical Color Mathem | | Note (1 |) The suffix K represents bearings with tapered bores (1 : 12) | |---------|---| | Remarks | For the dimensions related to adapters, refer to Page B358 . | | Numbers | Abutment a | and Fillet Din
(mm) | nensions | Constant | Ax | Axial Load Factors | | | |--------------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------|----------------------------------| | Tapered
Bore(1) | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | = | 7
8
9 | 17
17
20 | 0.3
0.3
0.3 | 0.34
0.34
0.31 | 2.9
2.9
3.1 | 1.9
1.9
2.0 | 1.9
1.9
2.1 | 0.009
0.008
0.013 | | = | 10
13 | 20
22 | 0.3
0.6 | 0.31
0.32 | 3.1
3.1 | 2.0
2.0 | 2.1
2.1 | 0.016
0.021 | | = | 14
14
14
14 | 26
26
31
31 | 0.6
0.6
0.6
0.6 | 0.32
0.64
0.35
0.71 | 3.1
1.5
2.8
1.4 | 2.0
0.98
1.8
0.89 | 2.1
1.0
1.9
0.93 | 0.033
0.042
0.057
0.077 | | _
_
_ | 16
16
17
17 | 28
28
32
32 | 0.6
0.6
1 | 0.36
0.58
0.33
0.60 | 2.7
1.7
2.9
1.6 | 1.8
1.1
1.9
1.1 | 1.8
1.1
2.0
1.1 | 0.039
0.048
0.066
0.082 | | _
_
_ | 19
19
20
20 | 31
31
37
37 | 0.6
0.6
1 | 0.32
0.50
0.33
0.51 | 3.1
1.9
2.9
1.9 | 2.0
1.3
1.9
1.2 | 2.1
1.3
2.0
1.3 | 0.051
0.055
0.093
0.108 | | _
_
_ | 21
21
22
22 | 36
36
42
42 | 0.6
0.6
1 | 0.31
0.50
0.32
0.51 | 3.1
1.9
3.1
1.9 | 2.0
1.3
2.0
1.2 | 2.1
1.3
2.1
1.3 | 0.072
0.085
0.13
0.15 | | 1204 K
2204 K
1304 K
2304 K | 25
25
26.5
26.5 | 42
42
45.5
45.5 | 1
1
1
1 | 0.29
0.47
0.29
0.50 | 3.4
2.1
3.4
1.9 | 2.2
1.3
2.2
1.2 | 2.3
1.4
2.3
1.3 | 0.12
0.133
0.165
0.193 | | 1205 K
2205 K
1305 K
2305 K | 30
30
31.5
31.5 | 47
47
55.5
55.5 | 1
1
1
1 | 0.28
0.41
0.28
0.47 | 3.5
2.4
3.5
2.1 | 2.3
1.5
2.3
1.4 | 2.4
1.6
2.4
1.4 | 0.14
0.15
0.255
0.319 | | 1206 K
2206 K
1306 K
2306 K | 35
35
36.5
36.5 | 57
57
65.5
65.5 | 1
1
1
1 | 0.25
0.38
0.26
0.44 | 3.9
2.5
3.7
2.2 | 2.5
1.6
2.4
1.4 | 2.6
1.7
2.5
1.5 | 0.22
0.249
0.385
0.48 | ## Bore Diameter 35 - 70 mm | В | oundary D | | 1S | (N | | oad Ratings
{kg | nfl. | Limiting
(mi | • | Bearing | |----|-----------|----|-----------|-------------|----------|--------------------|----------|-----------------|--------|---------------------| | d | D | В | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | Cylindrical
Bore | | 35 | 72 | 17 | 1.1 | 15 900 | 5 100 | 1 620 | 520 | 8 500 | 10 000 | 1207 | | | 72 | 23 | 1.1 | 21 700 | 6 600 | 2 210 | 675 | 8 500 | 10 000 | 2207 | | | 80 | 21 | 1.5 | 25 300 | 7 850 | 2 580 | 800 | 7 500 | 9 500 | 1307 | | | 80 | 31 | 1.5 | 40 000 | 11 300 | 4 100 | 1 150 | 7 100 | 9 000 | 2307 | | 40 | 80 | 18 | 1.1 | 19 300 | 6 500 | 1 970 | 665 | 7 500 | 9 000 | 1208 | | | 80 | 23 | 1.1 | 22 400 | 7 350 | 2 290 | 750 | 7 500 | 9 000 | 2208 | | | 90 | 23 | 1.5 | 29 800 | 9 700 | 3 050 | 990 | 6 700 | 8 500 | 1308 | | | 90 | 33 | 1.5 | 45 500 | 13 500 | 4 650 | 1 380 | 6 300 | 8 000 | 2308 | | 45 | 85 | 19 | 1.1 | 22 000 | 7 350 | 2 240 | 750 | 7 100 | 8 500 | 1209 | | | 85 | 23 | 1.1 | 23 300 | 8 150 | 2 380 | 830 | 7 100 | 8 500 | 2209 | | | 100 | 25 | 1.5 | 38 500 | 12 700 | 3 900 | 1 300 | 6 000 | 7 500 | 1309 | | | 100 | 36 | 1.5 | 55 000 | 16 700 | 5 600 | 1 700 | 5 600 | 7 100 | 2309 | | 50 | 90 | 20 | 1.1 | 22 800 | 8 100 | 2 330 | 830 | 6 300 | 8 000 | 1210 | | | 90 | 23 | 1.1 | 23 300 | 8 450 | 2 380 | 865 | 6 300 | 8 000 | 2210 | | | 110 | 27 | 2 | 43 500 | 14 100 | 4 450 | 1 440 | 5 600 | 6 700 | 1310 | | | 110 | 40 | 2 | 65 000 | 20 200 | 6 650 | 2 060 | 5 000 | 6 300 | 2310 | | 55 | 100 | 21 | 1.5 | 26 900 | 10 000 | 2 750 | 1 020 | 6 000 | 7 100 | 1211 | | | 100 | 25 | 1.5 | 26 700 | 9 900 | 2 720 | 1 010 | 6 000 | 7 100 | 2211 | | | 120 | 29 | 2 | 51 500 | 17 900 | 5 250 | 1 820 | 5 000 | 6 300 | 1311 | | | 120 | 43 | 2 | 76 500 | 24 000 | 7 800 | 2 450 | 4 800 | 6 000 | 2311 | | 60 | 110 | 22 | 1.5 | 30 500 | 11 500 | 3 100 | 1 180 | 5 300 | 6 300 | 1212 | | | 110 | 28 | 1.5 | 34 000 | 12 600 | 3 500 | 1 290 | 5 300 | 6 300 | 2212 | | | 130 | 31 | 2.1 | 57 500 | 20 800 | 5 900 | 2 130 | 4 500 | 5 600 | 1312 | | | 130 | 46 | 2.1 | 88 500 | 28 300 | 9 000 | 2 880 | 4 300 | 5 300 | 2312 | | 65 | 120 | 23 | 1.5 | 31 000 | 12 500 | 3 150 | 1 280 | 4 800 | 6 000 | 1213 | | | 120 | 31 | 1.5 | 43 500 | 16 400 | 4 450 | 1 670 | 4 800 | 6 000 | 2213 | | | 140 | 33 | 2.1 | 62 500 | 22 900 | 6 350 | 2 330 | 4 300 | 5 300 | 1313 | | | 140 | 48 | 2.1 | 97 000 | 32 500 | 9 900 | 3 300 | 3 800 | 4 800 | 2313 | | 70 | 125 | 24 | 1.5 | 35 000 | 13 800 | 3 550 | 1 410 | 4 800 | 5 600 | 1214 | | | 125 | 31 | 1.5 | 44 000 | 17 100 | 4 500 | 1 740 | 4 500 | 5 600 | 2214 | | | 150 | 35 | 2.1 | 75 000 | 27 700 | 7 650 | 2 830 | 4 000 | 5 000 | 1314 | | | 150 | 51 | 2.1 | 111 000 | 37 500 | 11 300 | 3 850 | 3 600 | 4 500 | 2314 | Note (1) The suffix K represents bearings with tapered bores (1:12) Remarks For the dimensions related to adapters, refer to Page B358 and B359. ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | |---------------|------------|---------------------------|-------|--| | X | Y | X | Y | | | 1 | Y_3 | 0.65 | Y_2 | | ## Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are listed in the table below. | ľ | lumbers | Abutment a | and Fillet Din
(mm) | nensions | Constant | Ах | ial Load Fa | actors | Mass
(kg) | |---|--------------------|----------------------|--------------------------|---------------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------------| | | Tapered
Bore(1) | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{\gamma}_{\mathrm{a}}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | | 1207 K | 41.5 | 65.5 | 1 | 0.23 | 4.2 | 2.7 | 2.8 | 0.32 | | | 2207 K | 41.5 | 65.5 | 1 | 0.37 | 2.6 | 1.7 | 1.8 | 0.378 | | | 1307 K | 43 | 72 | 1.5 | 0.26 | 3.8 | 2.5 | 2.6 | 0.51 | | | 2307 K | 43 | 72 | 1.5 | 0.46 | 2.1 | 1.4 | 1.4 | 0.642 | | | 1208 K | 46.5 | 73.5 | 1 | 0.22 | 4.3 | 2.8 | 2.9 | 0.415 | | | 2208 K | 46.5 | 73.5 | 1 | 0.33 | 3.0 | 1.9 | 2.0 | 0.477 | | | 1308 K | 48 | 82 | 1.5 | 0.24 | 4.0 | 2.6 | 2.7 | 0.715 | | | 2308 K | 48 | 82 | 1.5 | 0.43 | 2.3 | 1.5 | 1.5 | 0.889 | | | 1209 K | 51.5 | 78.5 | 1 | 0.21 | 4.7 | 3.0 | 3.1 | 0.465 | | | 2209 K | 51.5 | 78.5 | 1 | 0.30 | 3.2 | 2.1 | 2.2 | 0.522 | | | 1309 K | 53 | 92 | 1.5 | 0.25 | 4.0 | 2.6 | 2.7 | 0.955 | | | 2309 K | 53 | 92 | 1.5 | 0.41 | 2.4 | 1.5 | 1.6 | 1.2 | | | 1210 K | 56.5 | 83.5 | 1 | 0.21 | 4.7 | 3.1 | 3.2 | 0.525 | | | 2210 K | 56.5 | 83.5 | 1 | 0.28 | 3.4 | 2.2 | 2.3 | 0.564 | | | 1310 K | 59 | 101 | 2 | 0.23 | 4.2 | 2.7 | 2.8 | 1.25 | | | 2310 K | 59 | 101 | 2 | 0.42 | 2.3 | 1.5 | 1.6 | 1.58 | | | 1211 K | 63 | 92 | 1.5 | 0.20 | 4.9 | 3.2 | 3.3 | 0.705 | | | 2211 K | 63 | 92 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 0.746 | | | 1311 K | 64 | 111 | 2 |
0.23 | 4.2 | 2.7 | 2.8 | 1.6 | | | 2311 K | 64 | 111 | 2 | 0.41 | 2.4 | 1.5 | 1.6 | 2.03 | | | 1212 K | 68 | 102 | 1.5 | 0.18 | 5.3 | 3.4 | 3.6 | 0.90 | | | 2212 K | 68 | 102 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 1.03 | | | 1312 K | 71 | 119 | 2 | 0.23 | 4.3 | 2.8 | 2.9 | 2.03 | | | 2312 K | 71 | 119 | 2 | 0.40 | 2.4 | 1.6 | 1.6 | 2.57 | | | 1213 K | 73 | 112 | 1.5 | 0.17 | 5.7 | 3.7 | 3.8 | 1.15 | | | 2213 K | 73 | 112 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 1.4 | | | 1313 K | 76 | 129 | 2 | 0.23 | 4.2 | 2.7 | 2.9 | 2.54 | | | 2313 K | 76 | 129 | 2 | 0.39 | 2.5 | 1.6 | 1.7 | 3.2 | | | = | 78
78
81
81 | 117
117
139
139 | 1.5
1.5
2
2 | 0.18
0.26
0.22
0.38 | 5.3
3.7
4.4
2.6 | 3.4
2.4
2.8
1.7 | 3.6
2.5
3.0
1.8 | 1.3
1.52
3.19
3.9 | B 80 B 81 ## Bore Diameter 75 – 110 mm Tapered Bore | В | oundary D | | ns | l (N | | oad Ratings | ~£) | Limiting | | Bearing | |-----|-----------|----|-----------|-------------|----------|-------------|----------|----------------|-------|---------------------| | d | D | В | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | (mir
Grease | Oil | Cylindrical
Bore | | 75 | 130 | 25 | 1.5 | 39 000 | 15 700 | 4 000 | 1 600 | 4 300 | 5 300 | 1215 | | | 130 | 31 | 1.5 | 44 500 | 17 800 | 4 550 | 1 820 | 4 300 | 5 300 | 2215 | | | 160 | 37 | 2.1 | 80 000 | 30 000 | 8 150 | 3 050 | 3 800 | 4 500 | 1315 | | | 160 | 55 | 2.1 | 125 000 | 43 000 | 12 700 | 4 400 | 3 400 | 4 300 | 2315 | | 80 | 140 | 26 | 2 | 40 000 | 17 000 | 4 100 | 1 730 | 4 000 | 5 000 | 1216 | | | 140 | 33 | 2 | 49 000 | 19 900 | 5 000 | 2 030 | 4 000 | 5 000 | 2216 | | | 170 | 39 | 2.1 | 89 000 | 33 000 | 9 100 | 3 400 | 3 600 | 4 300 | 1316 | | | 170 | 58 | 2.1 | 130 000 | 45 000 | 13 200 | 4 600 | 3 200 | 4 000 | * 2316 | | 85 | 150 | 28 | 2 | 49 500 | 20 800 | 5 050 | 2 120 | 3 800 | 4 500 | 1217 | | | 150 | 36 | 2 | 58 500 | 23 600 | 5 950 | 2 400 | 3 800 | 4 800 | 2217 | | | 180 | 41 | 3 | 98 500 | 38 000 | 10 000 | 3 850 | 3 400 | 4 000 | 1317 | | | 180 | 60 | 3 | 142 000 | 51 500 | 14 500 | 5 250 | 3 000 | 3 800 | 2317 | | 90 | 160 | 30 | 2 | 57 500 | 23 500 | 5 850 | 2 400 | 3 600 | 4 300 | 1218 | | | 160 | 40 | 2 | 70 500 | 28 700 | 7 200 | 2 930 | 3 600 | 4 300 | 2218 | | | 190 | 43 | 3 | 117 000 | 44 500 | 12 000 | 4 550 | 3 200 | 3 800 | * 1318 | | | 190 | 64 | 3 | 154 000 | 57 500 | 15 700 | 5 850 | 2 800 | 3 600 | 2318 | | 95 | 170 | 32 | 2.1 | 64 000 | 27 100 | 6 550 | 2 770 | 3 400 | 4 000 | 1219 | | | 170 | 43 | 2.1 | 84 000 | 34 500 | 8 550 | 3 500 | 3 400 | 4 000 | 2219 | | | 200 | 45 | 3 | 129 000 | 51 000 | 13 200 | 5 200 | 3 000 | 3 600 | * 1319 | | | 200 | 67 | 3 | 161 000 | 64 500 | 16 400 | 6 550 | 2 800 | 3 400 | * 2319 | | 100 | 180 | 34 | 2.1 | 69 500 | 29 700 | 7 100 | 3 050 | 3 200 | 3 800 | 1220 | | | 180 | 46 | 2.1 | 94 500 | 38 500 | 9 650 | 3 900 | 3 200 | 3 800 | 2220 | | | 215 | 47 | 3 | 140 000 | 57 500 | 14 300 | 5 850 | 2 800 | 3 400 | * 1320 | | | 215 | 73 | 3 | 187 000 | 79 000 | 19 100 | 8 050 | 2 400 | 3 200 | * 2320 | | 105 | 190 | 36 | 2.1 | 75 000 | 32 500 | 7 650 | 3 300 | 3 000 | 3 600 | 1221 | | | 190 | 50 | 2.1 | 109 000 | 45 000 | 11 100 | 4 550 | 3 000 | 3 600 | 2221 | | | 225 | 49 | 3 | 154 000 | 64 500 | 15 700 | 6 600 | 2 600 | 3 200 | * 1321 | | | 225 | 77 | 3 | 200 000 | 87 000 | 20 400 | 8 850 | 2 400 | 3 000 | * 2321 | | 110 | 200 | 38 | 2.1 | 87 000 | 38 500 | 8 900 | 3 950 | 2 800 | 3 400 | 1222 | | | 200 | 53 | 2.1 | 122 000 | 51 500 | 12 500 | 5 250 | 2 800 | 3 400 | * 2222 | | | 240 | 50 | 3 | 161 000 | 72 000 | 16 400 | 7 300 | 2 400 | 3 000 | * 1322 | | | 240 | 80 | 3 | 211 000 | 94 500 | 21 600 | 9 650 | 2 200 | 2 800 | * 2322 | Notes (1) The suffix K represents bearings with tapered bores (1:12) **Remarks** For the dimensions related to adapters, refer to Pages **B360** and **B361**. ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | |---------------|------------|---------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.65 | Y_2 | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2\,,\,Y_3\,$, and Y_0 are listed in the table below. | Numbers | Abutment | and Fillet Di
(mm) | mensions | Constant | Ax | ial Load Fa | actors | Mass
(kg) | |--------------------|--------------------------|--------------------------|-------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------------| | Tapered
Bore(1) | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 1215 K | 83 | 122 | 1.5 | 0.17 | 5.6 | 3.6 | 3.8 | 1.41 | | 2215 K | 83 | 122 | 1.5 | 0.25 | 3.9 | 2.5 | 2.6 | 1.6 | | 1315 K | 86 | 149 | 2 | 0.22 | 4.4 | 2.8 | 2.9 | 3.65 | | 2315 K | 86 | 149 | 2 | 0.38 | 2.5 | 1.6 | 1.7 | 4.77 | | 1216 K | 89 | 131 | 2 | 0.16 | 6.0 | 3.9 | 4.1 | 1.73 | | 2216 K | 89 | 131 | 2 | 0.25 | 3.9 | 2.5 | 2.7 | 1.97 | | 1316 K | 91 | 159 | 2 | 0.22 | 4.5 | 2.9 | 3.1 | 4.31 | | * 2316 K | 91 | 159 | 2 | 0.39 | 2.5 | 1.6 | 1.7 | 5.54 | | 1217 K | 94 | 141 | 2 | 0.17 | 5.7 | 3.7 | 3.8 | 2.09 | | 2217 K | 94 | 141 | 2 | 0.25 | 3.9 | 2.5 | 2.6 | 2.48 | | 1317 K | 98 | 167 | 2.5 | 0.21 | 4.6 | 2.9 | 3.1 | 5.13 | | 2317 K | 98 | 167 | 2.5 | 0.37 | 2.6 | 1.7 | 1.8 | 6.56 | | 1218 K | 99 | 151 | 2 | 0.17 | 5.8 | 3.8 | 3.9 | 2.55 | | 2218 K | 99 | 151 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 3.13 | | * 1318 K | 103 | 177 | 2.5 | 0.22 | 4.3 | 2.8 | 2.9 | 5.94 | | 2318 K | 103 | 177 | 2.5 | 0.38 | 2.6 | 1.7 | 1.7 | 7.76 | | 1219 K | 106 | 159 | 2 | 0.17 | 5.8 | 3.7 | 3.9 | 3.21 | | 2219 K | 106 | 159 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 3.87 | | * 1319 K | 108 | 187 | 2.5 | 0.23 | 4.3 | 2.8 | 2.9 | 6.84 | | * 2319 K | 108 | 187 | 2.5 | 0.38 | 2.6 | 1.7 | 1.8 | 9.01 | | 1220 K | 111 | 169 | 2 | 0.17 | 5.6 | 3.6 | 3.8 | 3.82 | | 2220 K | 111 | 169 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 4.53 | | * 1320 K | 113 | 202 | 2.5 | 0.24 | 4.1 | 2.7 | 2.8 | 8.46 | | * 2320 K | 113 | 202 | 2.5 | 0.38 | 2.6 | 1.7 | 1.8 | 11.6 | | _
_
_ | 116
116
118
118 | 179
179
212
212 | 2
2
2.5
2.5 | 0.18
0.28
0.23
0.38 | 5.5
3.5
4.2
2.6 | 3.6
2.3
2.7
1.7 | 3.7
2.4
2.9
1.7 | 4.52
5.64
10
14.4 | | 1222 K | 121 | 189 | 2 | 0.17 | 5.7 | 3.7 | 3.9 | 5.33 | | * 2222 K | 121 | 189 | 2 | 0.28 | 3.5 | 2.2 | 2.3 | 6.64 | | * 1322 K | 123 | 227 | 2.5 | 0.22 | 4.4 | 2.8 | 3.0 | 12 | | * 2322 K | 123 | 227 | 2.5 | 0.37 | 2.6 | 1.7 | 1.8 | 17.4 | ^(*) The balls of the bearings marked * protrude slightly from the bearing face. The protrusion amounts are shown on Page B77. ## CYLINDRICAL ROLLER BEARINGS | SINGLE-ROW CYLINDRICAL ROLLER BEARINGS | | 20 - 65mm············· 70 - 160mm········· | | |---|-----------------|--|-----| | LANAPER TURNOT AND LARGE FOR AVUINDRIAN DOLLER READINGS | Bore Diameter 1 | 170 – 500mm······ | B10 | | L-SHAPED THRUST COLLARS FOR CYLINDRICAL ROLLER BEARINGS Double-row Cylindrical Roller Bearings | | 20 – 320mm············· 25 – 360mm·········· | | Four-Row Cylindrical Roller Bearings are described on Pages B334 to B343. ## **DESIGN, TYPES, AND FEATURES** Depending on the existence of ribs on their rings, Cylindrical Roller Bearings are classified into the following types. Types NU, N, NNU, and NN are suitable as free-end bearings. Types NJ and NF can sustain limited axial loads in one direction. Types NH and NUP can be used as fixed-end bearings. NH-type cylindrical roller bearings consist of the NJ-type cylindrical roller bearings and HJ-type L-shaped thrust collars (See Page B104 to B105). The inner ring loose rib of a NUP-type cylindrical roller bearing should be mounted so that the marked side is on the outside. **B** 84 B 85 Use pressed, machined, or molded cages for standard cylindrical roller bearings as shown in Table 1. Table 1 Standard Cages for Cylindrical Roller Bearings | Series | Pressed Steel Cages (W) | Machined Brass Cages (M) | Molded Polyamide Cages (T) | |--------------|-------------------------|--------------------------|----------------------------| | NU10** | _ | 1005 – 10/500 | _ | | N2** | 204 – 230 | 232 – 264 | _ | | NU2** | 214 – 230 | 232 – 264 | _ | | NU2**E | 205E – 213E | 214E – 240E | 204E | | NU22** | 2204 – 2230 | 2232 – 2252 | _ | | NU22**E | _ | 2222E – 2240E | 2204E – 2220E | | N3 ** | 304 – 324 | 326 – 352 | _ | | NU3** | 312 – 330 | 332 – 352 | _ | | NU3**E | 305E - 311E | 312E – 340E | 304E | | NU23** | 2304 – 2320 | 2322 – 2340 | _ | | NU23**E | _ | 2322E – 2340E | 2304E – 2320E | | NU4** | 405 – 416 | 417 – 430 | _ | The basic load ratings listed in the bearing tables are based on the Cage Classification in Table 1. For a given bearing number, if the type of cage is not the standard one, the number of rollers may vary; in such a case, the load rating will differ from the one listed in the bearing tables. Among the NN Type of double-row bearings, there are many of high precision that have tapered bores, and they are primarily used in the main spindles of machine tools. Their cages are either molded polyphenylenesulfide (PPS) or machined brass. #### PRECAUTIONS FOR USE OF CYLINDRICAL ROLLER BEARINGS If the load on cylindrical roller bearings becomes too small during operation, slippage between the rollers and raceways occurs, which may result in smearing. Especially with large bearings since the weight of the roller and cage is high. In case of strong shock loads or vibration, pressed-steel cages are sometimes inadequate. If very small bearing load or strong shock loads or vibration are expected, please consult with NSK for selection of the bearings. Bearings with molded polyamide cages (ET type) can be used continuously at
temperatures between —40 and 120°C. If the bearings are used in gear oil, nonflammable hydraulic oil, or ester oil at a high temperature over 100°C, please contact NSK beforehand. #### **TOLERANCES AND RUNNING ACCURACY** | CYLINDRICAL ROLLER BEARINGS | Table 8.2 | (Pages | A60 to | A63) | |--|-----------|--------|--------|------| | DOUBLE-ROW CYLINDRICAL ROLLER REARINGS | Table 8.2 | (Panes | A60 to | A63) | $\begin{array}{ccc} \textbf{Table 2} & \textbf{Tolerances for Roller Inscribed Circle Diameter } F_w \text{ and } \\ \textbf{Roller Circumscribed Circle Diameter } E_w \text{ of Cylindrical } \\ \textbf{Roller Bearings Having Interchangeable Rings} \\ & \textbf{Units}: \mu m \\ \end{array}$ | _ | | | | | | | | | | | | |--------------------------------|---------|-------|----------------------------------|---|---|-----------------|--|--|--|--|--| | Nominal Bore Diameter d (mm) | | | Tolerances fo
NU, NJ, NUP, NF | or $F_{ m w}$ of types I, and NNU ${ extstyle \Delta F_{ m w}}$ | Tolerances for $E_{ m w}$ of types N, NF, and NN $\varDelta_{E_{ m w}}$ | | | | | | | | C | over | incl. | high low | | high | low | | | | | | | | _ | 20 | +10 | 0 | 0 | -10 | | | | | | | | 20 | 50 | +15 | 0 | 0 | - 15 | | | | | | | | 50 | 120 | +20 | 0 | 0 | -20 | | | | | | | 1 | 20 | 200 | +25 | 0 | 0 | -2 5 | | | | | | | 2 | 200 | 250 | +30 | 0 | 0 | -30 | | | | | | | 2 | 250 | 315 | +35 | 0 | 0 | -3 5 | | | | | | | 3 | 315 | 400 | +40 | 0 | 0 | -40 | | | | | | | 4 | 400 500 | | +45 | 0 | _ | <u> </u> | | | | | | #### **RECOMMENDED FITS** | CYLINDRICAL ROLLER BEARINGS | Table 9.2 (| Page A | 184) | |-------------------------------|-------------|--------|------| | | Table 9.4 (| Page A | A85) | | DOUBLE-ROW CYLINDRICAL ROLLER | | | | | BEARINGS | Table 9.2 (| Page A | A84) | | | Table 9.4 (| Page A | 485) | #### INTERNAL CLEARANCES CYLINDRICAL ROLLER BEARINGS.....Table 9.14 (Page A91) DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS....Table 9.14 (Page A91) #### PERMISSIBLE MISALIGNMENT The permissible misalignment of cylindrical roller bearings varies depending on the type and internal specifications, but under normal loads, the angles are approximately as follows: 'Cylindrical Roller Bearings of width series 0 or 10.0012 radian (4') Cylindrical Roller Bearings of width series 2...............0.0006 radian (2') For double-row cylindrical roller bearings, nearly no misalignment is allowed. #### **LIMITING SPEEDS** The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. B 86 B 87 #### Bore Diameter 20 – 35 mm | | | Bou | ndary Dii
(mm | mensions | | | Basic Load | | Limiting S
(min | | |----|----------------|----------------|------------------|---------------------|-------------------|------------|----------------------------|----------------------------|----------------------------|----------------------------| | d | D | В | γ
min. | ${m \gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 20 | 47 | 14 | 1 | 0.6 | | 40 | 15 400 | 12 700 | 15 000 | 18 000 | | | 47 | 14 | 1 | 0.6 | 26.5 | — | 25 700 | 22 600 | 13 000 | 16 000 | | | 47 | 18 | 1 | 0.6 | 27 | — | 20 700 | 18 400 | 13 000 | 16 000 | | | 47 | 18 | 1 | 0.6 | 26.5 | — | 30 500 | 28 300 | 13 000 | 16 000 | | | 52 | 15 | 1.1 | 0.6 | — | 44.5 | 21 400 | 17 300 | 12 000 | 15 000 | | | 52 | 15 | 1.1 | 0.6 | 27.5 | — | 31 500 | 26 900 | 12 000 | 15 000 | | | 52
52 | 21
21 | 1.1
1.1 | 0.6
0.6 | 28.5
27.5 | _ | 30 500
42 000 | 27 200
39 000 | 11 000
11 000 | 14 000
14 000 | | 25 | 47 | 12 | 0.6 | 0.3 | 30.5 | | 14 300 | 13 100 | 15 000 | 18 000 | | | 52 | 15 | 1 | 0.6 | — | 45 | 17 700 | 15 700 | 13 000 | 16 000 | | | 52 | 15 | 1 | 0.6 | 31.5 | | 29 300 | 27 700 | 12 000 | 14 000 | | | 52
62
62 | 18
17
17 | 1
1.1
1.1 | 0.6
1.1
1.1 | 31.5
—
34 | 53
— | 35 000
29 300
41 500 | 34 500
25 200
37 500 | 12 000
10 000
10 000 | 14 000
13 000
12 000 | | | 62 | 24 | 1.1 | 1.1 | 34 | — | 57 000 | 56 000 | 9 000 | 11 000 | | | 80 | 21 | 1.5 | 1.5 | 38.8 | 62.8 | 46 500 | 40 000 | 9 000 | 11 000 | | 30 | 55 | 13 | 1 | 0.6 | 36.5 | 48.5 | 19 700 | 19 600 | 12 000 | 15 000 | | | 62 | 16 | 1 | 0.6 | — | 53.5 | 24 900 | 23 300 | 11 000 | 13 000 | | | 62 | 16 | 1 | 0.6 | 37.5 | — | 39 000 | 37 500 | 9 500 | 12 000 | | | 62
72
72 | 20
19
19 | 1
1.1
1.1 | 0.6
1.1
1.1 | 37.5
—
40.5 | 62
— | 49 000
38 500
53 000 | 50 000
35 000
50 000 | 9 500
8 500
8 500 | 12 000
11 000
10 000 | | | 72 | 27 | 1.1 | 1.1 | 40.5 | — | 74 500 | 77 500 | 8 000 | 9 500 | | | 90 | 23 | 1.5 | 1.5 | 45 | 73 | 62 500 | 55 000 | 7 500 | 9 500 | | 35 | 62 | 14 | 1 | 0.6 | 42 | 55 | 22 600 | 23 200 | 11 000 | 13 000 | | | 72 | 17 | 1.1 | 0.6 | — | 61.8 | 35 500 | 34 000 | 9 500 | 11 000 | | | 72 | 17 | 1.1 | 0.6 | 44 | — | 50 500 | 50 000 | 8 500 | 10 000 | | | 72 | 23 | 1.1 | 0.6 | 44 | — | 61 500 | 65 500 | 8 500 | 10 000 | | | 80 | 21 | 1.5 | 1.1 | — | 68.2 | 49 500 | 47 000 | 8 000 | 9 500 | | | 80 | 21 | 1.5 | 1.1 | 46.2 | — | 66 500 | 65 500 | 7 500 | 9 500 | | | 80 | 31 | 1.5 | 1.1 | 46.2 | — | 93 000 | 101 000 | 6 700 | 8 500 | | | 100 | 25 | 1.5 | 1.5 | 53 | 83 | 75 500 | 69 000 | 6 700 | 8 000 | ⁽²⁾ The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Веа | ring Numbers(2) | | | | Þ | Abutmer | nt and Fi
(m | illet Dime
m) | nsions | | | | Mass
(kg) | |---------------------------------|------------------------|--------------------|-----------------------|-----------------|-----------------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-------------------------|------------------------|-------------------------| | | (3)
NU NJ NUP | N NF | $d_{ m a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | ${\pmb{\gamma}}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | N 204
NU 204 ET
NU2204 | ONU NJ NUP | N NF | 25
25
25 |
24
24 | —
25
25 | —
29
29 | —
32
32 | —
42
42 | 43
 | 42
—
— | 1
1
1 | 0.6
0.6
0.6 | 0.107
0.107
0.144 | | NU2204 ET
N 304
NU 304 ET | NU NJ NUP
NU NJ NUP | N NF | 25
26.5
26.5 | 24
—
24 | 25
—
26 | 29
—
30 | 32
—
33 | 42
—
45.5 | —
48
— | _
46
_ | 1
1
1 | 0.6
0.6
0.6 | 0.138
0.148
0.145 | | NU2304
NU2304 ET | NU NJ NUP
NU NJ NUP | = = | 26.5
26.5 | 24
24 | 27
26 | 30
30 | 33
33 | 45.5
45.5 | _ | _ | 1
1 | 0.6
0.6 | 0.217
0.209 | | NU1005
N 205
NU 205 EW | NU — —
NU NJ NUP | N NF | —
30
30 | 27
—
29 | 30
—
30 | 32
—
34 | _
_
37 | 43
—
47 | _
48
_ | _
46
_ | 0.6
1
1 | 0.3
0.6
0.6 | 0.094
0.135
0.136 | | NU2205 ET
N 305
NU 305 EW | NU NJ NUP
NU NJ NUP |
N NF | 30
31.5
31.5 | 29
—
31.5 | 30
—
32 | 34
—
37 | 37
—
40 | 47
—
55.5 |
55.5
 |
50
 | 1
1
1 | 0.6
1
1 | 0.16
0.233
0.269 | | NU2305 ET
NU 405 | NU NJ NUP
NU NJ — | N NF | 31.5
33 | 31.5
33 | 32
37 | 37
41 | 40
46 | 55.5
72 |
72 | —
64 | 1
1.5 | 1
1.5 | 0.338
0.57 | | NU1006
N 206
NU 206 EW | NU — —
NU NJ NUP | N —
N NF
— — | 35
35
35 | 34
—
34 | 36
—
36 | 38
—
40 | _
44 | 50
—
57 | 51
58
— | 49
56
— | 1
1
1 | 0.5
0.6
0.6 | 0.136
0.208
0.205 | | NU2206 ET
N 306
NU 306 EW | NU NJ NUP
NU NJ NUP |
N NF | 35
36.5
36.5 | 34
—
36.5 | 36
—
39 | 40
—
44 | 44
—
48 | 57
—
65.5 |
65.5
 | 64
— | 1
1
1 | 0.6
1
1 | 0.255
0.353
0.409 | | NU2306 ET
NU 406 | NU NJ NUP
NU NJ — | N NF | 36.5
38 | 36.5
38 | 39
43 | 44
47 | 48
52 | 65.5
82 | —
82 | —
75 | 1
1.5 | 1
1.5 | 0.518
0.758 | | NU1007
N 207
NU 207 EW | NU NJ —
NU NJ NUP | N —
N NF
— — | 40
41.5
41.5 | 39
—
39 | 41
—
42 | 44
—
46 | <u> </u> | 57
—
65.5 | 58
68
— | 56
64
— | 1
1
1 | 0.5
0.6
0.6 | 0.18
0.301
0.304 | | NU2207 ET
N 307
NU 307 EW | NU NJ NUP
NU NJ NUP |
N NF | 41.5
43
41.5 | 39
—
41.5 | 42
—
44 | 46
—
48 | 50
—
53 | 65.5
—
72 | —
73.5
— | 70
— | 1
1.5
1.5 | 0.6
1
1 | 0.40
0.476
0.545 | | NU2307 ET
NU 407 | NU NJ NUP
NU NJ — | U U | 43
43 | 41.5
43 | 44
51 | 48
55 | 53
61 | 72
92 |
92 | —
85 | 1.5
1.5 | 1
1.5 | 0.711
1.01 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) $d_{ m b}$ (max.) are values for adjusting rings for NU, NJ Types. #### Bore Diameter 40 – 55 mm | | | Bou | ndary Di
(mm | mensions | | | Basic Load | | Limiting S
(min | | |----|-------------------|----------------|-------------------|----------------------|-------------------|------------|-------------------------------|-------------------------------|-------------------------|-------------------------| | d | D | В | γ
min. | $ m \emph{Y}_1$ min. | $F_{ m W}$ |
$E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 40 | 68 | 15 | 1 | 0.6 | 47 | 61 | 27 300 | 29 000 | 10 000 | 12 000 | | | 80 | 18 | 1.1 | 1.1 | — | 70 | 43 500 | 43 000 | 8 500 | 10 000 | | | 80 | 18 | 1.1 | 1.1 | 49.5 | — | 55 500 | 55 500 | 7 500 | 9 000 | | | 80 | 23 | 1.1 | 1.1 | 49.5 | — | 72 500 | 77 500 | 7 500 | 9 000 | | | 90 | 23 | 1.5 | 1.5 | — | 77.5 | 58 500 | 57 000 | 6 700 | 8 500 | | | 90 | 23 | 1.5 | 1.5 | 52 | — | 83 000 | 81 500 | 6 700 | 8 000 | | | 90
110 | 33
27 | 1.5
2 | 1.5
2 | 52
58 | 92 | 114 000
95 500 | 122 000
89 000 | 6 000
6 000 | 7 500
7 500 | | 45 | 75 | 16 | 1 | 0.6 | 52.5 | 67.5 | 32 500 | 35 500 | 9 000 | 11 000 | | | 85 | 19 | 1.1 | 1.1 | — | 75 | 46 000 | 47 000 | 7 500 | 9 000 | | | 85 | 19 | 1.1 | 1.1 | 54.5 | — | 63 000 | 66 500 | 6 700 | 8 000 | | | 85
100
100 | 23
25
25 | 1.1
1.5
1.5 | 1.1
1.5
1.5 | 54.5
—
58.5 | 86.5
— | 76 000
79 000
97 500 | 84 500
77 500
98 500 | 6 700
6 300
6 000 | 8 500
7 500
7 500 | | | 100 | 36 | 1.5 | 1.5 | 58.5 | | 137 000 | 153 000 | 5 300 | 6 700 | | | 120 | 29 | 2 | 2 | 64.5 | 100.5 | 107 000 | 102 000 | 5 600 | 6 700 | | 50 | 80 | 16 | 1 | 0.6 | 57.5 | 72.5 | 32 000 | 36 000 | 8 000 | 10 000 | | | 90 | 20 | 1.1 | 1.1 | — | 80.4 | 48 000 | 51 000 | 7 100 | 8 500 | | | 90 | 20 | 1.1 | 1.1 | 59.5 | — | 69 000 | 76 500 | 6 300 | 7 500 | | | 90
110
110 | 23
27
27 | 1.1
2
2 | 1.1
2
2 | 59.5
—
65 | 95
— | 83 500
87 000
110 000 | 97 000
86 000
113 000 | 6 300
5 600
5 000 | 8 000
6 700
6 000 | | | 110 | 40 | 2 | 2 | 65 | — | 163 000 | 187 000 | 5 000 | 6 300 | | | 130 | 31 | 2.1 | 2.1 | — | 110.8 | 139 000 | 136 000 | 5 000 | 6 000 | | | 130 | 31 | 2.1 | 2.1 | 70.8 | 110.8 | 129 000 | 124 000 | 5 000 | 6 000 | | 55 | 90 | 18 | 1.1 | 1 | 64.5 | 80.5 | 37 500 | 44 000 | 7 500 | 9 000 | | | 100 | 21 | 1.5 | 1.1 | — | 88.5 | 58 000 | 62 500 | 6 300 | 7 500 | | | 100 | 21 | 1.5 | 1.1 | 66 | — | 86 500 | 98 500 | 5 600 | 7 100 | | | 100
120
120 | 25
29
29 | 1.5
2
2 | 1.1
2
2 | 66
—
70.5 | 104.5
— | 101 000
111 000
137 000 | 122 000
111 000
143 000 | 5 600
5 000
4 500 | 7 100
6 300
5 600 | | | 120 | 43 | 2 | 2 | 70.5 | — | 201 000 | 233 000 | 4 500 | 5 600 | | | 140 | 33 | 2.1 | 2.1 | 77.2 | 117.2 | 139 000 | 138 000 | 4 500 | 5 600 | (2) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bear | ring Numbers(² | ?) | | | | Д | butmer | nt and Fi | illet Dime | ensions | | | | Mass
(kg) | |---------------------------------|----------------------------|--------------------|----------|-----------------------|-----------------|---------------------|-----------------|-----------------|-----------------------------|-----------------|-------------------|--------------------|------------------------|-------------------------| | | (3)
NU NJ NI | JP N | NF | $d_{ m a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}$ (5) max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\mathrm{a}}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | r a
max. | $\emph{r}_{ m b}$ max. | approx. | | NU1008
N 208
NU 208 EW | NU NJ NI | - N | NF | 45
46.5
46.5 | 44
—
46.5 | 46
—
48 | 49
—
52 | —
56 | 63
—
73.5 | 64
73.5
— | 62
72
— | 1
1
1 | 0.6
1
1 | 0.223
0.375
0.379 | | NU2208 ET
N 308
NU 308 EW | NU NJ NI | - N | NF | 46.5
48
48 | 46.5
—
48 | 48
—
50 | 52
—
55 | 56
—
60 | 73.5
—
82 | 82
— |
79
 | 1
1.5
1.5 | 1
1.5
1.5 | 0.480
0.649
0.747 | | NU2308 ET
NU 408 | NU NJ NU | | NF | 48
49 | 48
49 | 50
56 | 55
60 | 60
67 | 82
101 |
101 | —
94 | 1.5
2 | 1.5
2 | 0.933
1.28 | | NU1009
N 209
NU 209 EW | NU — -
NU NJ NI | – N
– N
JP – | NF
NF | 50
51.5
51.5 | 49
—
51.5 | 51
—
52 | 54
—
57 | <u> </u> | 70
—
78.5 | 71
78.5
— | 68
77
— | 1
1
1 | 0.6
1
1 | 0.279
0.429
0.438 | | NU2209 ET
N 309
NU 309 EW | NU NJ NI | - N | NF | 51.5
53
53 | 51.5
—
53 | 52
—
56 | 57
—
60 | 61
—
66 | 78.5
—
92 | 92
— |
77
 | 1
1.5
1.5 | 1
1.5
1.5 | 0.521
0.869
1.01 | | NU2309 ET
NU 409 | NU NJ NU
NU NJ NU | | NF | 53
54 | 53
54 | 56
62 | 60
66 | 66
74 | 92
111 |
111 | 103 | 1.5
2 | 1.5
2 | 1.28
1.62 | | NU1010
N 210
NU 210 EW | NU NJ NI
NU NJ NI | - N | NF | 55
56.5
56.5 | 54
—
56.5 | 56
—
57 | 59
—
62 | —
67 | 75
—
83.5 | 76
83.5
— | 73
82
— | 1
1
1 | 0.6
1
1 | 0.301
0.483
0.50 | | NU2210 ET
N 310
NU 310 EW | NU NJ NI | - N | NF | 56.5
59
59 | 56.5
—
59 | 57
—
63 | 62
—
67 | 67
—
73 | 83.5
—
101 | 101
— | 97
— | 1
2
2 | 1
2
2 | 0.562
1.11
1.3 | | NU2310 ET
N 410
NU 410 | NU NJ NI | - N | NF
NF | 59
65
61 | 59
—
61 | 63
—
68 | 67
—
73 | 73
—
81 | 101
—
119 | —
117
119 | —
113
113.3 | 2
2
2 | 2
2
2 | 1.7
2.0
1.99 | | NU1011
N 211
NU 211 EW | NU NJ - | – N
– N
JP – | NF | 61.5
63
63 | 60
—
61.5 | 63
—
64 | 66
—
68 | —
73 | 83.5
—
92 | 85
93.5
— | 82
91
— | 1
1.5
1.5 | 1
1
1 | 0.445
0.634
0.669 | | NU2211 ET
N 311
NU 311 EW | NU NJ NI | - N | NF | 63
64
64 | 61.5
—
64 | 64
—
68 | 68
—
72 | 73
—
80 | 92
—
111 | 111
— | 107
— | 1.5
2
2 | 1
2
2 | 0.783
1.42
1.64 | | NU2311 ET
NU 411 | NU NJ NI
NU NJ NI | | _
NF | 64
66 | 64
66 | 68
75 | 72
79 | 80
87 | 111
129 |
129 | —
119 | 2
2 | 2
2 | 2.18
2.5 | **Notes** (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. #### Bore Diameter 60 – 75 mm | | | Bou | ndary Di | mensions | | | Basic Load | | Limiting Sp
(min | | |----|--|--|--|--|--|--|--|---|---|--| | d | D | В | γ
min. | ${m \gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 60 | 95
110
110
110
130
130 | 18
22
22
28
31
31 | 1.1
1.5
1.5
1.5
2.1
2.1 | 1
1.5
1.5
1.5
2.1
2.1
2.1 | 69.5

72
72

77
77 | 85.5
97.5
—
—
113
— | 40 000
68 500
97 500
131 000
124 000
124 000 | 48 500
75 000
107 000
157 000
126 000
126 000
157 000 | 6 700
6 000
5 300
5 300
4 800
4 800
4 800 | 8 500
7 100
6 300
6 300
5 600
5 600
5 600 | | 65 | 130
150
100
120
120 | 46
35
18
23
23 | 2.1
2.1
1.1
1.5
1.5 | 2.1
2.1
1
1.5
1.5 | 77
83
74.5
—
78.5 | 127
90.5
105.6 | 222 000
167 000
41 000
84 000
108 000 | 262 000
168 000
51 000
94 500
119 000 | 4 300
4 300
6 300
5 300
4 800 | 5 300
5 300
8 000
6 300
5 600 | | | 120
140
140
140
140
160 | 31
33
33
33
48
37 | 1.5
2.1
2.1
2.1
2.1
2.1 | 1.5
2.1
2.1
2.1
2.1
2.1 | 78.5
—
83.5
82.5
82.5
89.3 | | 149 000
135 000
135 000
181 000
233 000
182 000 | 181 000
139 000
139 000
191 000
265 000
186 000 | 4 800
4 300
4 300
4 300
3 800
4 000 | 6 000
5 300
5 300
5 300
4 800
4 800 | | 70 | 110
125
125
125
150
150
150 | 20
24
24
31
35
35
35 | 1.1
1.5
1.5
1.5
2.1
2.1
2.1
2.1 | 1
1.5
1.5
1.5
2.1
2.1
2.1
2.1 | 80
—
83.5
83.5
—
90
89 | 100
110.5
—
—
130
— | 58 500
83 500
119 000
156 000
149 000
158 000
205 000
274 000 | 70 500
95 000
137 000
194 000
156 000
168 000
222 000
325 000 | 6 000
5 000
5 000
4 500
4 000
4 000
4 000
3 600 | 7 100
6 300
6 300
5 600
5 000
5 000
5 000
4 500 | | 75 | 180
115
130
130
130
160
160
160
160
190 | 42
20
25
25
31
37
37
37
55
45 | 3
1.1
1.5
1.5
1.5
2.1
2.1
2.1
2.1
3 | 3
1
1.5
1.5
1.5
2.1
2.1
2.1
2.1
3 | 100
85
—
88.5
88.5
—
95.5
95
95
104.5 | 152
105
116.5
—
139.5
—
—
160.5 | 228 000
60 000
96 500
130 000
162 000
179 000
179 000
240 000
330 000
262 000 | 236 000
74 500
111 000
156 000
207 000
189 000
189 000
263 000
395 000
274 000 | 3 600
5 600
4 800
4 800
3 800
3 800
3 800
3 400
3 400 | 4 300
6 700
6 000
6 000
5 300
4
800
4 800
4 800
4 300
4 000 | ⁽²⁾ The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bear | ring Numbers(| (2) | | | | P | butmen | it and Fi
(mi | llet Dime | ensions | | | | Mass
(kg) | |--|----------------|---------------------------|--------------|-----------------------|----------------------|-----------------------|-----------------------|--------------------------|--------------------------|-----------------|--------------------|--------------------|----------------------|------------------------------| | | (3)
NU NJ N | UP N | NF | $d_{ m a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | r a
max. | $ m \emph{r}_b$ max. | approx. | | NU1012
N 212
NU 212 EW | NO NJ N | - N
- N
UP - | NF
NF | 66.5
68
68 | 65
—
68 | 68
—
70 | 71
—
75 | _
80 | 88.5
—
102 | 90
102
— | 87
100
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.474
0.823
0.824 | | NU2212 ET
N 312
NU 312 | | UP —
— N
UP — | NF | 68
71
71 | 68
—
71 | 70
—
75 | 75
—
79 | 80
—
86 | 102
—
119 | 119
— | 115
— | 1.5
2
2 | 1.5
2
2 | 1.06
1.78
1.82 | | NU 312 EM
NU2312 ET
NU 412 | NU NJ N | UP —
UP —
UP N | _
NF | 71
71
71 | 71
71
71 | 75
75
80 | 79
79
85 | 86
86
94 | 119
119
139 | _
139 | _
130 | 2
2
2 | 2
2
2 | 2.06
2.7
3.04 | | NU1013
N 213
NU 213 EW | NU NJ N | — N
— N
UP — | NF
NF | 71.5
73
73 | 70
—
73 | 73
—
76 | 76
—
81 | —
87 | 93.5
—
112 | 95
112
— | 92
108
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.504
1.05
1.05 | | NU2213 ET
N 313
NU 313 | NU NJ N | UP —
— N
UP — | NF | 73
76
76 | 73
—
76 | 76
—
81 | 81
—
85 | 87
—
93 | 112
—
129 | 129
— | 125
— | 1.5
2
2 | 1.5
2
2 | 1.41
2.17
2.23 | | NU 313 EM
NU2313 ET
NU 413 | NU NJ N | UP —
UP —
— N | _
_
NF | 76
76
76 | 76
76
76 | 80
80
86 | 85
85
91 | 93
93
100 | 129
129
149 | _
_
149 | _
_
138.8 | 2 2 2 | 2 2 2 | 2.56
3.16
3.63 | | NU1014
N 214
NU 214 EM | NU NJ N | UP N
— N
UP — | NF
NF | 76.5
78
78 | 75
—
78 | 79
—
81 | 82
—
86 | 92 | 103.5
—
117 | 105
117 | 101
113 | 1
1.5
1.5 | 1
1.5
1.5 | 0.693
1.14
1.29 | | NU2214 ET
N 314
NU 314 | NU NJ N | UP —
— N
UP — | _
NF | 78
81
81 | 78
—
81 | 81
—
87 | 86
—
92 | 92
—
100 | 117
117
—
139 |
139 |
133.5 | 1.5
2
2 | 1.5
2
2 | 1.49
2.67
2.75 | | NU 314 EM
NU2314 ET
NU 414 | NU NJ N | UP —
UP —
UP N | _
_
NF | 81
81
83 | 81
81
83 | 86
86
97 | 92
92
102 | 100
100
100
112 | 139
139
167 | —
—
167 | —
—
—
155 | 2
2
2.5 | 2
2
2
2.5 | 3.09
3.92
5.28 | | NU1015
N 215 | NU — | – N
– N | NF
NF | 81.5
83 | 80 | 83 | 87 | _ | 108.5 | 110
122 | 106
119 | 1
1.5 | 1
1.5 | 0.731
1.23 | | NU 215 EM
NU2215 ET
N 315 | NU NJ N | UP —
UP —
— N | _
NF | 83
83
86 | 83
83
— | 86
86
— | 90
90
— | 96
96
— | 122
122
— | —
149 |
143 | 1.5
1.5
2 | 1.5
1.5
2 | 1.44
1.57
3.2 | | NU 315
NU 315 EM
NU2315 ET
NU 415 | NU NJ N | UP —
UP —
UP —
N | _
_
NF | 86
86
86
88 | 86
86
86
88 | 93
92
92
102 | 97
97
97
107 | 106
106
106
118 | 149
149
149
177 | _
_
177 |

164 | 2
2
2
2.5 | 2
2
2
2.5 | 3.26
3.73
4.86
6.27 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 80 – 95 mm | | | | | | | | | | ı | | |----|-------------------|----------------|------------------|-----------------|---------------------|------------|-------------------------------|-------------------------------|-------------------------|-------------------------| | | | Bou | ndary Di
(mm | mensions
1) | | | Basic Load | | Limiting Sp
(min | | | d | D | В | γ
min. | ${m r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 80 | 125 | 22 | 1.1 | 1 | 91.5 | 113.5 | 72 500 | 90 500 | 5 300 | 6 300 | | | 140 | 26 | 2 | 2 | — | 125.3 | 106 000 | 122 000 | 4 500 | 5 300 | | | 140 | 26 | 2 | 2 | 95.3 | — | 139 000 | 167 000 | 4 500 | 5 300 | | | 140
170
170 | 33
39
39 | 2
2.1
2.1 | 2
2.1
2.1 | 95.3
—
101 | 147
— | 186 000
190 000
256 000 | 243 000
207 000
282 000 | 4 000
3 600
3 600 | 5 000
4 300
4 300 | | | 170 | 58 | 2.1 | 2.1 | 101 | | 355 000 | 430 000 | 3 200 | 4 000 | | | 200 | 48 | 3 | 3 | 110 | 170 | 299 000 | 315 000 | 3 200 | 3 800 | | 85 | 130 | 22 | 1.1 | 1 | 96.5 | 118.5 | 74 500 | 95 500 | 5 000 | 6 000 | | | 150 | 28 | 2 | 2 | — | 133.8 | 120 000 | 140 000 | 4 300 | 5 000 | | | 150 | 28 | 2 | 2 | 100.5 | — | 167 000 | 199 000 | 4 300 | 5 000 | | | 150
180
180 | 36
41
41 | 2
3
3 | 2
3
3 | 100.5
—
108 | 156
— | 217 000
225 000
212 000 | 279 000
247 000
228 000 | 3 800
3 400
3 400 | 4 500
4 000
4 000 | | | 180 | 41 | 3 | 3 | 108 | _ | 291 000 | 330 000 | 3 400 | 4 000 | | | 180 | 60 | 3 | 3 | 108 | _ | 395 000 | 485 000 | 3 000 | 3 800 | | | 210 | 52 | 4 | 4 | 113 | 177 | 335 000 | 350 000 | 3 000 | 3 800 | | 90 | 140 | 24 | 1.5 | 1.1 | 103 | 127 | 88 000 | 114 000 | 4 500 | 5 600 | | | 160 | 30 | 2 | 2 | — | 143 | 152 000 | 178 000 | 4 000 | 4 800 | | | 160 | 30 | 2 | 2 | 107 | — | 182 000 | 217 000 | 4 000 | 4 800 | | | 160
190
190 | 40
43
43 | 2
3
3 | 2
3
3 | 107
—
115 | 165
— | 242 000
240 000
240 000 | 315 000
265 000
265 000 | 3 600
3 200
3 200 | 4 300
3 800
3 800 | | | 190 | 43 | 3 | 3 | 113.5 | — | 315 000 | 355 000 | 3 200 | 3 800 | | | 190 | 64 | 3 | 3 | 113.5 | — | 435 000 | 535 000 | 2 800 | 3 400 | | | 225 | 54 | 4 | 4 | 123.5 | 191.5 | 375 000 | 400 000 | 2 800 | 3 400 | | 95 | 145 | 24 | 1.5 | 1.1 | 108 | 132 | 90 500 | 120 000 | 4 300 | 5 300 | | | 170 | 32 | 2.1 | 2.1 | — | 151.5 | 166 000 | 196 000 | 3 800 | 4 500 | | | 170 | 32 | 2.1 | 2.1 | 112.5 | — | 220 000 | 265 000 | 3 800 | 4 500 | | | 170
200
200 | 43
45
45 | 2.1
3
3 | 2.1
3
3 | 112.5
—
121.5 | 173.5
— | 286 000
259 000
259 000 | 370 000
289 000
289 000 | 3 400
3 000
3 000 | 4 000
3 600
3 600 | | | 200 | 45 | 3 | 3 | 121.5 | | 335 000 | 385 000 | 3 000 | 3 600 | | | 200 | 67 | 3 | 3 | 121.5 | | 460 000 | 585 000 | 2 600 | 3 400 | | | 240 | 55 | 4 | 4 | 133.5 | 201.5 | 400 000 | 445 000 | 2 600 | 3 200 | ⁽²⁾ The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bea | ring Numbers(2) | | | | A | Abutmer | nt and F | illet Dime
m) | ensions | | | | Mass
(kg) | |----------------------------------|-------------------------------------|--------------------|-----------------------|-------------------|------------------------|-------------------|-------------------|-----------------------|-------------------|-----------------|---------------------------|----------------------|----------------------| | | (3)
NU NJ NUP | N NF | $d_{ m a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}$ (5)
max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | ${m \gamma}_{\rm a}$ max. | $ m \emph{r}_b$ max. | approx. | | NU1016
N 216
NU 216 EM | NU — NUP
— — —
NU NJ NUP | N —
N NF | 86.5
89
89 | 85
—
89 | 90
—
92 | 94
—
97 | _
104 | 118.5
—
131 | 120
131 | 115
128 | 1
2
2 | 1
2
2 | 0.969
1.47
1.7 | | NU2216 ET
N 316
NU 316 EM | NU NJ NUP | N NF | 89
91
91 | 89
—
91 | 92
—
98 | 97
—
105 | 104
—
114 | 131
—
159 | _
159
_ | _
150
_ | 2 2 2 | 2 2 2 | 1.96
3.85
4.45 | | NU2316 ET
NU 416 | NU NJ NUP
NU NJ — | N NF | 91
93 | 91
93 | 98
107 | 105
112 | 114
124 | 159
187 |
187 |
173 | 2
2.5 | 2
2.5 | 5.73
7.36 | | NU1017
N 217
NU 217 EM | NU — —
NU NJ NUP | N —
N NF | 91.5
94
94 | 90
—
94 | 95
—
98 | 99
—
104 | _
110 | 123.5
—
141 | 125
141
— | 120
137
— | 1
2
2 | 1
2
2 | 1.01
1.87
2.11 | | NU2217 ET
N 317
NU 317 | NU NJ NUP
 | N NF | 94
98
98 | 94
—
98 | 98
—
105 | 104
—
110 | 110
—
119 | 141
—
167 |
167
 | 159
— | 2
2.5
2.5 | 2
2.5
2.5 | 2.44
4.53
4.6 | | NU 317 EM
NU2317 ET
NU 417 | NU NJ NUP
NU NJ NUP
NU NJ — |

N NF | 98
98
101 | 98
98
101 | 105
105
110 | 110
110
115 | 119
119
128 | 167
167
194 | _
_
194 | _
_
180 | 2.5
2.5
3 | 2.5
2.5
3 | 5.26
6.77
9.56 | | NU1018
N 218
NU 218 EM | NU — NUP
— — —
NU NJ NUP | N —
N NF
— — | 98
99
99 | 96.5
—
99 | 101
—
104 | 106
—
109 | _
116 | 132
—
151 | 133.5
151
— | 129
146
— | 1.5
2
2 | 1
2
2 | 1.35
2.31
2.6 | | NU2218 ET
N 318
NU 318 | NU NJ NUP
NU NJ NUP | N NF | 99
103
103 |
99
—
103 | 104
—
112 | 109
—
117 | 116
—
127 | 151
—
177 |
177
 | 168
— | 2
2.5
2.5 | 2
2.5
2.5 | 3.11
5.31
5.38 | | NU 318 EM
NU2318 ET
NU 418 | NU NJ NUP
NU NJ NUP
NU NJ — |

N NF | 103
103
106 | 103
103
106 | 111
111
120 | 117
117
125 | 127
127
139 | 177
177
209 | _
209 | _
196 | 2.5
2.5
3 | 2.5
2.5
3 | 6.1
7.9
11.5 | | NU1019
N 219
NU 219 EM | NU NJ —
NU NJ NUP | N —
N NF
— — | 103
106
106 | 101.5
—
106 | 106
—
110 | 111
—
116 | _
123 | 137
—
159 | 138.5
159
— | 134
155
— | 1.5
2
2 | 1
2
2 | 1.41
2.79
3.17 | | NU2219 ET
N 319
NU 319 | NU NJ NUP
NU NJ NUP | N NF | 106
108
108 | 106
—
108 | 110
—
118 | 116
—
124 | 123
—
134 | 159
—
187 | _
187
_ | 177
— | 2
2.5
2.5 | 2
2.5
2.5 | 3.81
6.09
6.23 | | NU 319 EM
NU2319 ET
NU 419 | NU NJ NUP
NU NJ NUP
NU NJ NUP |
NF | 108
108
111 | 108
108
111 | 118
118
130 | 124
124
136 | 134
134
149 | 187
187
224 | _
224 |
206 | 2.5
2.5
3 | 2.5
2.5
3 | 7.13
9.21
13.6 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) $d_{ m b}$ (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 100 - 120 mm | | | Bou | ndary Dii
(mm | mensions | | | | ad Ratings | Limiting Տ լ
(min | | |-----|--------------------------|----------------------|--------------------|--------------------|--------------------------|---------------|--|--|----------------------------------|----------------------------------| | d | D | В | γ
min. | ${m r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 100 | 150 | 24 | 1.5 | 1.1 | 113 | 137 | 93 000 | 126 000 | 4 300 | 5 300 | | | 180 | 34 | 2.1 | 2.1 | — | 160 | 183 000 | 217 000 | 3 600 | 4 300 | | | 180 | 34 | 2.1 | 2.1 | 119 | — | 249 000 | 305 000 | 3 600 | 4 300 | | | 180 | 46 | 2.1 | 2.1 | 119 | — | 335 000 | 445 000 | 3 200 | 3 800 | | | 215 | 47 | 3 | 3 | — | 185.5 | 299 000 | 335 000 | 2 800 | 3 400 | | | 215 | 47 | 3 | 3 | 129.5 | — | 299 000 | 335 000 | 2 800 | 3 400 | | | 215 | 47 | 3 | 3 | 127.5 | _ | 380 000 | 425 000 | 2 800 | 3 400 | | | 215 | 73 | 3 | 3 | 127.5 | _ | 570 000 | 715 000 | 2 400 | 3 000 | | | 250 | 58 | 4 | 4 | 139 | 211 | 450 000 | 500 000 | 2 600 | 3 000 | | 105 | 160 | 26 | 2 | 1.1 | 119.5 | 145.5 | 109 000 | 149 000 | 4 000 | 4 800 | | | 190 | 36 | 2.1 | 2.1 | — | 168.8 | 201 000 | 241 000 | 3 400 | 4 000 | | | 190 | 36 | 2.1 | 2.1 | 125 | — | 262 000 | 310 000 | 3 400 | 4 000 | | | 225 | 49 | 3 | 3 | — | 195 | 340 000 | 390 000 | 2 600 | 3 200 | | | 225 | 49 | 3 | 3 | 133 | — | 425 000 | 480 000 | 2 600 | 3 200 | | | 260 | 60 | 4 | 4 | 144.5 | 220.5 | 495 000 | 555 000 | 2 400 | 3 000 | | 110 | 170 | 28 | 2 | 1.1 | 125 | 155 | 131 000 | 174 000 | 3 800 | 4 500 | | | 200 | 38 | 2.1 | 2.1 | — | 178.5 | 229 000 | 272 000 | 3 200 | 3 800 | | | 200 | 38 | 2.1 | 2.1 | 132.5 | — | 293 000 | 365 000 | 3 200 | 3 800 | | | 200
240
240
280 | 53
50
50
65 | 2.1
3
3
4 | 2.1
3
3
4 | 132.5
—
143
155 | 207
—
— | 385 000
380 000
450 000
550 000 | 515 000
435 000
525 000
620 000 | 2 800
2 600
2 600
2 200 | 3 400
3 000
3 000
2 800 | | 120 | 180 | 28 | 2 | 1.1 | 135 | 165 | 139 000 | 191 000 | 3 400 | 4 300 | | | 215 | 40 | 2.1 | 2.1 | — | 191.5 | 260 000 | 320 000 | 3 000 | 3 400 | | | 215 | 40 | 2.1 | 2.1 | 143.5 | — | 335 000 | 420 000 | 3 000 | 3 400 | | | 215 | 58 | 2.1 | 2.1 | 143.5 | | 450 000 | 620 000 | 2 600 | 3 200 | | | 260 | 55 | 3 | 3 | — | 226 | 450 000 | 510 000 | 2 200 | 2 800 | | | 260 | 55 | 3 | 3 | 154 | | 530 000 | 610 000 | 2 200 | 2 800 | | | 260 | 86 | 3 | 3 | 154 | | 795 000 | 1 030 000 | 2 000 | 2 600 | | | 310 | 72 | 5 | 5 | 170 | 260 | 675 000 | 770 000 | 2 000 | 2 400 | ⁽²⁾ The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Beari | ing Numbe | ers(2) | | | | | P | butmer | nt and Fi | illet Dime
m) | ensions | | | | Mass
(kg) | |---|----------------------|-----------------|-------------|-------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------|-----------------|------------------------|----------------------|------------------------------| | | NU NJ | NUP | Ν | NF | $d_{ m a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | ${\it r}_{\rm a}$ max. | $ m \emph{r}_b$ max. | approx. | | NU1020
N 220
NU 220 EM | NU NJ

NU NJ | NUP
—
NUP | N
N | NF | 108
111
111 | 106.5
—
111 | 111
—
116 | 116
—
122 | —
—
130 | 142
—
169 | 143.5
169
— | 139
163 | 1.5
2
2 | 1
2
2 | 1.47
3.36
3.81 | | NU2220 ET
N 320
NU 320 | NU NJ

NU NJ | NUP
—
NUP | _
N
_ | NF | 111
113
113 | 111
—
113 | 116
—
126 | 122
—
132 | 130
—
143 | 169
—
202 |
202
 | _
190
_ | 2
2.5
2.5 | 2
2.5
2.5 | 4.69
7.59
7.69 | | NU 320 EM
NU2320 ET
NU 420 | NU NJ
NU NJ | NUP
NUP | _
_
N | _
_
NF | 113
113
116 | 113
113
116 | 124
124
135 | 132
132
141 | 143
143
156 | 202
202
234 |

234 | _
_
215 | 2.5
2.5
3 | 2.5
2.5
3 | 8.63
11.8
15.5 | | NU1021
N 221
NU 221 EM | NU —
— —
NU NJ | _
NUP | N
N | NF
NF | 114
116
116 | 111.5
—
116 | 118
—
121 | 122
—
129 | _
_
137 | 151
—
179 | 153.5
179
— | 147
172
— | 2
2
2 | 1
2
2 | 1.83
4.0
4.58 | | N 321
NU 321 EM
NU 421 | U NJ | NUP | N
-
N | NF
—
NF | 118
118
121 | —
118
121 | —
131
141 | —
137
147 | —
149
162 | —
212
244 | 212
—
244 | 199
—
225 | 2.5
2.5
3 | 2.5
2.5
3 | 8.69
9.84
17.3 | | NU1022
N 222
NU 222 EM | NU NJ

NU NJ | _
NUP | N
N | NF
NF | 119
121
121 | 116.5
—
121 | 123
—
129 | 128
—
135 | _
_
144 | 161
—
189 | 163.5
189
— | 157
182
— | 2
2
2 | 1
2
2 | 2.27
4.64
5.37 | | NU2222 EM
N 322
NU 322 EM
NU 422 | NU NJ

NU NJ | NUP
NUP | N
— | _
NF
_
_ | 121
123
123
126 | 121
—
123
126 | 129
—
139
151 | 135
—
145
157 | 144
—
158
173 | 189
—
227
264 |
227

 | 211
— | 2
2.5
2.5
3 | 2
2.5
2.5
3 | 7.65
10.3
11.8
22.1 | | NU1024
N 224
NU 224 EM | NU NJ
NU NJ | NUP
—
NUP | N
N | NF | 129
131
131 | 126.5
—
131 | 133
—
140 | 138
—
146 | —
156 | 171
—
204 | 173.5
204
— | 167
196
— | 2
2
2 | 1
2
2 | 2.43
5.63
6.43 | | NU2224 EM
N 324
NU 324 EM | NU NJ
NU NJ | NUP
—
NUP | _
N
_ | NF | 131
133
133 | 131
—
133 | 140
—
150 | 146
—
156 | 156
—
171 | 204
—
247 |
247
 | 230
— | 2
2.5
2.5 | 2
2.5
2.5 | 9.51
12.9
15 | | NU2324 EM
NU 424 | NU NJ | NUP
NUP | _
N | _ | 133
140 | 133
140 | 150
166 | 156
172 | 171
190 | 247
290 | —
290 |
266 | 2.5
4 | 2.5
4 | 25
30.2 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 130 - 160 mm | | | Bou | ndary Di
(mm | mensions | | | | ad Ratings | Limiting Տ լ
(min | | |-----|--------------------------|-----------------------|------------------|---------------------|------------------------|-------------------|--|--|----------------------------------|----------------------------------| | d | D | B | γ
min. | ${m \gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 130 | 200
230
230 | 33
40
40 | 2
3
3 | 1.1
3
3 | 148
—
153.5 | 182
204
— | 172 000
270 000
365 000 | 238 000
340 000
455 000 | 3 200
2 600
2 600 | 3 800
3 200
3 200 | | | 230
280
280 | 64
58
58 | 3
4
4 | 3
4
4 | 153.5
—
167 | 243
— | 530 000
500 000
615 000 | 735 000
570 000
735 000 | 2 400
2 200
2 200 | 3 000
2 600
2 600 | | | 280
340 | 93
78 | 4
5 | 4
5 | 167
185 | —
285 | 920 000
825 000 | 1 230 000
955 000 | 1 900
1 800 | 2 400
2 200 | | 140 | 210
250
250 | 33
42
42 | 2
3
3 | 1.1
3
3 | 158
—
169 | 192
221
— | 176 000
297 000
395 000 | 250 000
375 000
515 000 | 3 000
2 400
2 400 | 3 600
3 000
3 000 | | | 250
300
300 | 68
62
62 | 3
4
4 | 3
4
4 | 169
—
180 | 260
— | 550 000
550 000
665 000 | 790 000
640 000
795 000 | 2 200
2 000
2 000 | 2 800
2 400
2 400 | | | 300
360 | 102
82 | 4
5 | 4
5
| 180
198 | 302 | 1 020 000
875 000 | 1 380 000
1 020 000 | 1 700
1 700 | 2 200
2 000 | | 150 | 225
270
270 | 35
45
45 | 2.1
3
3 | 1.5
3
3 | 169.5
—
182 | 205.5
238
— | 202 000
360 000
450 000 | 294 000
465 000
595 000 | 2 800
2 200
2 200 | 3 400
2 800
2 800 | | | 270
320
320 | 73
65
65 | 3
4
4 | 3
4
4 | 182
—
193 | 277
— | 635 000
665 000
760 000 | 930 000
805 000
920 000 | 2 000
1 800
1 800 | 2 600
2 200
2 200 | | | 320
380 | 108
85 | 4
5 | 4
5 | 193
213 | _ | 1 160 000
930 000 | 1 600 000
1 120 000 | 1 600
1 600 | 2 000
2 000 | | 160 | 240
290
290 | 38
48
48 | 2.1
3
3 | 1.5
3
3 | 180
—
195 | 220
255
— | 238 000
430 000
500 000 | 340 000
570 000
665 000 | 2 600
2 200
2 200 | 3 200
2 600
2 600 | | | 290
340
340
340 | 80
68
68
114 | 3
4
4
4 | 3
4
4
4 | 193
—
204
204 | 292
— | 810 000
700 000
860 000
1 310 000 | 1 190 000
875 000
1 050 000
1 820 000 | 1 900
1 700
1 700
1 500 | 2 400
2 000
2 000
1 900 | ⁽²⁾ The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bearing Numbers ⁽²⁾ | | | | A | Abutmer | nt and F
(m | illet Dim
m) | ensions | | | | Mass
(kg) | |--|--------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------|-------------------|-----------------|-----------------------|----------------------|------------------------------| | NU NJ NUP | N NF | $d_{ m a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\mathrm{a}}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $\gamma_{\rm a}$ max. | $ m \emph{r}_b$ max. | approx. | | NU1026 NU NJ —
N 226 — — —
NU 226 EM NU NJ NUP | N NF
N NF | 139
143
143 | 136.5
—
143 | 146
—
150 | 151
—
158 | —
—
168 | 191
—
217 | 193.5
217
— | 184
208
— | 2
2.5
2.5 | 1
2.5
2.5 | 3.66
6.48
8.03 | | NU2226 EM NU NJ NUP
N 326 — — —
NU326EM NU NJ NUP |
N NF | 143
146
146 | 143
—
146 | 150
—
163 | 158
—
169 | 168
—
184 | 217
—
264 |
264
 |
247.5
 | 2.5
3
3 | 2.5
3
3 | 9.44
17.7
18.7 | | NU2326EM NU NJ NUP
NU 426 NU NJ — | NF | 146
150 | 146
150 | 163
180 | 169
187 | 184
208 | 264
320 |
320 |
291 | 3
4 | 3
4 | 30
39.6 | | NU1028 NU NJ NUP
N 228 — — —
NU228EM NU NJ NUP | N —
N NF
— — | 149
153
153 | 146.5
—
153 | 156
—
165 | 161
—
171 | _
_
182 | 201
—
237 | 203.5
237
— | 194
225
— | 2
2.5
2.5 | 1
2.5
2.5 | 3.87
8.08
9.38 | | NU2228EM NU NJ NUP
N 328 — — —
NU328EM NU NJ NUP | N NF | 153
156
156 | 153
—
156 | 165
—
176 | 171
—
182 | 182
—
198 | 237
—
284 |
284
 |
266
 | 2.5
3
3 | 2.5
3
3 | 15.2
21.7
22.8 | | NU2328EM NU NJ NUP
NU 428 NU NJ — | | 156
160 | 156
160 | 176
193 | 182
200 | 198
222 | 284
340 |
340 | 308 | 3
4 | 3
4 | 37.7
46.4 | | NU1030 NU NJ —
N 230 — — —
NU230EM NU NJ NUP | N NF
N NF | 161
163
163 | 158
—
163 | 167
—
177 | 173
—
184 | —
—
196 | 214
—
257 | 217
257
— | 208
242
— | 2
2.5
2.5 | 1.5
2.5
2.5 | 4.77
10.4
11.9 | | NU2230EM NU NJ NUP
N 330 — — —
NU330EM NU NJ NUP |
N NF
 | 163
166
166 | 163
—
166 | 177
—
188 | 184
—
195 | 196
—
213 | 257
—
304 | 304
— | 283
— | 2.5
3
3 | 2.5
3
3 | 19.3
25.8
27.1 | | NU2330EM NU NJ NUP
NU 430 NU NJ — | = = | 166
170 | 166
170 | 188
208 | 195
216 | 213
237 | 304
360 | _ | _ | 3
4 | 3
4 | 45.1
55.8 | | NU1032 NU NJ —
N 232 — — —
NU232EM NU NJ NUP | N NF
N NF | 171
173
173 | 168
—
173 | 178
—
190 | 184
—
197 |
210 | 229
—
277 | 232
277
— | 222
261
— | 2
2.5
2.5 | 1.5
2.5
2.5 | 5.81
14.1
14.7 | | NU2232EM NU NJ NUP
N 332 — — —
NU332EM NU NJ NUP
NU2332EM NU NJ NUP |
N _
 | 173
176
176
176 | 173
—
176
176 | 188
—
199
199 | 197
—
211
211 | 210
—
228
228 | 277
—
324
324 |
324

 |
298

 | 2.5
3
3
3 | 2.5
3
3
3 | 24.5
30.8
32.1
53.9 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 170 - 220 mm | | | Bou | ndary Dii
(mm | mensions | | | | nd Ratings | Limiting S | • | |-----|--------------------------|-----------------------|------------------|---------------------|------------------------|---------------|--|--|----------------------------------|----------------------------------| | d | D | В | γ
min. | ${m \gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 170 | 260 | 42 | 2.1 | 2.1 | 193 | 237 | 287 000 | 415 000 | 2 400 | 2 800 | | | 310 | 52 | 4 | 4 | — | 272 | 475 000 | 635 000 | 2 000 | 2 400 | | | 310 | 52 | 4 | 4 | 207 | — | 605 000 | 800 000 | 2 000 | 2 400 | | | 310
360
360
360 | 86
72
72
120 | 4
4
4 | 4
4
4 | 205
—
218
216 | 310 | 925 000
795 000
930 000
1 490 000 | 1 330 000
1 010 000
1 150 000
2 070 000 | 1 800
1 600
1 600
1 400 | 2 200
2 000
2 000
1 800 | | 180 | 280 | 46 | 2.1 | 2.1 | 205 | 255 | 355 000 | 510 000 | 2 200 | 2 600 | | | 320 | 52 | 4 | 4 | — | 282 | 495 000 | 675 000 | 1 900 | 2 200 | | | 320 | 52 | 4 | 4 | 217 | — | 625 000 | 850 000 | 1 900 | 2 200 | | | 320
380
380
380 | 86
75
75
126 | 4
4
4 | 4
4
4 | 215
—
231
227 | 328
—
— | 1 010 000
905 000
985 000
1 560 000 | 1 510 000
1 150 000
1 230 000
2 220 000 | 1 700
1 500
1 500
1 300 | 2 000
1 800
1 800
1 700 | | 190 | 290 | 46 | 2.1 | 2.1 | 215 | 265 | 365 000 | 535 000 | 2 000 | 2 600 | | | 340 | 55 | 4 | 4 | — | 299 | 555 000 | 770 000 | 1 800 | 2 200 | | | 340 | 55 | 4 | 4 | 230 | — | 695 000 | 955 000 | 1 800 | 2 200 | | | 340
400
400
400 | 92
78
78
132 | 4
5
5
5 | 4
5
5
5 | 228
—
245
240 | 345
— | 1 100 000
975 000
1 060 000
1 770 000 | 1 670 000
1 260 000
1 340 000
2 520 000 | 1 600
1 400
1 400
1 300 | 2 000
1 700
1 700
1 600 | | 200 | 310 | 51 | 2.1 | 2.1 | 229 | 281 | 390 000 | 580 000 | 2 000 | 2 400 | | | 360 | 58 | 4 | 4 | — | 316 | 620 000 | 865 000 | 1 700 | 2 000 | | | 360 | 58 | 4 | 4 | 243 | — | 765 000 | 1 060 000 | 1 700 | 2 000 | | | 360
420
420
420 | 98
80
80
138 | 4
5
5
5 | 4
5
5
5 | 241
—
258
253 | 360
—
— | 1 220 000
975 000
1 140 000
1 910 000 | 1 870 000
1 270 000
1 450 000
2 760 000 | 1 500
1 300
1 300
1 200 | 1 800
1 600
1 600
1 500 | | 220 | 340 | 56 | 3 | 3 | 250 | 310 | 500 000 | 750 000 | 1 800 | 2 200 | | | 400 | 65 | 4 | 4 | — | 350 | 760 000 | 1 080 000 | 1 500 | 1 800 | | | 400 | 65 | 4 | 4 | 270 | — | 760 000 | 1 080 000 | 1 500 | 1 800 | | | 400 | 108 | 4 | 4 | 270 | — | 1 140 000 | 1 810 000 | 1 300 | 1 600 | | | 460 | 88 | 5 | 5 | — | 396 | 1 190 000 | 1 570 000 | 1 200 | 1 500 | | | 460 | 88 | 5 | 5 | 284 | — | 1 190 000 | 1 570 000 | 1 200 | 1 500 | | | NU | | | NJ | | NUP | IV | | INF | | |-----|--------------------------|-----------------------|------------------|------------------|------------------------|-----------------|--|--|----------------------------------|----------------------------------| | | | Bou | ndary Di
(mm | mensions
1) | | | | ad Ratings
N) | Limiting S | • | | d | D | B | γ
min. | ${m r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 170 | 260
310
310 | 42
52
52 | 2.1
4
4 | 2.1
4
4 | 193
—
207 | 237
272
— | 287 000
475 000
605 000 | 415 000
635 000
800 000 | 2 400
2 000
2 000 | 2 800
2 400
2 400 | | | 310
360
360
360 | 86
72
72
120 | 4
4
4 | 4
4
4
4 | 205
—
218
216 | 310 | 925 000
795 000
930 000
1 490 000 | 1 330 000
1 010 000
1 150 000
2 070 000 | 1 800
1 600
1 600
1 400 | 2 200
2 000
2 000
1 800 | | 180 | 280
320
320 | 46
52
52 | 2.1
4
4 | 2.1
4
4 | 205
—
217 | 255
282
— | 355 000
495 000
625 000 | 510 000
675 000
850 000 | 2 200
1 900
1 900 | 2 600
2 200
2 200 | | | 320
380
380
380 | 86
75
75
126 | 4
4
4 | 4
4
4 | 215
—
231
227 | 328
—
— | 1 010 000
905 000
985 000
1 560 000 | 1 510 000
1 150 000
1 230 000
2 220 000 | 1 700
1 500
1 500
1 300 | 2 000
1 800
1 800
1 700 | | 190 | 290
340
340 | 46
55
55 | 2.1
4
4 | 2.1
4
4 | 215
—
230 | 265
299
— | 365 000
555 000
695 000 | 535 000
770 000
955 000 | 2 000
1 800
1 800 | 2 600
2
200
2 200 | | | 340
400
400
400 | 92
78
78
132 | 4
5
5
5 | 4
5
5
5 | 228
—
245
240 | 345
— | 1 100 000
975 000
1 060 000
1 770 000 | 1 670 000
1 260 000
1 340 000
2 520 000 | 1 600
1 400
1 400
1 300 | 2 000
1 700
1 700
1 600 | | 200 | 310
360
360 | 51
58
58 | 2.1
4
4 | 2.1
4
4 | 229
—
243 | 281
316
— | 390 000
620 000
765 000 | 580 000
865 000
1 060 000 | 2 000
1 700
1 700 | 2 400
2 000
2 000 | | | 360
420
420
420 | 98
80
80
138 | 4
5
5
5 | 4
5
5
5 | 241
—
258
253 | 360
— | 1 220 000
975 000
1 140 000
1 910 000 | 1 870 000
1 270 000
1 450 000
2 760 000 | 1 500
1 300
1 300
1 200 | 1 800
1 600
1 600
1 500 | | 220 | 340
400
400 | 56
65
65 | 3
4
4 | 3
4
4 | 250
—
270 | 310
350
— | 500 000
760 000
760 000 | 750 000
1 080 000
1 080 000 | 1 800
1 500
1 500 | 2 200
1 800
1 800 | | | 400
460 | 108
88 | 4
5 | 4
5 | 270
— |
396 | 1 140 000
1 190 000 | 1 810 000
1 570 000 | 1 300
1 200 | 1 600
1 500 | | Bearing Numbers | Abutment and Fillet Dimensions
(mm) | Mass
(kg) | |---|---|------------------------------| | (1)
NU NJ NUP N NF | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | approx. | | NU1034 NU NJ — N —
N 234 — — N NF
NU234EM NU NJ NUP — — | | 7.91
17.4
18.3 | | NU2234EM NU NJ NUP N 334 NU NJ NUP NU334EM NU NJ NUP NU2334EM NU NJ NUP | 186 — — — — 344 316 3 3 186 186 213 223 241 344 — — 3 3 | 29.9
36.6
37.9
63.4 | | NU1036 NU NJ — N NF
N 236 — — N NF
NU236EM NU NJ NUP — — | 196 — — — — 304 288 3 3 | 10.2
18.1
19 | | NU2236EM NU NJ NUP — — N 336 — — N NF NU336EM NU NJ NUP — — NU2336EM NU NJ NUP — — | 196 — — — — 364 335 3 3 196 196 226 235 255 364 — — 3 3 | 31.4
42.6
44
74.6 | | NU1038 NU NJ — N —
N 238 — — N NF
NU238EM NU NJ NUP — — | 206 324 305 3 3 | 10.7
22
23 | | NU2238EM NU NJ NUP — — N 338 — — N — N — NU338EM NU NJ NUP — — NU2338EM NU NJ NUP — — | 210 — — — — — 380 352 4 4
210 210 240 248 268 380 — — 4 4 | 38.3
48.7
50.6
86.2 | | NU1040 NU NJ — N NF
N 240 — — N NF
NU240EM NU NJ NUP — — | 216 — — — — 344 323 3 3 | 14
26.2
27.4 | | NU2240EM NU NJ NUP — — N 340 — — N NF NU340EM NU NJ NUP — — NU2340EM NU NJ NUP — — | 220 — — — — — 400 367 4 4
220 220 252 263 283 400 — — 4 4 | 46.1
55.3
57.1
99.3 | | NU1044 NU NJ — N —
N 244 — — N NF
NU 244 NU NJ NUP — — | 236 384 357 3 3 | 18.2
37
37.3 | | NU2244 NU — — — — N 344 — — N — NU 344 NU NJ — — — | 240 — — — — 440 403 4 4 | 61.8
72.8
74.6 | Notes (1) When L-shaped thrust collars (Refer to page **B105**) are used, the bearings become the NH Type. B 100 B 101 ⁽²⁾ If axial loads are applied, increase d_a and reduce D_a from the values listed above. ⁽³⁾ $d_{ m b}$ (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 240 - 500 mm | | | Bou | ndary Di
(mm | mensions
n) | | | | ad Ratings
N) | Limiting Speeds
(min ⁻¹) | | |-----|-------------------|-----------------|------------------|---------------------|-----------------|-----------------|-------------------------------------|-------------------------------------|---|-------------------------| | d | D | В | γ
min. | ${m \gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 240 | 360
440
440 | 56
72
72 | 3
4
4 | 3
4
4 | 270
—
295 | 330
385
— | 530 000
935 000
935 000 | 820 000
1 340 000
1 340 000 | 1 600
1 300
1 300 | 2 000
1 600
1 600 | | | 440
500
500 | 120
95
95 | 4
5
5 | 4
5
5 | 295
—
310 | 430
— | 1 440 000
1 360 000
1 360 000 | 2 320 000
1 820 000
1 820 000 | 1 200
1 100
1 100 | 1 500
1 300
1 300 | | 260 | 400
480
480 | 65
80
80 | 4
5
5 | 4
5
5 | 296
—
320 | 364
420
— | 645 000
1 100 000
1 100 000 | 1 000 000
1 580 000
1 580 000 | 1 500
1 200
1 200 | 1 800
1 500
1 500 | | | 480
540 | 130
102 | 5
6 | 5
6 | 320
336 | _ | 1 710 000
1 540 000 | 2 770 000
2 090 000 | 1 100
1 000 | 1 300
1 200 | | 280 | 420
500
500 | 65
80
80 | 4
5
5 | 4
5
5 | 316
—
340 | 384
440
— | 660 000
1 140 000
1 140 000 | 1 050 000
1 680 000
1 680 000 | 1 400
1 100
1 100 | 1 700
1 400
1 400 | | 300 | 460
540 | 74
85 | 4
5 | 4
5 | 340
364 | 420
— | 885 000
1 400 000 | 1 400 000
2 070 000 | 1 300
1 100 | 1 500
1 300 | | 320 | 480
580
580 | 74
92
92 | 4
5
5 | 4
5
5 | 360
—
390 | 440
510
— | 905 000
1 540 000
1 540 000 | 1 470 000
2 270 000
2 270 000 | 1 200
950
950 | 1 400
1 200
1 200 | | 340 | 520 | 82 | 5 | 5 | 385 | 475 | 1 080 000 | 1 740 000 | 1 100 | 1 300 | | 360 | 540 | 82 | 5 | 5 | 405 | 495 | 1 110 000 | 1 830 000 | 1 000 | 1 300 | | 380 | 560 | 82 | 5 | 5 | 425 | _ | 1 140 000 | 1 910 000 | 1 000 | 1 200 | | 400 | 600 | 90 | 5 | 5 | 450 | 550 | 1 360 000 | 2 280 000 | 900 | 1 100 | | 420 | 620 | 90 | 5 | 5 | 470 | 570 | 1 390 000 | 2 380 000 | 850 | 1 100 | | 440 | 650 | 94 | 6 | 6 | 493 | _ | 1 470 000 | 2 530 000 | 800 | 1 000 | | 460 | 680 | 100 | 6 | 6 | 516 | 624 | 1 580 000 | 2 740 000 | 750 | 950 | | 480 | 700 | 100 | 6 | 6 | 536 | 644 | 1 620 000 | 2 860 000 | 750 | 900 | | 500 | 720 | 100 | 6 | 6 | 556 | 664 | 1 660 000 | 2 970 000 | 710 | 850 | ⁽²⁾ If axial loads are applied, increase d_a and reduce D_a from the values listed above. | Bearing Numbers | Abutment and Fillet Dimensions (mm) | Mass
(kg) | |--|--|----------------------| | NU NJ NUP N NF | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | approx. | | NU1048 NU NJ — N —
N 248 — — N NF
NU 248 NU NJ NUP — — | 256 — — — — 424 392 3 3 | 19.5
49.6
50.4 | | NU2248 NU — — — —
N 348 — — N —
NU 348 NU NJ — — | 260 — — — — 480 438 4 4 9 | 84.9
92.3
94.6 | | NU1052 NU NJ — N NF
N 252 — — N —
NU 252 NU NJ — — | 280 — — — — 460 428 4 4 6 | 29.1
66.2
67.1 | | NU2252 NU — NUP — —
NU 352 NU NJ — — — | | 11
18 | | NU1056 NU NJ NUP N NF
N 256 — — N NF
NU 256 NU NJ — — | 300 — — — — 480 448 4 4 6 | 30.8
69.6
70.7 | | NU1060 NU NJ — N NF
NU 260 NU NJ — — — | | 43.7
89.2 | | NU1064 NU — — N NF
N 264 — — N —
NU 264 NU NJ — — | 340 — — — — 560 519 4 4 1 | 46.1
10
12 | | NU1068 NU NJ — N NF | 360 360 381 390 — 500 500 479 4 4 | 61.8 | | NU1072 NU — N NF | | 64.6 | | NU1076 NU — — — | | 67.5 | | NU1080 NU — NUP N — | | 88.2 | | NU1084 NU — — N —
NU1088 NU — — — | | 91.7
05 | | NU1088 NO — — — — NU1092 NU — NUP N — | | 23 | | NU1096 NU NJ — N — | | 27 | | NU10/500 NU — N — | | 31 | ⁽³⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. L-Shaped Thrust Collars Bore Diameter 20 – 85 mm Bore Diameter 90 - 320 mm L-Shaped Thrust Collar | | Bounda | ry Dim | ensions | | | Mass
(kg) | |----|--------------------|--------|--------------|------------|-----------------------------|----------------| | d | d_1 | B_1 | B_2 | r_1 | Bearing
Numbers | (Ng) | | и | \boldsymbol{u}_1 | D_1 | D_2 | min. | | approx. | | 20 | 30
29.8 | 3 | 6.75
5.5 | 0.6 | HJ 204
HJ 204 E | 0.012
0.011 | | | 30 | 3 | 7.5 | 0.6 | HJ 2204 | 0.012 | | | 29.8
31.7 | 3
4 | 6.5
7.5 | 0.6 | HJ 2204 E
HJ 304 | 0.012
0.017 | | | 31.4 | 4 | 6.5 | 0.6 | HJ 304 E | 0.017 | | | 31.8
31.4 | 4
4 | 8.5
7.5 | 0.6
0.6 | HJ 2304
HJ 2304 E | 0.017
0.018 | | 25 | 34.8 | 3 | 6 | 0.6 | HJ 205 E | 0.014 | | | 34.8
38.2 | 3
4 | 6.5
7 | 0.6
1.1 | HJ 2205 E
HJ 305 E | 0.014
0.025 | | | 38.2
43.6 | 4
6 | 8
10.5 | 1.1
1.5 | HJ 2305 E
HJ 405 | 0.026
0.057 | | 30 | 43.0 | 4 | 7 | 0.6 | ну 405
НЈ 206 Е | 0.037 | | | 41.4
45.1 | 4
5 | 7.5
8.5 | 0.6
1.1 | HJ 2206 E
HJ 306 E | 0.025
0.042 | | | 45.1
50.5 | 5
7 | 9.5
11.5 | 1.1
1.5 | HJ 2306 E
HJ 406 | 0.043
0.080 | | 35 | 48.2 | 4 | 7 | 0.6 | HJ 207 E | 0.033 | | | 48.2
51.1 | 4
6 | 8.5
9.5 | 0.6
1.1 | HJ 2207 E
HJ 307 E | 0.035
0.060 | | | 51.1
59 | 6
8 | 11
13 | 1.1
1.5 | HJ 2307 E
HJ 407 | 0.062
0.12 | | 40 | 54.1
54.1 | 5
5 | 8.5
9 | 1.1
1.1 | HJ 208 E
HJ 2208 E | 0.049
0.050 | | | 57.6 | 7 | 11 | 1.5 | HJ 308 E | 0.088 | | | 57.7
64.8 | 7
8 | 12.5
13 | 1.5
2 | HJ 2308 E
HJ 408 | 0.091
0.14 | | 45 | 59.1 | 5 | 8.5 | 1.1 | HJ 209 E | 0.055 | | | 59.1
64.5 | 5
7 | 9
11.5 | 1.1
1.5 | HJ 2209 E
HJ 309 E | 0.055
0.11 | | | 64.5
71.7 | 7
8 | 13
13.5 | 1.5
2 | HJ 2309 E
HJ 409 | 0.113
0.175 | | 50 | 64.1 | 5 | 9 | 1.1 | HJ 210 E | 0.061 | | | 64.1
71.4 | 5
8 | 9
13 | 1.1
2 | HJ 2210 E
HJ 310 E | 0.061
0.151 | | | 71.4
78.8 | 8
9 | 14.5
14.5 | 2
2.1 | HJ 2310 E
HJ 410 | 0.155
0.23 | | | Bounda | ı ry Dim
(mm) | ensions | | Bearing | Mass
(kg) | |----|--------|-------------------------|---------|----------------|---------------|--------------| | d | d_1 | B_1 | B_2 | $ eals_1$ min. | Numbers | approx. | | 55 | 70.9 | 6 | 9.5 | 1.1 | HJ 211 E | 0.087 | | | 70.9 | 6 | 10 | 1.1 | HJ 2211 E | 0.088 | | | 77.6 | 9 | 14 | 2
| HJ 311 E | 0.195 | | | 77.6 | 9 | 15.5 | 2 | HJ 2311 E | 0.20 | | | 85.2 | 10 | 16.5 | 2.1 | HJ 411 | 0.29 | | 60 | 77.7 | 6 | 10 | 1.5 | HJ 212 E | 0.108 | | | 77.7 | 6 | 10 | 1.5 | HJ 2212 E | 0.108 | | | 84.5 | 9 | 14.5 | 2.1 | HJ 312 E | 0.231 | | | 84.5 | 9 | 16 | 2.1 | HJ 2312 E | 0.237 | | | 91.8 | 10 | 16.5 | 2.1 | HJ 412 | 0.34 | | 65 | 84.5 | 6 | 10 | 1.5 | HJ 213 E | 0.129 | | | 84.5 | 6 | 10.5 | 1.5 | HJ 2213 E | 0.131 | | | 90.6 | 10 | 15.5 | 2.1 | HJ 313 E | 0.288 | | | 90.6 | 10 | 18 | 2.1 | HJ 2313 E | 0.298 | | | 98.5 | 11 | 18 | 2.1 | HJ 413 | 0.42 | | 70 | 89.5 | 7 | 11 | 1.5 | HJ 214 E | 0.157 | | | 89.5 | 7 | 11.5 | 1.5 | HJ 2214 E | 0.158 | | | 97.5 | 10 | 15.5 | 2.1 | HJ 314 E | 0.33 | | | 97.5 | 10 | 18.5 | 2.1 | HJ 2314 E | 0.345 | | | 110.5 | 12 | 20 | 3 | HJ 414 | 0.605 | | 75 | 94.5 | 7 | 11 | 1.5 | HJ 215 E | 0.166 | | | 94.5 | 7 | 11.5 | 1.5 | HJ 2215 E | 0.167 | | | 104.2 | 11 | 16.5 | 2.1 | HJ 315 E | 0.41 | | | 104.2 | 11 | 19.5 | 2.1 | HJ 2315 E | 0.43 | | | 116 | 13 | 21.5 | 3 | HJ 415 | 0.71 | | 80 | 101.6 | 8 | 12.5 | 2 | HJ 216 E | 0.222 | | | 101.6 | 8 | 12.5 | 2 | HJ 2216 E | 0.222 | | | 110.6 | 11 | 17 | 2.1 | HJ 316 E | 0.46 | | | 110.6 | 11 | 20 | 2.1 | HJ 2316 E | 0.48 | | | 122 | 13 | 22 | 3 | HJ 416 | 0.78 | | 85 | 107.6 | 8 | 12.5 | 2 | HJ 217 E | 0.25 | | | 107.6 | 8 | 13 | 2 | HJ 2217 E | 0.252 | | | 117.9 | 12 | 18.5 | 3 | HJ 317 E | 0.575 | | | 117.9 | 12 | 22 | 3 | HJ 2317 E | 0.595 | | | 126 | 14 | 24 | 4 | HJ 417 | 0.88 | | | Bounda | ı ry Dim
(mm) | ensions | | Bearing | Mass
(kg) | |-----|--------|-------------------------|---------|-----------------------------------|---------------|--------------| | d | d_1 | B_1 | B_2 | ${\pmb{\gamma}}_1 \\ \text{min.}$ | Numbers | approx. | | 90 | 114.3 | 9 | 14 | 2 | HJ 218 E | 0.32 | | | 114.3 | 9 | 15 | 2 | HJ 2218 E | 0.325 | | | 124.2 | 12 | 18.5 | 3 | HJ 318 E | 0.63 | | | 124.2 | 12 | 22 | 3 | HJ 2318 E | 0.66 | | | 137 | 14 | 24 | 4 | HJ 418 | 1.05 | | 95 | 120.6 | 9 | 14 | 2.1 | HJ 219 E | 0.355 | | | 120.6 | 9 | 15.5 | 2.1 | HJ 2219 E | 0.365 | | | 132.2 | 13 | 20.5 | 3 | HJ 319 E | 0.785 | | | 132.2 | 13 | 24.5 | 3 | HJ 2319 E | 0.815 | | | 147 | 15 | 25.5 | 4 | HJ 419 | 1.3 | | 100 | 127.5 | 10 | 15 | 2.1 | HJ 220 E | 0.44 | | | 127.5 | 10 | 16 | 2.1 | HJ 2220 E | 0.45 | | | 139.6 | 13 | 20.5 | 3 | HJ 320 E | 0.89 | | | 139.6 | 13 | 23.5 | 3 | HJ 2320 E | 0.92 | | | 153.5 | 16 | 27 | 4 | HJ 420 | 1.5 | | 105 | 145 | 13 | 20.5 | 3 | HJ 321 E | 0.97 | | | 159.5 | 16 | 27 | 4 | HJ 421 | 1.65 | | 110 | 141.7 | 11 | 17 | 2.1 | HJ 222 E | 0.62 | | | 141.7 | 11 | 19.5 | 2.1 | HJ 2222 E | 0.645 | | | 155.8 | 14 | 22 | 3 | HJ 322 E | 1.21 | | | 155.8 | 14 | 26.5 | 3 | HJ 2322 E | 1.27 | | | 171 | 17 | 29.5 | 4 | HJ 422 | 2.1 | | 120 | 153.4 | 11 | 17 | 2.1 | HJ 224 E | 0.71 | | | 153.4 | 11 | 20 | 2.1 | HJ 2224 E | 0.745 | | | 168.6 | 14 | 22.5 | 3 | HJ 324 E | 1.41 | | | 168.6 | 14 | 26 | 3 | HJ 2324 E | 1.46 | | | 188 | 17 | 30.5 | 5 | HJ 424 | 2.6 | | 130 | 164.2 | 11 | 17 | 3 | HJ 226 E | 0.79 | | | 164.2 | 11 | 21 | 3 | HJ 2226 E | 0.84 | | | 182.3 | 14 | 23 | 4 | HJ 326 E | 1.65 | | | 182.3 | 14 | 28 | 4 | HJ 2326 E | 1.73 | | | 205 | 18 | 32 | 5 | HJ 426 | 3.3 | | 140 | 180 | 11 | 18 | 3 | HJ 228 E | 0.99 | | | 180 | 11 | 23 | 3 | HJ 2228 E | 1.07 | | | 196 | 15 | 25 | 4 | HJ 328 E | 2.04 | | | 196 | 15 | 31 | 4 | HJ 2328 E | 2.14 | | | 219 | 18 | 33 | 5 | HJ 428 | 3.75 | | | Bounda | ry Dimo
(mm) | ensions | | Bearing | Mass
(kg) | |-----|--------|-----------------|---------|----------------------|------------------|--------------| | d | d_1 | B_1 | B_2 | $ m \emph{Y}_1$ min. | Numbers | approx. | | 150 | 193.7 | 12 | 19.5 | 3 | HJ 230 E | 1.26 | | | 193.7 | 12 | 24.5 | 3 | HJ 2230 E | 1.35 | | | 210 | 15 | 25 | 4 | HJ 330 E | 2.35 | | | 210 | 15 | 31.5 | 4 | HJ 2330 E | 2.48 | | | 234 | 20 | 36.5 | 5 | HJ 430 | 4.7 | | 160 | 207.3 | 12 | 20 | 3 | HJ 232 E | 1.48 | | | 206.1 | 12 | 24.5 | 3 | HJ 2232 E | 1.55 | | | 222 | 15 | 25 | 4 | HJ 332 E | 2.59 | | | 222.1 | 15 | 32 | 4 | HJ 2332 E | 2.76 | | 170 | 220.8 | 12 | 20 | 4 | HJ 234 E | 1.7 | | | 219.5 | 12 | 24 | 4 | HJ 2234 E | 1.79 | | | 238 | 16 | 33.5 | 4 | HJ 2334 E | 3.25 | | 180 | 230.8 | 12 | 20 | 4 | HJ 236 E | 1.79 | | | 229.5 | 12 | 24 | 4 | HJ 2236 E | 1.88 | | | 252 | 17 | 35 | 4 | HJ 2336 E | 3.85 | | 190 | 244.5 | 13 | 21.5 | 4 | HJ 238 E | 2.19 | | | 243.2 | 13 | 26.5 | 4 | HJ 2238 E | 2.31 | | | 260.6 | 18 | 36.5 | 5 | HJ 2338 E | 4.45 | | 200 | 258.2 | 14 | 23 | 4 | HJ 240 E | 2.65 | | | 258 | 14 | 34 | 4 | HJ 2240 | 2.6 | | | 256.9 | 14 | 28 | 4 | HJ 2240 E | 2.78 | | | 280 | 18 | 30 | 5 | HJ 340 E | 5.0 | | 220 | 286 | 15 | 27.5 | 4 | HJ 244 | 3.55 | | | 286 | 15 | 36.5 | 4 | HJ 2244 | 3.55 | | | 307 | 20 | 36 | 5 | HJ 344 | 7.05 | | 240 | 313 | 16 | 29.5 | 4 | HJ 248 | 4.65 | | | 313 | 16 | 38.5 | 4 | HJ 2248 | 4.65 | | | 334 | 22 | 39.5 | 5 | HJ 348 | 8.2 | | 260 | 340 | 18 | 33 | 5 | HJ 252 | 6.2 | | | 340 | 18 | 40.5 | 5 | HJ 2252 | 6.2 | | | 362 | 24 | 43 | 6 | HJ 352 | 11.4 | | 280 | 360 | 18 | 33 | 5 | HJ 256 | 7.4 | | 300 | 387 | 20 | 34.5 | 5 | HJ 260 | 9.15 | | 320 | 415 | 21 | 37 | 5 | HJ 264 | 11.3 | ### Bore Diameter 25 – 140 mm | | | | ry Dimensio
(mm) | ons | | Basic Load | | Limiting
(mi | | |-----|------------|----------|---------------------|------------|------------|--------------------|--------------------|------------------------|----------------| | d | D | B | γ
min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 25 | 47 | 16 | 0.6 | _ | 41.3 | 25 800 | 30 000 | 14 000 | 17 000 | | 30 | 55 | 19 | 1 | _ | 48.5 | 31 000 | 37 000 | 12 000 | 14 000 | | 35 | 62 | 20 | 1 | _ | 55 | 39 500 | 50 000 | 10 000 | 12 000 | | 40 | 68 | 21 | 1 | _ | 61 | 43 500 | 55 500 | 9 000 | 11 000 | | 45 | 75 | 23 | 1 | _ | 67.5 | 52 000 | 68 500 | 8 500 | 10 000 | | 50 | 80 | 23 | 1 | _ | 72.5 | 53 000 | 72 500 | 7 500 | 9 000 | | 55 | 90 | 26 | 1.1 | _ | 81 | 69 500 | 96 500 | 6 700 | 8 000 | | 60 | 95 | 26 | 1.1 | _ | 86.1 | 73 500 | 106 000 | 6 300 | 7 500 | | 65 | 100 | 26 | 1.1 | _ | 91 | 77 000 | 116 000 | 6 000 | 7 100 | | 70 | 110 | 30 | 1.1 | _ | 100 | 97 500 | 148 000 | 5 600 | 6 700 | | 75 | 115 | 30 | 1.1 | _ | 105 | 96 500 | 149 000 | 5 300 | 6 300 | | 80 | 125 | 34 | 1.1 | _ | 113 | 119 000 | 186 000 | 4 800 | 6 000 | | 85 | 130 | 34 | 1.1 | _ | 118 | 125 000 | 201 000 | 4 500 | 5 600 | | 90 | 140 | 37 | 1.5 | _ | 127 | 143 000 | 228 000 | 4 300 | 5 000 | | 95 | 145 | 37 | 1.5 | _ | 132 | 150 000 | 246 000 | 4 000 | 5 000 | | 100 | 140
150 | 40
37 | 1.1
1.5 | 112
— |
137 | 155 000
157 000 | 295 000
265 000 | 4 000
4 000 | 5 000
4 800 | | 105 | 145
160 | 40
41 | 1.1
2 | 117
— |
146 | 161 000
198 000 | 315 000
320 000 | 3 800
3 800 | 4 800
4 500 | | 110 | 150
170 | 40
45 | 1.1
2 | 122 |
155 | 167 000
229 000 | 335 000
375 000 | 3 600
3 400 | 4 500
4 300 | | 120 | 165
180 | 45
46 | 1.1
2 | 133.5
— |
165 | 183 000
239 000 | 360 000
405 000 | 3 200
3 200 | 4 000
3 800 | | 130 | 180
200 | 50
52 | 1.5
2 | 144 |
182 | 274 000
284 000 | 545 000
475 000 | 3 000
3 000 | 3 800
3 600 | | 140 | 190
210 | 50
53 | 1.5
2 | 154
— | —
192 | 283 000
298 000 | 585 000
515 000 | 2 800
2 800 | 3 600
3 400 | Remarks Production of double-row cylindrical roller bearings is generally in the high precision classes (Class 5 or better). | Bearing | Numbers | | Ab | utment a | nd Fillet
(mm) | Dimension | S | | Mass
(kg) | |---------------------|-------------------------|----------------------|-------------|------------------|-------------------|--------------|-----------|---------------------|--------------| | Cylindrical Bore | Tapered Bore(1) | $d_{arepsilon}$ min. | (2)
max. | $d_{ m 1a}$ min. | $d_{ m c}$ min. | \max . D | a
min. | ${m r}_{ m a}$ max. | approx. | | NN 3005 | NN 3005 K | 29 | _ | 29 | _ | 43 | 42 | 0.6 | 0.127 | | NN 3006 | NN 3006 K | 35 | _ | 36 | _ | 50 | 50 | 1 | 0.198 | | NN 3007 | NN 3007 K | 40 | _ | 41 | _ | 57 | 56 | 1 | 0.258 | | NN 3008 | NN 3008 K | 45 | _ | 46 | _ | 63 | 62 | 1 | 0.309 | | NN 3009 | NN 3009 K | 50 | _ | 51 | _ | 70 | 69 | 1 | 0.407 | | NN 3010 | NN 3010 K | 55 | _ | 56 | _ | 75 | 74 | 1 | 0.436 | | NN 3011 | NN 3011 K | 61.5 | _ | 62 | _ | 83.5 | 83 | 1 | 0.647 | | NN 3012 | NN 3012 K | 66.5 | _ | 67 | _ | 88.5 | 88 | 1 | 0.693 | | NN 3013 | NN 3013 K | 71.5 | _ | 72 | _ | 93.5 | 93 | 1 | 0.741 | | NN 3014 | NN 3014 K | 76.5 | _ | 77 | _ | 103.5 | 102 | 1 | 1.06 | | NN 3015 | NN 3015 K | 81.5 | _ | 82 | _ | 108.5 | 107 | 1 | 1.11 | | NN 3016 | NN 3016 K | 86.5 | _ | 87 | _ | 118.5 | 115 | 1 | 1.54 | | NN 3017 | NN 3017 K | 91.5 | _ | 92 | _ | 123.5 | 120 | 1 | 1.63 | | NN 3018 | NN 3018 K | 98 | _ | 99 | _ | 132 | 129 | 1.5 | 2.09 | | NN 3019 | NN 3019 K | 103 | _ | 104 | _ | 137 | 134 | 1.5 | 2.19 | | NNU 4920
NN 3020 | NNU 4920 K
NN 3020 K | 106.5
108 | 111
— | 108
109 | 115
— | 133.5
142 |
139 | 1
1.5 | 1.9
2.28 | | NNU 4921
NN 3021 | NNU 4921 K
NN 3021 K | 111.5
114 | 116
— | 113
115 | 120
— | 138.5
151 |
148 | 1 2 | 1.99
2.88 | | NNU 4922
NN 3022 | NNU 4922 K
NN 3022 K | 116.5
119 | 121
— | 118
121 | 125
— | 143.5
161 |
157 | 1 2 | 2.07
3.71 | | NNU 4924
NN 3024 | NNU 4924 K
NN 3024 K | 126.5
129 | 133
— | 128
131 | 137
— | 158.5
171 |
167 | 1
2 | 2.85
4.04 | | NNU 4926
NN 3026 | NNU 4926 K
NN 3026 K | 138
139 | 143
— | 140
141 | 148
— | 172
191 |
185 | 1.5
2 | 3.85
5.88 | | NNU 4928
NN 3028 | NNU 4928 K
NN 3028 K | 148
149 | 153
— | 150
151 | 158
— |
182
201 | —
195 | 1.5
2 | 4.08
6.34 | **Note** (2) d_a (max.) are values for adjusting rings for the NNU Type. Bore Diameter 150 - 360 mm | | | | ry Dimension | ons | | | ad Ratings | Limiting Speeds
(min ⁻¹) | | | |-----|------------|------------|------------------|------------|------------|------------------------|------------------------|---|----------------|--| | d | D | B | γ
min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 150 | 210
225 | 60
56 | 2
2.1 | 167
— |
206 | 350 000
335 000 | 715 000
585 000 | 2 600
2 600 | 3 200
3 000 | | | 160 | 220
240 | 60
60 | 2
2.1 | 177
— |
219 | 365 000
375 000 | 760 000
660 000 | 2 400
2 400 | 3 000
2 800 | | | 170 | 230
260 | 60
67 | 2
2.1 | 187
— | 236 | 375 000
450 000 | 805 000
805 000 | 2 400
2 200 | 2 800
2 600 | | | 180 | 250
280 | 69
74 | 2
2.1 | 200 |
255 | 480 000
565 000 | 1 020 000
995 000 | 2 200
2 000 | 2 600
2 400 | | | 190 | 260
290 | 69
75 | 2
2.1 | 211.5
— |
265 | 485 000
595 000 | 1 060 000
1 080 000 | 2 000
2 000 | 2 600
2 400 | | | 200 | 280
310 | 80
82 | 2.1
2.1 | 223
— |
282 | 570 000
655 000 | 1 220 000
1 170 000 | 1 900
1 800 | 2 400
2 200 | | | 220 | 300
340 | 80
90 | 2.1
3 | 243
— | 310 | 600 000
815 000 | 1 330 000
1 480 000 | 1 700
1 700 | 2 200
2 000 | | | 240 | 320
360 | 80
92 | 2.1
3 | 263
— | 330 | 625 000
855 000 | 1 450 000
1 600 000 | 1 600
1 500 | 2 000
1 800 | | | 260 | 360
400 | 100
104 | 2.1
4 | 289
— |
364 | 935 000
1 030 000 | 2 100 000
1 920 000 | 1 400
1 400 | 1 800
1 700 | | | 280 | 380
420 | 100
106 | 2.1
4 | 309 |
384 | 960 000
1 080 000 | 2 230 000
2 080 000 | 1 300
1 300 | 1 700
1 500 | | | 300 | 420
460 | 118
118 | 3
4 | 336 | —
418 | 1 230 000
1 290 000 | 2 870 000
2 460 000 | 1 200
1 200 | 1 500
1 400 | | | 320 | 440
480 | 118
121 | 3
4 | 356
— | —
438 | 1 260 000
1 350 000 | 3 050 000
2 670 000 | 1 100
1 100 | 1 400
1 300 | | | 340 | 520 | 133 | 5 | _ | 473 | 1 670 000 | 3 300 000 | 1 000 | 1 200 | | | 360 | 540 | 134 | 5 | _ | 493 | 1 700 000 | 3 450 000 | 950 | 1 200 | | Remarks Production of double-row cylindrical roller bearings is generally in the high precision classes (Class 5 or better). | Bearing Numbers | | Ab | utment a | and Fillet
(mm) | Dimensi | ons | | Mass
(kg) | |--|------------|-----------------------|---------------------|--------------------|------------|-----------------|------------------------|--------------| | Cylindrical Bore Tapered Bore(1) | min. | $d_{ m a}^{(2)}$ max. | $d_{ ext{1a}}$ min. | $d_{ m c}$ min. | max. | $D_{ m a}$ min. | ${\it r}_{\rm a}$ max. | approx. | | NNU 4930 NNU 4930 K
NN 3030 NN 3030 K | | 166
— | 162
162 | 171
— | 201
214 |
209 | 2
2 | 6.39
7.77 | | NNU 4932 NNU 4932 K
NN 3032 NN 3032 K | | 176
— | 172
172 | 182
— | 211
229 |
222 | 2 2 | 6.76
9.41 | | NNU 4934 NNU 4934 K
NN 3034 NN 3034 K | | 186
— | 182
183 | 192
— | 221
249 |
239 | 2 2 | 7.12
12.8 | | NNU 4936 NNU 4936 K
NN 3036 NN 3036 K | | 199
— | 193
193 | 205
— | 241
269 |
258 | 2 2 | 10.4
16.8 | | NNU 4938 NNU 4938 K
NN 3038 NN 3038 K | | 211
— | 203
203 | 217
— | 251
279 |
268 | 2 2 | 10.9
17.8 | | NNU 4940 NNU 4940 K
NN 3040 NN 3040 K | | 222
— | 214
214 | 228
— | 269
299 |
285 | 2 2 | 15.3
22.7 | | NNU 4944 NNU 4944 K
NN 3044 NN 3044 K | | 242
— | 234
236 | 248
— | 289
327 | 313 | 2
2.5 | 16.6
29.6 | | NNU 4948 NNU 4948 K
NN 3048 NN 3048 K | 251
253 | 262
— | 254
256 | 269
— | 309
347 | 334 | 2
2.5 | 18
32.7 | | NNU 4952 NNU 4952 K
NN 3052 NN 3052 K | | 288
— | 275
278 | 295
— | 349
384 |
368 | 2 3 | 31.1
47.7 | | NNU 4956 NNU 4956 K
NN 3056 NN 3056 K | | 308 | 295
298 | 315
— | 369
404 | 388 | 2 3 | 33
51.1 | | NNU 4960 NNU 4960 K
NN 3060 NN 3060 K | | 335
— | 318
319 | 343
— | 407
444 |
422 | 2.5
3 | 51.9
70.7 | | NNU 4964 NNU 4964 K
NN 3064 NN 3064 K | | 355
— | 338
340 | 363
— | 427
464 |
442 | 2.5
3 | 54.9
76.6 | | NN 3068 NN 3068 K | 360 | _ | 365 | _ | 500 | 477 | 4 | 102 | | NN 3072 NN 3072 K | 380 | _ | 385 | _ | 520 | 497 | 4 | 106 | **Note** (2) d_a (max.) are values for adjusting rings for the NNU Type. ## **TAPERED ROLLER BEARINGS** #### METRIC DESIGN TAPERED ROLLER BEARINGS | INCITIO DEGIGIO IAI ENED | HOLLEH DEAHING | , O | | |---------------------------|----------------------|-------------------------------------|------| | Bore Di | iameter 15 – 100r | mm | B120 | | Bore Di | iameter 105 – 240r | mm | B128 | | Bore Di | iameter 260 – 440r | mm | B134 | | INCH DESIGN TAPERED RO | OLLER BEARINGS | | | | Bore Di | iameter 12.000 - | 47.625mm | B136 | | Bore Di | iameter 48.412 – | 69.850mm | B150 | | Bore Di | iameter 70.000 – | 206.375mm | B158 | | The index for inch design | tapered roller beari | rings is in Appendix 14 (Page C26). | | | DOUBLE-ROW TAPERED R | ROLLER BEARINGS | | | | Bore Di | iameter 40 - 260r | mm | B172 | Four-Row Tapered Roller Bearings are described on pages B334 to B339. ### **DESIGN, TYPES, AND FEATURES** Tapered roller bearings are designed so the apices of the cones formed by the raceways of the cone and cup and the conical rollers all coincide at one point on the axis of the bearing. When a radial load is imposed, an axial force component occurs; therefore, it is necessary to use two bearings in opposition or some other multiple arrangement. For metric-design medium-angle and steep-angle tapered roller bearings, the respective contact angle symbol C or D is added after the bore number. For normal-angle tapered roller bearings, no contact angle symbol is used. Medium-angle tapered roller bearings are primarily used for the pinion shafts of differential gears of automobiles. Among those with high load capacity(HR series), some bearings have the basic number suffixed by J to conform to the specifications of ISO for the cup back face raceway diameter, cup width, and contact angle. Therefore, the cone assembly and cup of bearings with the same basic number suffixed by J are internationally interchangeable. Among metric-design tapered roller bearings specified by ISO 355, there are those having new dimensions that are different than the dimension series 3XX used in the past. Part of them are listed in the bearing tables. They conform to the specifications of ISO for the smaller end diameter of the cup and contact angle. The cone and cup assemblies are internationally interchangeable. The bearing number formulation, which is different than that for past metric design, is as follows: B 110 B 111 Besides metric design tapered roller bearings, there are also inch design bearings. For the cone assemblies and cups of inch design bearings, except four-row tapered roller bearings, the bearing numbers are approximately formulated as follows: For tapered roller bearings, besides single-row bearings, there are also various combinations of bearings. The cages of tapered roller bearings are usually pressed steel. Table 1 Design and Featured of Combinations of Tapered Roller Bearings | Figure | Arrangement | Examples of Bearing No. | Features | |--------|--------------|-------------------------|---| | | Back-to-back | HR30210JDB+KLR10 | Two standard bearings are combined. The bearing clearances are adjusted by cone spacers or cup spacers. The cones and cups and spacers are marked with serial numbers and | | | Face-to-face | HR30210JDF+KR | mating marks. Components with the same serial number can be assembled referring to the matching symbols. | | | KBE Type | 100KBE31+L | The KBE type is a back-to-back arrangement of bearings with the cup and spacer integrated, and the KH type is a face-to-face arrangement in which the cones are integrated. Since the | | | КН Туре | 110KH31+K | bearing clearance is adjusted using spacers, it is necessary for components to have the same serial number for assembly with reference to matching symbols. | ## **TOLERANCES AND RUNNING ACCURACY** METRIC DESIGN TAPERED ROLLER | BEARINGS | ··· Table 8.3 (Pages A64 to A67) | |--|---| | INCH DESIGN TAPERED ROLLER | | | BEARINGS | Table 8.4 (Pages A68 and A69) | | Among inch design tapered roller bearings following precision classes apply. For more deta | , there are those to which the ails, please consult with NSK. | (1) J line bearings(in the bearing tables, bearings preceded by (1) Table 2 Tolerances for Cones(CLASS K) Units: µm | | | F- | | | | | | |-------------------|------------------------|-------------|----------------------|-------------------|----------------------|-------------------|--| | (| ore Diameter d (m) | 4 | dmp | $V_{d\mathrm{p}}$ | $V_{d \mathrm{mp}}$ | $K_{i\mathrm{a}}$ | | | over | incl. | high | low | max. | max. | max. | | | 10
18
30 | 18
30
50 | 0
0
0 | - 12
- 12
- 12 | 12
12
12 | 9
9
9 | 15
18
20 | | | 50
80
120 | 80
120
180 | 0
0
0 | - 15
- 20
- 25 | 15
20
25 | 11
15
19 | 25
30
35 | | | 180
250
315 | 180 250
250 315 | | -30
-35
-40 | 30
35
40 | 23
26
30 | 50
60
70 | | Table 3 Tolerances for Cups(CALSS K) Units: um | | |
 | | | στιιτο : μπ | | |------|-----------------------------|----------|-----------------|-------------------|--------------------|-------------------|--| | Dia | al Outside
meter
(mm) | 4 | <i>D</i> mp | $V_{D\mathrm{p}}$ | $V_{D\mathrm{mp}}$ | K_{ea} | | | over | incl. | high low | | max. | max. | max. | | | 18 | 30 | 0 | -12 | 12 | 9 | 18 | | | 30 | 50 | 0 | -14 | 14 | 11 | 20 | | | 50 | 80 | 0 | -16 | 16 | 12 | 25 | | | 80 | 120 | 0 | -18 | 18 | 14 | 35 | | | 120 | 150 | 0 | -20 | 20 | 15 | 40 | | | 150 | 180 | 0 | -25 | 25 | 19 | 45 | | | 180 | 250 | 0 | -30 | 30 | 23 | 50 | | | 250 | 315 | 0 -35 | | 35 | 26 | 60 | | | 315 | 400 | 0 | -40 | 40 | 30 | 70 | | | 400 | 500 | 0 | - 45 | 45 | 34 | 80 | | B 112 B 113 Table 4 Tolerances for Effective Widths of Cone Assemblies and Cups, and Overall Width (CLASS K) Units: µm | | ore Diameter d | of Cone | idth Deviation Assembly $T_{1\mathrm{S}}$ | Deviatio | re Width
on of Cup
T_{28} | Width D | erall
Deviation
Ts | | |------|------------------|-----------|---|----------|-----------------------------------|---------|--------------------------|--| | over | incl. | high | low | high | low high | | | | | 10 | 80 | +100 | 0 | +100 | 0 | +200 | 0 | | | 80 | 120 | +100 | -100 | +100 | - 100 | +200 | -200 | | | 120 | 315 | +150 -150 | | +200 | - 100 | +350 | -250 | | | 315 | 400 | +200 | -200 | +200 | -200 | +400 | -400 | | #### (2) Bearings for Front Axles of Automobiles (In the bearing tables, those preceded by t) Table 5 Tolerances for Bore Diameter and Overall Width Units: µm | Nominal Bo | 1 | | Bore Di
Devia
⊿ | ation | Overall
Devia
⊿ | ition | |---------------------|------------|----------------|-----------------------|-------|-----------------------|-------| | over
(mm) 1/25.4 | ir
(mm) | ncl.
1/25.4 | high | low | high | low | | _ | 76.200 | 3.0000 | +20 | 0 | +356 | 0 | The tolerances for outside diameter and those for radial runout of the cones and cups conform to Table 8.4.2 (Pages A68 and A69). #### (3) Special Chamfer Dimensions For bearings marked "spec." in the column of r in the bearing tables, the chamfer dimension of the cone back-face side is as shown on the following figure. #### RECOMMENDED FITS | METRIC DESIGN TAPERED ROLLER | | |-------------------------------------|----------------------| | BEARINGS | Table 9.2 (Page A84) | | | Table 9.4 (Page A85) | | INCH DESIGN TAPERED ROLLER BEARINGS | Table 9.6 (Page A86) | | | Table 9.7 (Page A87) | #### INTERNAL CLEARANCE | METRIC DESIGN TAPERED ROLLER BEARINGS | | |---------------------------------------|-----------------------| | (Matched and Double-Row) ····· | Table 9.16 (Page A93) | | INCH DESIGN TAPERED ROLLER BEARINGS | | | (Matched and Double-Row) | Table 9.16 (Page A93) | #### DIMENSIONS RELATED TO MOUNTING The dimensions related to mounting tapered roller bearings are listed in the bearing tables. Since the cages protrude from the ring faces of tapered roller bearings, please use care when designing shafts and housings. When heavy axial loads are imposed, the shaft shoulder dimensions and strength must be sufficient to support the cone rib. #### PERMISSIBLE MISALIGNMENT The permissible misalignment angle for tapered roller bearings is approximately 0.0009 radian (3'). #### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. #### PRECAUTIONS FOR USE OF TAPERED ROLLER BEARINGS - 1. If the load on tapered roller bearings becomes too small, or if the ratio of the axial and radial loads for matched bearings exceeds 'e' (e is listed in the bearing tables)during operation, slippage between the rollers and raceways occurs, which may result in smearing. Especially with large bearings since the weight of the rollers and cage is high. If such load conditions are expected, please contact NSK for selection of the bearings. - 2. Confirm the dimension of "Abutment and Fillet Dimensions" of $D_{\rm a},\,D_{\rm b},\,S_{\rm a},\,S_{\rm b}$ at the time of the HR series adoption. B 114 B 115 Bore Diameter 15 - 28 mm | | | Bounda | ary Dimen | isions | | | | Basic Load | Ratings | | Limiting | Speeds | |----|----------------------------|---|----------------------------|----------------------------|------------------------|------------------------|--|--|---|---|---|--| | | | | (mm) | | Cone | Cup | 1) | ۷) | {k | gf} | (mii | n ⁻¹) | | d | D | T | В | С | | r
nin. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 15 | 35
42 | 11.75
14.25 | 11
13 | 10
11 | 0.6
1 | 0.6
1 | 14 800
23 600 | 13 200
21 100 | 1 510
2 400 | 1 350
2 160 | 11 000
9 500 | 15 000
13 000 | | 17 | 40
40
47
47 | 13.25
17.25
15.25
15.25 | 12
16
14
14 | 11
14
12
10.5 | 1
1
1 | 1
1
1 | 20 100
27 100
29 200
22 000 | 19 900
28 000
26 700
20 300 | 2 050
2 770
2 980
2 240 | 2 030
2 860
2 720
2 070 | 9 500
9 500
8 500
8 000 | 13 000
13 000
12 000
11 000 | | 20 | 47
42
47
47 | 20.25
15
15.25
15.25 | 19
15
14
14 | 16
16
12
12
12 | 1
0.6
1
0.3 | 1
0.6
1 | 37 500
24 600
27 900
23 900 | 36 500
27 400
28 500
24 000 | 3 800
2 510
2 850
2 430 | 3 750
2 800
2 900
2 450 | 8 500
9 000
8 000
8 000 | 11 000
11 000
12 000
11 000
11 000 | | | 47
47
52
52
52 | 19.25
19.25
16.25
16.25
22.25 | 18
18
15
15
21 | 15
15
13
12
18 | 1
1.5
1.5
1.5 | 1
1.5
1.5
1.5 | 35 500
31 500
35 000
25 300
45 500 | 37 500
33 500
33 500
24 500
47 500 | 3 650
3 200
3 550
2 580
4 650 | 3 850
3 400
3 400
2 490
4 850 | 8 500
8 000
7 500
7 100
8 000 | 11 000
11 000
10 000
10 000
11 000 | | 22 | 44
50
50 | 15
15.25
15.25 | 15
14
14
18 | 11.5
12
12
15 | 0.6
1
1 | 0.6
1
1 | 25 600
29 200
27 200 | 29 400
30 500
29 500 | 2 610
2 980
2 780
3 750 | 3 000
3 150
3 000 | 8 500
7 500
7 500 | 11 000
10 000
10 000 | | | 50
50
56
56 | 19.25
19.25
17.25
17.25 | 18
16
16 | 15
14
13 | 1
1
1.5
1.5 | 1
1
1.5
1.5 | 36 500
33 500
37 000
34 500 | 40 500
39 500
36 500
34 000 | 3 400
3 750
3 500 | 4 100
4 000
3 750
3 500 | 7 500
7 500
7 100
6 700 | 11 000
10 000
9 500
9 500 | | 25 | 47
47
52
52 | 15
17
16.25
16.25 | 15
17
15
15 | 11.5
14
13
12 | 0.6
0.6
1 | 0.6
0.6
1 | 27 400
31 000
32 000
28 100 | 33 000
38 000
35 000
31 500 | 2 800
3 150
3 300
2 860 | 3 400
3 900
3 550
3 200 | 8 000
8 000
7 100
9 700 | 11 000
11 000
10 000
9 500 | | | 52
52
52 | 19.25
19.25
22 | 18
18
22 | 16
15
18 | 1
1
1 | 1
1
1 | 40 000
35 000
47 500 | 45 000
42 000
56 500 | 4 050
3 550
4 850 | 4 600
4 250
5 750 | 7 100
7 100
7 500 | 10 000
9 500
10 000 | | | 62
62
62 | 18.25
18.25
18.25 | 17
17
17 | 15
14
13 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 47 500
47 500
42 000
38 000 | 46 000
45 000
40 500 | 4 850
4 300
3 900 | 4 700
4 550
4 100 | 6 300
6 000
5 600 | 8 500
8 500
8 000 | | 28 | 62
62
52 | 18.25
25.25
16 | 17
17
24
16 | 13
20
12 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 38 000
62 500
32 000 | 40 500
66 000
39 000 | 3 900
6 400
3 300 | 4 100
6 750
3 950 | 5 600
6 300
7 100 | 8 000
8 500
9 500 | | | 58
58
58 | 17.25
17.25
20.25 | 16
16
19 | 14
12
16 | 1
1
1 | 1
1
1 | 39 500
34 000
47 500 | 41 500
38 500
54 000 | 4 050
3 450
4 850 | 4 200
3 900
5 500 | 6 300
6 300
6 300 | 9 000
8 500
9 000 | | | 58
68
68 | 20.25
20.25
19.75
19.75 | 19
18
18 | 16
15
14 | 1
1.5
1.5 | 1
1.5
1.5 | 47 500
42 000
55 000
49 500 | 49 500
55 500
50 500 | 4 300
4 300
5 650
5 000 | 5 050
5 050
5 650
5 150 | 6 300
6 000
5 600 | 9 000
9 000
8 000
7 500 | **Remarks** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5 F_r + Y_0 F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Danier North | ISO355 | | | Abutn | | d Fillet C
(mm) |)imens | ions | | | Eff. Load
Centers | Constant | Axial
Fact | | Mass
(kg) | |--|--|--|--|--|--
--|----------------------------|---------------------------------|---|----------------|--|--|---|--|--| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. |) _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone C \mathcal{Y}_{a} max. | up | (mm)
<i>a</i> | e | Y_1 | Y_0 | approx. | | 30202
HR 30302 J
HR 30203 J
HR 32203 J
HR 30303 J | 2FB
2DB
2DD
2FB | 23
24
26
26
26 | 19
22
23
22
24 | 30
36
34
34
41 | 30
36
34
34
40 | 33
38.5
37.5
37
43 | 2
2
2
2
2 | 1.5
3
2
3
3 | 0.6 0.1 1 1 1 1 1 1 1 1 1 1 | .6 | 8.2
9.5
9.7
11.2
10.4 | 0.32
0.29
0.35
0.31
0.29 | 1.9
2.1
1.7
1.9
2.1 | 1.0
1.2
0.96
1.1
1.2 | 0.053
0.098
0.079
0.103
0.134 | | 30303 D
HR 32303 J
HR 32004 XJ
HR 30204 J
HR 30204 C-A- | 2FD
3CC
2DB | 29
28
28
29
29 | 23
23
24
27
26 | 41
41
37
41
41 | 34
39
35
40
37 | 44
43
40
44
44 | 2
2
3
2
2 | 4.5
4
3
3
3 | 1 1
1 1
0.6 0
1 1
0.3 1 | .6 | 15.4
12.5
10.6
11.0
13.0 | 0.81
0.29
0.37
0.35
0.55 | 0.74
2.1
1.6
1.7
1.1 | 0.41
1.2
0.88
0.96
0.60 | 0.129
0.178
0.097
0.127
0.126 | | HR 32204 J
HR 32204 CJ
HR 30304 J
30304 D
HR 32304 J | 2DD
5DD
2FB
—
2FD | 29
29
31
34
33 | 25
25
27
26
26 | 41
41
44
43
43 | 38
36
44
37
42 | 44.5
44
47.5
49
48 | 3
2
2
2
3 | 4
4
3
4
4 | 1 1
1 1
1.5 1.
1.5 1.
1.5 1. | .5 | 12.6
14.5
11.6
16.7
13.9 | 0.33
0.52
0.30
0.81
0.30 | 1.8
1.2
2.0
0.74
2.0 | 1.0
0.64
1.1
0.41
1.1 | 0.161
0.166
0.172
0.168
0.241 | | HR 320/22 XJ
HR 302/22
HR 302/22 C
HR 322/22 | _
_
3CC | 30
31
31
31 | 27
29
29
28 | 39
44
44
44 | 37
42
40
41 | 42
47
47
47 | 3
2
2
2 | 3.5
3
3 | 0.6 0.
1 1
1 1
1 1 | .6 | 11.1
11.6
13.0
13.5 | 0.40
0.37
0.49
0.37 | 1.5
1.6
1.2
1.6 | 0.83
0.90
0.67
0.89 | 0.103
0.139
0.144
0.18 | | HR 322/22 C
HR 303/22
HR 303/22 C
HR 32005 XJ
HR 33005 J | —
—
4CC
2CE | 31
33
33
33
33 | 29
30
30
30
29 | 44
47
47
42
42 | 39
46
44
40
41 | 48
50
52.5
45
44 | 2
2
3
3
3 | 4
3
4
3.5
3 | 1 1
1.5 1.
1.5 1.
0.6 0.
0.6 0. | .5 | 15.2
12.4
15.9
11.8
11.0 | 0.51
0.32
0.59
0.43
0.29 | 1.2
1.9
1.0
1.4
2.1 | 0.65
1.0
0.56
0.77
1.1 | 0.185
0.208
0.207
0.116
0.131 | | HR 30205 J
HR 30205 C
HR 32205 J
HR 32205 C
HR 33205 J | 3CC
—
2CD
—
2DE | 34
34
34
34
34 | 31
32
30
30
29 | 46
46
46
46 | 44
43
44
40
43 | 48.5
49.5
50
50
49.5 | 2
2
2
2
4 | 3
4
3
4 | 1 1
1 1
1 1
1 1 | | 12.7
14.4
13.5
15.8
14.1 | 0.37
0.53
0.36
0.53
0.35 | 1.6
1.1
1.7
1.1 | 0.88
0.62
0.92
0.62
0.94 | 0.157
0.155
0.189
0.19
0.221 | | HR 30305 J
HR 30305 C
HR 30305 DJ
HR 31305 J
HR 32305 J
HR 320/28 XJ
HR 302/28 | 2FB
—
(7FB)
7FB
2FD
4CC | 36
36
39
39
38
37
37 | 34
35
34
33
32
33
34 | 54
53
53
53
53
53
46
52 | 54
49
47
47
51
44
50 | 57
58.5
59
59
57
50
55 | 2 3 2 3 3 2 | 3
4
5
5
5
4
3 | 1.5 1.
1.5 1.
1.5 1.
1.5 1.
1.5 1.
1 1 1 | .5
.5
.5 | 13.2
16.4
19.9
19.9
15.6
12.8
13.2 | 0.30
0.55
0.83
0.83
0.30
0.43
0.35 | 2.0
1.1
0.73
0.73
2.0
1.4
1.7 | 1.1
0.60
0.40
0.40
1.1
0.77
0.93 | 0.27
0.276
0.265
0.265
0.376
0.146
0.203 | | HR 302/28 C
HR 322/28
HR 322/28 CJ
HR 303/28
HR 303/28 C | —
5DD
— | 37
37
37
39
39 | 34
34
33
37
38 | 52
52
52
59
59 | 48
49
45
58
57 | 54
55
55
61
63 | 2
2
2
2
2
3 | 5
4
4
4.5
5.5 | 1 1
1 1
1 1
1.5 1. | | 16.9
14.6
16.8
14.5
17.4 | 0.64
0.37
0.56
0.31
0.52 | 0.94
1.6
1.1
1.9
1.2 | 0.52
0.89
0.59
1.1
0.64 | 0.198
0.243
0.251
0.341
0.335 | B 116 B 117 Bore Diameter 30 - 35 mm | | Boundary Dimensions (mm) Con | | | | | | | Basic Load | - | | Limiting | | |----|------------------------------|----------------------------|----------------------|----------------------|-------------|------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | , | | | , , | | Cone | Cup | | (N) | | gf} | (mii | , | | d | D | T | B | C | r | γ
nin. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | | 30 | 47 | 12 | 12 | 9 | 0.3 | 0.3 | 17 600 | 24 400 | 1 800 | 2 490 | 7 500 | 10 000 | | | 55 | 17 | 17 | 13 | 1 | 1 | 36 000 | 44 500 | 3 700 | 4 550 | 6 700 | 9 000 | | | 55 | 20 | 20 | 16 | 1 | 1 | 42 000 | 54 000 | 4 250 | 5 500 | 6 700 | 9 000 | | | 62 | 17.25 | 16 | 14 | 1 | 1 | 43 000 | 47 500 | 4 400 | 4 850 | 6 000 | 8 000 | | | 62 | 17.25 | 16 | 12 | 1 | 1 | 35 500 | 37 000 | 3 650 | 3 800 | 5 600 | 7 500 | | | 62 | 21.25 | 20 | 17 | 1 | 1 | 52 000 | 60 000 | 5 300 | 6 150 | 6 000 | 8 500 | | | 62 | 21.25 | 20 | 16 | 1 | 1 | 48 000 | 56 000 | 4 900 | 5 750 | 6 000 | 8 000 | | | 62 | 25 | 25 | 19.5 | 1 | 1 | 66 500 | 79 500 | 6 800 | 8 100 | 6 000 | 8 000 | | | 72 | 20.75 | 19 | 16 | 1.5 | 1.5 | 59 500 | 60 000 | 6 050 | 6 100 | 5 300 | 7 500 | | | 72 | 20.75 | 19 | 14 | 1.5 | 1.5 | 56 500 | 55 500 | 5 800 | 5 650 | 5 300 | 7 100 | | | 72 | 20.75 | 19 | 14 | 1.5 | 1.5 | 49 000 | 52 500 | 5 000 | 5 350 | 4 800 | 6 700 | | | 72 | 20.75 | 19 | 14 | 1.5 | 1.5 | 49 000 | 52 500 | 5 000 | 5 350 | 4 800 | 6 800 | | | 72 | 28.75 | 27 | 23 | 1.5 | 1.5 | 80 000 | 88 500 | 8 150 | 9 000 | 5 600 | 7 500 | | | 72 | 28.75 | 27 | 23 | 1.5 | 1.5 | 76 000 | 86 500 | 7 750 | 8 800 | 5 600 | 7 500 | | 32 | 58
58
65
65 | 17
21
18.25
18.25 | 17
20
17
17 | 13
16
15
14 | 1
1
1 | 1
1
1 | 37 500
41 000
48 500
45 500 | 47 000
50 000
54 000
52 500 | 3 800
4 150
4 950
4 650 | 4 800
5 100
5 500
5 350 | 6 300
6 300
5 600
5 600 | 8 500
8 500
8 000
7 500 | | | 65 | 22.25 | 21 | 18 | 1 | 1 | 56 000 | 65 000 | 5 700 | 6 650 | 6 000 | 8 000 | | | 65 | 22.25 | 21 | 17 | 1 | 1 | 49 500 | 60 000 | 5 050 | 6 100 | 5 600 | 7 500 | | | 65 | 26 | 26 | 20.5 | 1 | 1 | 70 000 | 86 500 | 7 150 | 8 850 | 5 600 | 8 000 | | | 75 | 21.75 | 20 | 17 | 1.5 | 1.5 | 56 000 | 56 000 | 5 700 | 5 700 | 5 300 | 7 100 | | 35 | 55 | 14 | 14 | 11.5 | 0.6 | 0.6 | 27 400 | 39 000 | 2 790 | 3 950 | 6 300 | 8 500 | | | 62 | 18 | 18 | 14 | 1 | 1 | 43 500 | 55 500 | 4 400 | 5 650 | 5 600 | 8 000 | | | 62 | 21 | 21 | 17 | 1 | 1 | 49 000 | 65 000 | 4 950 | 6 650 | 5 600 | 8 000 | | | 72 | 18.25 | 17 | 15 | 1.5 | 1.5 | 54 000 | 59 500 | 5 500 | 6 050 | 5 300 | 7 100 | | | 72 | 18.25 | 17 | 13 | 1.5 | 1.5 | 47 000 | 54 500 | 4 750 | 5 550 | 5 000 | 6 700 | | | 72 | 24.25 | 23 | 19 | 1.5 | 1.5 | 70 500 | 83 500 | 7 150 | 8 550 | 5 300 | 7 100 | | | 72 | 24.25 | 23 | 18 | 1.5 | 1.5 | 60 500 | 71 500 | 6 200 | 7 300 | 5 000 | 7 100 | | | 72 | 28 | 28 | 22 | 1.5 | 1.5 | 86 500 | 108 000 | 8 850 | 11 100 | 5 300 | 7 100 | | | 80 | 22.75 | 21 | 18 | 2 | 1.5 | 76 000 | 79 000 | 7 750 | 8 050 | 4 800 | 6 700 | | | 80 | 22.75 | 21 | 16 | 2 | 1.5 | 68 000 | 70 500 | 6 900 | 7 200 | 4 800 | 6 300 | | | 80 | 22.75 | 21 | 15 | 2 | 1.5 | 62 000 | 68 000 | 6 350 | 6 950 | 4 300 | 6 000 | | | 80 | 22.75 | 21 | 15 | 2 | 1.5 | 62 000 | 68 000 | 6 350 | 6 950 | 4 300 | 6 000 | | | 80 | 32.75 | 31 | 25 | 2 | 1.5 | 99 000 | 111 000 | 10 100 | 11 300 | 5 000 | 6 700 | **Remarks** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Decrine Musebore | ISO355 | | | Abutn | | d Fillet [
(mm) | Dimens | ions | 0 | 0 | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | Mass
(kg) | |--|--------------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|-----------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|----------------------------|-----------------------------|----------------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. |
max. | O _a
min. | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | 1 | Cup
ax. | (mm)
<i>a</i> | e | Y_1 | Y_0 | approx. | | HR 32906 J | 2BD | 34 | 34 | 44 | 42 | 44 | 3 | 3 | 0.3 | 0.3 | 9.2 | 0.32 | 1.9 | 1.0 | 0.074 | | HR 32006 XJ | 4CC | 39 | 35 | 49 | 47 | 53 | 3 | 4 | 1 | 1 | 13.5 | 0.43 | 1.4 | 0.77 | 0.172 | | HR 33006 J | 2CE | 39 | 35 | 49 | 48 | 52 | 3 | 4 | 1 | 1 | 13.1 | 0.29 | 2.1 | 1.1 | 0.208 | | HR 30206 J | 3DB | 39 | 37 | 56 | 52 | 58 | 2 | 3 | 1 | 1 | 13.9 | 0.37 | 1.6 | 0.88 | 0.238 | | HR 30206 C | — | 39 | 36 | 56 | 49 | 59 | 2 | 5 | 1 | 1 | 17.8 | 0.68 | 0.88 | 0.49 | 0.221 | | HR 32206 J | 3DC | 39 | 36 | 56 | 51 | 58.5 | 2 | 4 | 1 | 1 | 15.4 | 0.37 | 1.6 | 0.88 | 0.297 | | HR 32206 C | — | 39 | 35 | 56 | 48 | 59 | 2 | 5 | 1 | 1 | 17.8 | 0.55 | 1.1 | 0.60 | 0.293 | | HR 33206 J | 2DE | 39 | 35 | 56 | 52 | 59.5 | 5 | 5.5 | 1 | 1 | 16.1 | 0.34 | 1.8 | 0.97 | 0.355 | | HR 30306 J | 2FB | 41 | 40 | 63 | 62 | 66 | 3 | 4.5 | 1.5 | 1.5 | 15.1 | 0.32 | 1.9 | 1.1 | 0.403 | | HR 30306 C | — | 41 | 38 | 63 | 59 | 67 | 3 | 6.5 | 1.5 | 1.5 | 18.5 | 0.55 | 1.1 | 0.60 | 0.383 | | HR 30306 DJ
HR 31306 J
HR 32306 J
HR 32306 CJ | (7FB)
7FB
2FD
5FD | 44
44
43
43 | 40
40
38
36 | 63
63
63 | 55
55
59
54 | 68
68
66
68 | 3
3
3 | 6.5
6.5
5.5
5.5 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | 23.1
23.1
18.0
22.0 | 0.83
0.83
0.32
0.55 | 0.73
0.73
1.9
1.1 | 0.40
0.40
1.1
0.60 | 0.393
0.393
0.57
0.583 | | HR 320/32 XJ
330/32
HR 302/32
HR 302/32 C | 4CC
—
—
— | 41
41
41
41 | 37
37
39
39 | 52
52
59
59 | 49
50
56
54 | 55
55
61
62 | 3
2
3
3 | 4
4
3
4 | 1
1
1 | 1
1
1 | 14.2
13.8
14.7
16.9 | 0.45
0.31
0.37
0.55 | 1.3
1.9
1.6
1.1 | 0.73
1.1
0.88
0.60 | 0.191
0.225
0.277
0.273 | | HR 322/32
HR 322/32 C
HR 332/32 J
303/32 | _
2DE
_ | 41
41
41
44 | 38
39
38
42 | 59
59
59
66 | 54
51
55
64 | 61
62
62
68 | 3
5
3 | 4
5
5.5
4.5 | 1
1
1
1.5 | 1
1
1
1.5 | 15.9
20.2
17.0
15.9 | 0.37
0.59
0.35
0.33 | 1.6
1.0
1.7
1.8 | 0.88
0.56
0.95
1.0 | 0.336
0.335
0.40
0.435 | | HR 32907 J | 2BD | 43 | 40 | 50 | 50 | 52.5 | 3 | 2.5 | 0.6 | 0.6 | 10.7 | 0.29 | 2.1 | 1.1 | 0.123 | | HR 32007 XJ | 4CC | 44 | 40 | 56 | 54 | 60 | 4 | 4 | 1 | 1 | 15.0 | 0.45 | 1.3 | 0.73 | 0.229 | | HR 33007 J | 2CE | 44 | 40 | 56 | 55 | 59 | 4 | 4 | 1 | 1 | 14.1 | 0.31 | 2.0 | 1.1 | 0.267 | | HR 30207 J | 3DB | 46 | 43 | 63 | 62 | 67 | 3 | 3 | 1.5 | 1.5 | 15.0 | 0.37 | 1.6 | 0.88 | 0.34 | | HR 30207 C | — | 46 | 44 | 63 | 59 | 68 | 3 | 5 | 1.5 | 1.5 | 19.6 | 0.66 | 0.91 | 0.50 | 0.331 | | HR 32207 J | 3DC | 46 | 42 | 63 | 61 | 67.5 | 3 | 5 | 1.5 | 1.5 | 17.9 | 0.37 | 1.6 | 0.88 | 0.456 | | HR 32207 C | — | 46 | 42 | 63 | 58 | 68.5 | 3 | 6 | 1.5 | 1.5 | 20.6 | 0.55 | 1.1 | 0.60 | 0.442 | | HR 33207 J | 2DE | 46 | 41 | 63 | 61 | 68 | 5 | 6 | 1.5 | 1.5 | 18.3 | 0.35 | 1.7 | 0.93 | 0.54 | | HR 30307 J | 2FB | 47 | 45 | 71 | 69 | 74 | 3 | 4.5 | 2 | 1.5 | 16.7 | 0.32 | 1.9 | 1.1 | 0.538 | | HR 30307 C
HR 30307 DJ
HR 31307 J
HR 32307 J | TFB
7FB
7FB
2FE | 47
51
51
49 | 44
44
44
43 | 71
71
71
71 | 65
62
62
66 | 74
77
77
74 | 3
3
3 | 6.5
7.5
7.5
7.5 | 2
2
2
2 | 1.5
1.5
1.5
1.5 | 20.3
25.2
25.2
20.7 | 0.55
0.83
0.83
0.32 | 1.1
0.73
0.73
1.9 | 0.60
0.40
0.40
1.1 | 0.518
0.519
0.52
0.765 | Bore Diameter 40 - 50 mm | | Boundary Dimensions
(mm) Cone | | | | | | | Basic Load | • | | Limiting | | |----|----------------------------------|----------------|------------|------------|-------------|------------|--------------------|--------------------|------------------|------------------|----------------|----------------| | | | | | | Cone | Cup | | N) | {kg | | (min | | | d | D | T | B | C | | r in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | Grease | Oil | | 40 | 62 | 15 | 15 | 12 | 0.6 | 0.6 | 34 000 | 47 000 | 3 450 | 4 800 | 5 600 | 7 500 | | 40 | 68 | 19 | 19 | 14.5 | 1 | 1 | 53 000 | 71 000 | 5 400 | 7 250 | 5 300 | 7 100 | | | 68
75 | 22
26 | 22
26 | 18
20.5 | 1
1.5 | 1
1.5 | 59 000
78 500 | 81 500
101 000 | 6 000
8 000 | 8 300
10 300 | 5 300
4 800 | 7 100
6 700 | | | 80 | 19.75 | 18 | 16 | 1.5 | 1.5 | 63 500 | 70 000 | 6 450 | 7 150 | 4 800 | 6 300 | | | 80
80 | 24.75
24.75 | 23
23 | 19
19 | 1.5
1.5 | 1.5
1.5 | 77 000
74 000 | 90 500
90 500 | 7 900
7 550 | 9 200
9 200 | 4 800
4 500 | 6 300
6 300 | | | 80
90 | 32
25.25 | 32
23 | 25
20 | 1.5 | 1.5
1.5 | 107 000
90 500 | 137 000
101 000 | 10 900
9 250 | 14 000
10 300 | 4 800
4 300 | 6 300
5 600 | | | 90 | 25.25 | 23 | 18 | 2 | 1.5 | 84 500 | 93 500 | 8 600 | 9 500 | 4 300 | 5 600 | | | 90
90 | 25.25
25.25 | 23
23 | 17
17 | 2
2
2 | 1.5
1.5 | 80 000
80 000 | 89 500
89 500 | 8 150
8 150 | 9 150
9 150 | 3 800
3 800 | 5 300
5 300 | | | 90 | 35.25 | 33 | 27 | | 1.5 | 120 000 | 145 000 | 12 200 | 14 800 | 4 300 | 6 000 | | 45 | 68
75 | 15
20 | 15
20 | 12
15.5 | 0.6
1 | 0.6
1 | 34 500
60 000 | 50 500
83 000 | 3 550
6 150 | 5 150
8 450 | 5 000
4 500 | 6 700
6 300 | | | 75 | 24 | 24 | 19 | 1 | 1 | 69 000 | 99 000 | 7 050 | 10 100 | 4 800 | 6 300 | | | 80
85 | 26
20.75 | 26
19 | 20.5
16 | 1.5
1.5 | 1.5
1.5 | 84 000
68 500 | 113 000
79 500 | 8 550
6 950 | 11 600
8 100 | 4 500
4 300 | 6 000
6 000 | | | 85
85 | 24.75
24.75 | 23
23 | 19
19 | 1.5
1.5 | 1.5
1.5 | 83 000
75 500 | 102 000
95 500 | 8 500
7 700 | 10 400
9 750 | 4 300
4 300 | 6 000
5 600 | | | 85 | 32
29 | 32
26.5 | 25
20 | 1.5
2.5 | 1.5
2.5 | 111 000
88 500 | 147 000 | 11 300 | 15 000
11 100 | 4 300 | 6 000
5 000 | | | 95
95 | 29
36 | 26.5
35 | 30 | 2.5 | 2.5 | 139 000 | 109 000
174 000 | 9 050
14 200 | 17 800 | 3 600
4 000 | 5 300 | | | 100
100 | 27.25
27.25 | 25
25 | 22
18 | 2 | 1.5
1.5 | 112 000
95 500 | 127 000
109 000 | 11 400
9 750 | 12 900
11 100 | 3 800
3 400 | 5 300
4 800 | | | 100 | 27.25 | 25 | 18 | 2 | 1.5 | 95 500 | 109 000 | 9 750 | 11 100 | 3 400 | 4 800 | | 50 | 100
100 | 38.25
36 | 36
35 | 30
30 | 2
2.5 | 1.5
2.5 | 144 000
144 000 | 177 000
185 000 | 14 700
14 600 | 18 000
18 800 | 3 800
3 800 | 5 300
5 000 | | 50 | 72 | 15 | 15 | 12 | 0.6 | 0.6 | 36 000 | 54 000 | 3 650 | 5 500 | 4 500 | 6 300 | | | 80
80 | 20
24 | 20
24 | 15.5
19 | 1
1 | 1
1 | 61 000
70 500 | 87 000
104 000 | 6 250
7 150 | 8 900
10 600 | 4 300
4 300 | 6 000
6 000 | | | 85 | 26 | 26
20 | 20
17 | 1.5 | 1.5 | 89 000 | 126 000 | 9 100 | 12 800 | 4 300 | 5 600
5 300 | | | 90
90 | 21.75
24.75 | 23 | 17 | 1.5
1.5 | 1.5
1.5 | 76 000
87 500 | 91 500
109 000 | 7 750
8 900 | 9 300
11 100 | 4 000
4 000 | 5 300 | | | 90
90 | 24.75
32 | 23
32 | 18
24.5 | 1.5
1.5 | 1.5
1.5 | 77 500
118 000 | 102 000
165 000 | 7 900
12 100 | 10 400
16 800 | 3 800
4 000 | 5 300
5 300 | | | 105 | 32 | 29 | 22 | 3 | 3 | 109 000 | 133 000 | 11 100 | 13 600 | 3 200 | 4 500 | | | 110
110 | 29.25
29.25 | 27
27 | 23
19 | 2.5
2.5 | 2 | 130 000
114 000 | 148 000
132 000 | 13 300
11 700 | 15 100
13 400 | 3 400
3 200 | 4 800
4 300 | | | 110 | 29.25 | 27 | 19 | 2.5 | 2 | 114 000 | 132 000 | 11 700 | 13 400
22 400 | 3 200 | 4 300 | | | 110
110 | 42.25
42.25 | 40
40 | 33
33 | 2.5
2.5 | 2
2 | 176 000
164 000 | 220 000
218 000 | 17 900
16 800 | 22 200 | 3 600
3 400 | 4 800
4 800 | **Remarks** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | | ISO355 | | | Abutn | nent ar | nd Fillet (
(mm) | Dimens | sions | | _ | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |---|--------------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|-----------------------|------------------|------------------|--------------------------|------------------------------|------------------------------|----------------------------|------------------------------|---------------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | O _a
min. | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | 1 | Cup
a
ax. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32908 J | 2BC | 48 | 44 | 57 | 57 | 59 | 3 | 3 | 0.6 | 0.6 | 11.5 | 0.29 | 2.1 | 1.1 | 0.161 | | HR 32008 XJ | 3CD | 49 | 45 | 62 | 60 | 65.5 | 4 | 4.5 | 1 | 1 | 15.0 | 0.38 | 1.6 | 0.87 | 0.28 | | HR 33008 J | 2BE | 49 | 45 | 62 | 61 | 65 | 4 | 4 | 1 | 1 | 14.6 | 0.28 | 2.1 | 1.2 | 0.322 | | HR 33108 J | 2CE | 51 | 46 | 66 | 65 | 71 | 4 | 5.5 | 1.5 | 1.5 | 18.0 | 0.36 | 1.7 | 0.93 | 0.503 | | HR 30208 J | 3DB | 51 | 48 | 71 | 69 | 75 | 3 | 3.5 | 1.5 | 1.5 | 16.6 | 0.37 | 1.6 | 0.88 | 0.437 | | HR 32208
J | 3DC | 51 | 48 | 71 | 68 | 75 | 3 | 5.5 | 1.5 | 1.5 | 18.9 | 0.37 | 1.6 | 0.88 | 0.548 | | HR 32208 CJ | 5DC | 51 | 47 | 71 | 65 | 76 | 3 | 5.5 | 1.5 | 1.5 | 21.9 | 0.55 | 1.1 | 0.60 | 0.558 | | HR 33208 J | 2DE | 51 | 46 | 71 | 67 | 76 | 5 | 7 | 1.5 | 1.5 | 20.8 | 0.36 | 1.7 | 0.92 | 0.744 | | HR 30308 J | 2FB | 52 | 52 | 81 | 76 | 82 | 3 | 5 | 2 | 1.5 | 19.5 | 0.35 | 1.7 | 0.96 | 0.758 | | HR 30308 C
HR 30308 DJ
HR 31308 J
HR 32308 J | —
7FB
7FB
2FD | 52
56
56
54 | 50
50
50
50 | 81
81
81
81 | 72
70
70
73 | 84
87
87
82 | 3
3
3 | 7
8
8
8 | 2
2
2
2 | 1.5
1.5
1.5
1.5 | 22.8
28.7
28.7
23.4 | 0.53
0.83
0.83
0.35 | 1.1
0.73
0.73
1.7 | 0.62
0.40
0.40
0.96 | 0.735
0.728
0.728
1.05 | | HR 32909 J | 2BC | 53 | 50 | 63 | 62 | 64 | 3 | 3 | 0.6 | 0.6 | 12.3 | 0.32 | 1.9 | 1.0 | 0.187 | | HR 32009 XJ | 3CC | 54 | 51 | 69 | 67 | 72 | 4 | 4.5 | 1 | 1 | 16.6 | 0.39 | 1.5 | 0.84 | 0.354 | | HR 33009 J | 2CE | 54 | 51 | 69 | 67 | 71 | 4 | 5 | 1 | 1 | 16.3 | 0.29 | 2.0 | 1.1 | 0.414 | | HR 33109 J | 3CE | 56 | 51 | 71 | 69 | 77 | 4 | 5.5 | 1.5 | 1.5 | 19.1 | 0.38 | 1.6 | 0.86 | 0.552 | | HR 30209 J | 3DB | 56 | 53 | 76 | 74 | 80 | 3 | 4.5 | 1.5 | 1.5 | 18.3 | 0.41 | 1.5 | 0.81 | 0.488 | | HR 32209 J | 3DC | 56 | 53 | 76 | 73 | 81 | 3 | 5.5 | 1.5 | 1.5 | 20.1 | 0.41 | 1.5 | 0.81 | 0.602 | | HR 32209 CJ | 5DC | 56 | 52 | 76 | 70 | 82 | 3 | 5.5 | 1.5 | 1.5 | 23.6 | 0.59 | 1.0 | 0.56 | 0.603 | | HR 33209 J | 3DE | 56 | 51 | 76 | 72 | 81 | 5 | 7 | 1.5 | 1.5 | 22.0 | 0.39 | 1.6 | 0.86 | 0.817 | | T 7 FC045 | 7FC | 60 | 53 | 83 | 71 | 91 | 3 | 9 | 2 | 2 | 32.1 | 0.87 | 0.69 | 0.38 | 0.918 | | T 2 ED045 | 2ED | 60 | 54 | 83 | 79 | 89 | 5 | 6 | 2 | 2 | 23.5 | 0.32 | 1.9 | 1.02 | 1.22 | | HR 30309 J | 2FB | 57 | 58 | 91 | 86 | 93 | 3 | 5 | 2 | 1.5 | 21.1 | 0.35 | 1.7 | 0.96 | 1.01 | | HR 30309 DJ | 7FB | 61 | 57 | 91 | 79 | 96 | 3 | 9 | 2 | 1.5 | 31.5 | 0.83 | 0.73 | 0.40 | 0.957 | | HR 31309 J
HR 32309 J | 7FB
2FD | 61
59 | 57
56 | 91
91 | 79
82 | 96
93 | 3 | 9
8 | 2 | 1.5
1.5 | 31.5
25.0 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 0.947
1.42 | | T 2 ED050 | 2ED | 65 | 59 | 88 | 83 | 94 | 6 | 6 | 2 | 2 | 24.2 | 0.34 | 1.8 | 0.96 | 1.3 | | HR 32910 J | 2BC | 58 | 54 | 67 | 66 | 69 | 3 | 3 | 0.6 | 0.6 | 13.5 | 0.34 | 1.8 | 0.97 | 0.193 | | HR 32010 XJ | 3CC | 59 | 56 | 74 | 71 | 77 | 4 | 4.5 | 1 | 1 | 17.9 | 0.42 | 1.4 | 0.78 | 0.38 | | HR 33010 J | 2CE | 59 | 55 | 74 | 71 | 76 | 4 | 5 | 1 | 1 | 17.4 | 0.32 | 1.9 | 1.0 | 0.452 | | HR 33110 J | 3CE | 61 | 56 | 76 | 74 | 82 | 4 | 6 | 1.5 | 1.5 | 20.3 | 0.41 | 1.5 | 0.8 | 0.597 | | HR 30210 J | 3DB | 61 | 58 | 81 | 79 | 85 | 3 | 4.5 | 1.5 | 1.5 | 19.6 | 0.42 | 1.4 | 0.79 | 0.557 | | HR 32210 J | 3DC | 61 | 57 | 81 | 78 | 86 | 3 | 5.5 | 1.5 | 1.5 | 21.0 | 0.42 | 1.4 | 0.79 | 0.642 | | HR 32210 CJ | 5DC | 61 | 58 | 81 | 76 | 87 | 3 | 6.5 | 1.5 | 1.5 | 24.6 | 0.59 | 1.0 | 0.56 | 0.655 | | HR 33210 J | 3DE | 61 | 56 | 81 | 76 | 87 | 5 | 7.5 | 1.5 | 1.5 | 23.2 | 0.41 | 1.5 | 0.80 | 0.867 | | T 7 FC050 | 7FC | 74 | 59 | 91 | 78 | 100 | 5 | 10 | 2.5 | 2.5 | 36.4 | 0.87 | 0.69 | 0.38 | 1.22 | | HR 30310 J | 2FB | 65 | 65 | 100 | 95 | 102 | 3 | 6 | 2 | 2 | 23.1 | 0.35 | 1.7 | 0.96 | 1.28 | | HR 30310 DJ | 7FB | 70 | 62 | 100 | 87 | 105 | 3 | 10 | 2 | 2 | 34.3 | 0.83 | 0.73 | 0.40 | 1.26 | | HR 31310 J | 7FB | 70 | 62 | 100 | 87 | 105 | 3 | 10 | 2 | 2 | 34.3 | 0.83 | 0.73 | 0.40 | 1.26 | | HR 32310 J | 2FD | 68 | 62 | 100 | 91 | 102 | 3 | 9 | 2 | 2 | 28.0 | 0.35 | 1.7 | 0.96 | 1.88 | | HR 32310 CJ | 5FD | 68 | 59 | 100 | 82 | 103 | 3 | 9 | 2 | 2 | 32.8 | 0.55 | 1.1 | 0.60 | 1.93 | Bore Diameter 55 - 65 mm | | | Bounda | ary Dimens | ions | | | | Basic Load | - | | Limiting | | |----|-----|--------|------------|------|------|-------------|-------------|-------------------|-------------|-------------------|----------|-------| | _ | | | (mm) | | Cone | Cup | 1) | | | gf} | (mir | | | d | D | T | В | С | n | r .
nin. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 55 | 80 | 17 | 17 | 14 | 1 | 1 | 45 500 | 74 500 | 4 600 | 7 600 | 4 300 | 5 600 | | | 90 | 23 | 23 | 17.5 | 1.5 | 1.5 | 81 500 | 117 000 | 8 300 | 11 900 | 3 800 | 5 300 | | | 90 | 27 | 27 | 21 | 1.5 | 1.5 | 91 500 | 138 000 | 9 300 | 14 000 | 3 800 | 5 300 | | | 95 | 30 | 30 | 23 | 1.5 | 1.5 | 112 000 | 158 000 | 11 500 | 16 100 | 3 800 | 5 000 | | | 100 | 22.75 | 21 | 18 | 2 | 1.5 | 94 500 | 113 000 | 9 650 | 11 500 | 3 600 | 5 000 | | | 100 | 26.75 | 25 | 21 | 2 | 1.5 | 110 000 | 137 000 | 11 200 | 14 000 | 3 600 | 5 000 | | | 100 | 35 | 35 | 27 | 2 | 1.5 | 141 000 | 193 000 | 14 400 | 19 700 | 3 600 | 5 000 | | | 115 | 34 | 31 | 23.5 | 3 | 3 | 126 000 | 164 000 | 12 800 | 16 700 | 3 000 | 4 300 | | | 120 | 31.5 | 29 | 25 | 2.5 | 2 | 150 000 | 171 000 | 15 200 | 17 500 | 3 200 | 4 300 | | | 120 | 31.5 | 29 | 21 | 2.5 | 2 | 131 000 | 153 000 | 13 400 | 15 600 | 2 800 | 4 000 | | | 120 | 31.5 | 29 | 21 | 2.5 | 2 | 131 000 | 153 000 | 13 400 | 15 600 | 2 800 | 4 000 | | | 120 | 45.5 | 43 | 35 | 2.5 | 2 | 204 000 | 258 000 | 20 800 | 26 300 | 3 200 | 4 300 | | | 120 | 45.5 | 43 | 35 | 2.5 | 2 | 195 000 | 262 000 | 19 900 | 26 700 | 3 200 | 4 300 | | 60 | 85 | 17 | 17 | 14 | 1 | 1 | 49 000 | 84 500 | 5 000 | 8 650 | 3 800 | 5 300 | | | 95 | 23 | 23 | 17.5 | 1.5 | 1.5 | 85 500 | 127 000 | 8 700 | 12 900 | 3 600 | 5 000 | | | 95 | 27 | 27 | 21 | 1.5 | 1.5 | 96 000 | 150 000 | 9 800 | 15 300 | 3 600 | 5 000 | | | 100 | 30 | 30 | 23 | 1.5 | 1.5 | 115 000 | 166 000 | 11 700 | 16 900 | 3 400 | 4 800 | | | 110 | 23.75 | 22 | 19 | 2 | 1.5 | 104 000 | 123 000 | 10 600 | 12 500 | 3 400 | 4 500 | | | 110 | 29.75 | 28 | 24 | 2 | 1.5 | 131 000 | 167 000 | 13 400 | 17 000 | 3 400 | 4 500 | | | 110 | 38 | 38 | 29 | 2 | 1.5 | 166 000 | 231 000 | 16 900 | 23 600 | 3 400 | 4 500 | | | 125 | 37 | 33.5 | 26 | 3 | 3 | 151 000 | 197 000 | 15 400 | 20 100 | 2 800 | 3 800 | | | 130 | 33.5 | 31 | 26 | 3 | 2.5 | 174 000 | 201 000 | 17 700 | 20 500 | 3 000 | 4 000 | | | 130 | 33.5 | 31 | 22 | 3 | 2.5 | 151 000 | 177 000 | 15 400 | 18 100 | 2 600 | 3 800 | | | 130 | 33.5 | 31 | 22 | 3 | 2.5 | 151 000 | 177 000 | 15 400 | 18 100 | 2 600 | 3 800 | | | 130 | 48.5 | 46 | 37 | 3 | 2.5 | 233 000 | 295 000 | 23 700 | 30 000 | 3 000 | 4 000 | | | 130 | 48.5 | 46 | 35 | 3 | 2.5 | 196 000 | 249 000 | 20 000 | 25 400 | 2 800 | 3 800 | | 65 | 90 | 17 | 17 | 14 | 1 | 1 | 49 000 | 86 500 | 5 000 | 8 800 | 3 600 | 5 000 | | | 100 | 23 | 23 | 17.5 | 1.5 | 1.5 | 86 500 | 132 000 | 8 800 | 13 500 | 3 400 | 4 500 | | | 100 | 27 | 27 | 21 | 1.5 | 1.5 | 97 500 | 156 000 | 9 950 | 15 900 | 3 400 | 4 500 | | | 110 | 34 | 34 | 26.5 | 1.5 | 1.5 | 148 000 | 218 000 | 15 100 | 22 200 | 3 200 | 4 300 | | | 120 | 24.75 | 23 | 20 | 2 | 1.5 | 122 000 | 151 000 | 12 500 | 15 400 | 3 000 | 4 000 | | | 120 | 32.75 | 31 | 27 | 2 | 1.5 | 157 000 | 202 000 | 16 000 | 20 600 | 3 000 | 4 000 | | | 120 | 41 | 41 | 32 | 2 | 1.5 | 202 000 | 282 000 | 20 600 | 28 800 | 3 000 | 4 000 | | | 140 | 36 | 33 | 28 | 3 | 2.5 | 200 000 | 233 000 | 20 400 | 23 800 | 2 600 | 3 600 | | | 140 | 36 | 33 | 23 | 3 | 2.5 | 173 000 | 205 000 | 17 700 | 20 900 | 2 400 | 3 400 | | | 140 | 36 | 33 | 23 | 3 | 2.5 | 173 000 | 205 000 | 17 700 | 20 900 | 2 400 | 3 400 | | | 140 | 51 | 48 | 39 | 3 | 2.5 | 267 000 | 340 000 | 27 300 | 35 000 | 2 800 | 3 800 | **Remarks** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Danie a Norskara | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | sions | | 0 | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--|--------------------------------|----------------------|----------------------|--------------------------|--------------------------|--------------------------|------------------|------------------------------|--------------------------|--------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|------------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | 1 | c Cup
r _a
ax. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32911 J | 2BC | 64 | 60 | 74 | 73 | 76 | 4 | 3 | 1 | 1 | 14.6 | 0.31 | 1.9 | 1.1 | 0.282 | | HR 32011 XJ | 3CC | 66 | 62 | 81 | 80 | 86 | 4 | 5.5 | 1.5 | 1.5 | 19.7 | 0.41 | 1.5 | 0.81 | 0.568 | | HR 33011 J | 2CE | 66 | 62 | 81 | 80 | 86 | 5 | 6 | 1.5 | 1.5 | 19.2 | 0.31 | 1.9 | 1.1 | 0.657 | | HR 33111 J | 3CE | 66 | 62 | 86 | 82 | 91 | 5 | 7 | 1.5 | 1.5 | 22.4 | 0.37 | 1.6 | 0.88 | 0.877 | | HR 30211 J | 3DB | 67 | 64 | 91 | 89 | 94 | 4 | 4.5 | 2 | 1.5 | 20.9 | 0.41 | 1.5 | 0.81 | 0.736 | | HR 32211 J | 3DC | 67 | 63 | 91 | 87 | 95 | 4 | 5.5 | 2 | 1.5 | 22.7 | 0.41 | 1.5 | 0.81 | 0.859 | | HR 33211 J | 3DE | 67 | 62 | 91 | 86 | 96 | 6 | 8 | 2 | 1.5 | 25.2 | 0.40 | 1.5 | 0.83 | 1.18 | | T 7 FC055 | 7FC | 73 | 66 | 101 | 86 | 109 | 4 | 10.5 | 2.5 | 2.5 | 39.0 | 0.87 | 0.69 | 0.38 | 1.58 | | HR 30311 J | 2FB | 70 | 71 | 110 | 104 | 111 | 4 | 6.5 | 2 | 2 | 24.6 | 0.35 | 1.7 | 0.96 | 1.63 | | HR 30311 DJ | 7FB | 75 | 67 | 110 | 94 | 114 | 4 | 10.5 | 2 | 2 | 37.0 | 0.83 | 0.73 | 0.40 | 1.58 | | HR 31311 J | 7FB | 75 | 67 | 110 | 94 | 114 | 4 | 10.5 | 2 | 2 | 37.0 | 0.83 | 0.73 |
0.40 | 1.58 | | HR 32311 J | 2FD | 73 | 67 | 110 | 99 | 111 | 4 | 10.5 | 2 | 2 | 29.9 | 0.35 | 1.7 | 0.96 | 2.39 | | HR 32311 CJ | 5FD | 73 | 65 | 110 | 91 | 112 | 4 | 10.5 | 2 | 2 | 35.8 | 0.55 | 1.1 | 0.60 | 2.47 | | HR 32912 J | 2BC | 69 | 65 | 79 | 78 | 81 | 4 | 3 | 1 | 1 | 15.5 | 0.33 | 1.8 | 1.0 | 0.306 | | HR 32012 XJ | 4CC | 71 | 66 | 86 | 85 | 91 | 4 | 5.5 | 1.5 | 1.5 | 20.9 | 0.43 | 1.4 | 0.77 | 0.608 | | HR 33012 J | 2CE | 71 | 66 | 86 | 85 | 90 | 5 | 6 | 1.5 | 1.5 | 20.0 | 0.33 | 1.8 | 1.0 | 0.713 | | HR 33112 J | 3CE | 71 | 68 | 91 | 88 | 96 | 5 | 7 | 1.5 | 1.5 | 23.6 | 0.40 | 1.5 | 0.83 | 0.91 | | HR 30212 J | 3EB | 72 | 69 | 101 | 96 | 103 | 4 | 4.5 | 2 | 1.5 | 22.0 | 0.41 | 1.5 | 0.81 | 0.930 | | HR 32212 J | 3EC | 72 | 68 | 101 | 95 | 104 | 4 | 5.5 | 2 | 1.5 | 24.1 | 0.41 | 1.5 | 0.81 | 1.18 | | HR 33212 J | 3EE | 72 | 68 | 101 | 94 | 105 | 6 | 9 | 2 | 1.5 | 27.6 | 0.40 | 1.5 | 0.82 | 1.56 | | T 7 FC060 | 7FC | 78 | 72 | 111 | 94 | 119 | 4 | 11 | 2.5 | 2.5 | 41.4 | 0.82 | 0.73 | 0.40 | 2.03 | | HR 30312 J | 2FB | 78 | 77 | 118 | 112 | 120 | 4 | 7.5 | 2.5 | 2 | 26.0 | 0.35 | 1.7 | 0.96 | 2.03 | | HR 30312 DJ
HR 31312 J
HR 32312 J
32312 C | 7FB
7FB
2FD | 84
84
81
81 | 74
74
74
74 | 118
118
118
116 | 103
103
107
102 | 125
125
120
125 | 4
4
4
4 | 11.5
11.5
11.5
13.5 | 2.5
2.5
2.5
2.5 | 2
2
2
2 | 40.3
40.3
31.4
39.9 | 0.83
0.83
0.35
0.58 | 0.73
0.73
1.7
1.0 | 0.40
0.40
0.96
0.57 | 1.98
1.98
2.96
2.86 | | HR 32913 J | 2BC | 74 | 70 | 84 | 82 | 86 | 4 | 3 | 1 | 1 | 16.8 | 0.35 | 1.7 | 0.93 | 0.323 | | HR 32013 XJ | 4CC | 76 | 71 | 91 | 90 | 97 | 4 | 5.5 | 1.5 | 1.5 | 22.4 | 0.46 | 1.3 | 0.72 | 0.646 | | HR 33013 J | 2CE | 76 | 71 | 91 | 90 | 96 | 5 | 6 | 1.5 | 1.5 | 21.1 | 0.35 | 1.7 | 0.95 | 0.76 | | HR 33113 J | 3DE | 76 | 73 | 101 | 96 | 106 | 6 | 7.5 | 1.5 | 1.5 | 26.0 | 0.39 | 1.5 | 0.85 | 1.32 | | HR 30213 J | 3EB | 77 | 78 | 111 | 106 | 113 | 4 | 4.5 | 2 | 1.5 | 23.8 | 0.41 | 1.5 | 0.81 | 1.18 | | HR 32213 J | 3EC | 77 | 75 | 111 | 104 | 115 | 4 | 5.5 | 2 | 1.5 | 27.1 | 0.41 | 1.5 | 0.81 | 1.55 | | HR 33213 J | 3EE | 77 | 74 | 111 | 102 | 115 | 6 | 9 | 2 | 1.5 | 29.2 | 0.39 | 1.5 | 0.85 | 2.04 | | HR 30313 J | 2GB | 83 | 83 | 128 | 121 | 130 | 4 | 8 | 2.5 | 2 | 27.9 | 0.35 | 1.7 | 0.96 | 2.51 | | HR 30313 DJ | 7GB | 89 | 80 | 128 | 111 | 133 | 4 | 13 | 2.5 | 2 | 43.2 | 0.83 | 0.73 | 0.40 | 2.43 | | HR 31313 J | 7GB | 89 | 80 | 128 | 111 | 133 | 4 | 13 | 2.5 | 2 2 | 43.2 | 0.83 | 0.73 | 0.40 | 2.43 | | HR 32313 J | 2GD | 86 | 80 | 128 | 116 | 130 | 4 | 12 | 2.5 | | 34.0 | 0.35 | 1.7 | 0.96 | 3.6 | Bore Diameter 70 - 80 mm | | Boundary Dimensions
(mm)
Cone | | | | | | | Basic Load | • | | Limiting | • | |----|-------------------------------------|------------------------------|----------------------|----------------------|-------------|--------------------------|--|--|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------| | , | | _ | | _ | Cone | | | ۷) | {kg | | (min | | | d | D | T | B | C | | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 70 | 100 | 20 | 20 | 16 | 1 | 1 | 70 000 | 113 000 | 7 150 | 11 500 | 3 200 | 4 500 | | | 110 | 25 | 25 | 19 | 1.5 | 1.5 | 104 000 | 158 000 | 10 600 | 16 100 | 3 200 | 4 300 | | | 110 | 31 | 31 | 25.5 | 1.5 | 1.5 | 127 000 | 204 000 | 12 900 | 20 800 | 3 000 | 4 300 | | | 120 | 37 | 37 | 29 | 2 | 1.5 | 177 000 | 262 000 | 18 100 | 26 700 | 3 000 | 4 000 | | | 125 | 26.25 | 24 | 21 | 2 | 1.5 | 132 000 | 163 000 | 13 500 | 16 700 | 2 800 | 4 000 | | | 125 | 33.25 | 31 | 27 | 2 | 1.5 | 157 000 | 205 000 | 16 100 | 20 900 | 2 800 | 4 000 | | | 125 | 41 | 41 | 32 | 2 | 1.5 | 209 000 | 299 000 | 21 300 | 30 500 | 2 800 | 4 000 | | | 140 | 39 | 35.5 | 27 | 3 | 3 | 177 000 | 229 000 | 18 000 | 23 400 | 2 400 | 3 400 | | | 150 | 38 | 35 | 30 | 3 | 2.5 | 227 000 | 268 000 | 23 200 | 27 400 | 2 400 | 3 400 | | | 150
150
150
150 | 38
38
54
54 | 35
35
51
51 | 25
25
42
42 | 3
3
3 | 2.5
2.5
2.5
2.5 | 192 000
192 000
300 000
280 000 | 229 000
229 000
390 000
390 000 | 19 600
19 600
30 500
28 600 | 23 300
23 300
39 500
39 500 | 2 200
2 200
2 600
2 400 | 3 200
3 200
3 400
3 400 | | 75 | 105 | 20 | 20 | 16 | 1 | 1 | 72 500 | 120 000 | 7 400 | 12 300 | 3 200 | 4 300 | | | 115 | 25 | 25 | 19 | 1.5 | 1.5 | 109 000 | 171 000 | 11 100 | 17 400 | 3 000 | 4 000 | | | 115 | 31 | 31 | 25.5 | 1.5 | 1.5 | 133 000 | 220 000 | 13 500 | 22 500 | 3 000 | 4 000 | | | 125 | 37 | 37 | 29 | 2 | 2 | 182 000 | 275 000 | 18 600 | 28 100 | 2 800 | 3 800 | | | 130 | 27.25 | 25 | 22 | 2 | 1.5 | 143 000 | 182 000 | 14 600 | 18 500 | 2 800 | 3 800 | | | 130 | 33.25 | 31 | 27 | 2 | 1.5 | 165 000 | 219 000 | 16 900 | 22 400 | 2 800 | 3 800 | | | 130 | 41 | 41 | 31 | 2 | 1.5 | 215 000 | 315 000 | 21 900 | 32 000 | 2 800 | 3 800 | | | 160 | 40 | 37 | 31 | 3 | 2.5 | 253 000 | 300 000 | 25 800 | 30 500 | 2 400 | 3 200 | | | 160 | 40 | 37 | 26 | 3 | 2.5 | 211 000 | 251 000 | 21 500 | 25 600 | 2 200 | 3 000 | | | 160 | 40 | 37 | 26 | 3 | 2.5 | 211 000 | 251 000 | 21 500 | 25 600 | 2 200 | 3 000 | | | 160 | 58 | 55 | 45 | 3 | 2.5 | 340 000 | 445 000 | 35 000 | 45 500 | 2 400 | 3 200 | | | 160 | 58 | 55 | 43 | 3 | 2.5 | 310 000 | 420 000 | 32 000 | 43 000 | 2 200 | 3 200 | | 80 | 110 | 20 | 20 | 16 | 1 | 1 | 75 000 | 128 000 | 7 650 | 13 100 | 3 000 | 4 000 | | | 125 | 29 | 29 | 22 | 1.5 | 1.5 | 140 000 | 222 000 | 14 300 | 22 700 | 2 800 | 3 600 | | | 125 | 36 | 36 | 29.5 | 1.5 | 1.5 | 172 000 | 282 000 | 17 500 | 28 800 | 2 800 | 3 600 | | | 130 | 37 | 37 | 29 | 2 | 1.5 | 186 000 | 289 000 | 19 000 | 29 400 | 2 600 | 3 600 | | | 140 | 28.25 | 26 | 22 | 2.5 | 2 | 157 000 | 195 000 | 16 000 | 19 900 | 2 600 | 3 400 | | | 140 | 28.25 | 26 | 20 | 2.5 | 2 | 147 000 | 190 000 | 15 000 | 19 400 | 2 400 | 3 400 | | | 140 | 35.25 | 33 | 28 | 2.5 | 2 | 192 000 | 254 000 | 19 600 | 25 900 | 2 600 | 3 400 | | | 140 | 46 | 46 | 35 | 2.5 | 2 | 256 000 | 385 000 | 26 200 | 39 000 | 2 600 | 3 400 | | | 170 | 42.5 | 39 | 33 | 3 | 2.5 | 276 000 | 330 000 | 28 200 | 33 500 | 2 200 | 3 000 | | | 170
170
170
170 | 42.5
42.5
61.5
61.5 | 39
39
58
58 | 27
27
48
48 | 3
3
3 | 2.5
2.5
2.5
2.5 | 235 000
235 000
385 000
365 000 | 283 000
283 000
505 000
530 000 | 24 000
24 000
39 000
37 500 | 28 900
28 900
51 500
54 000 | 2 000
2 000
2 200
2 200 | 2 800
2 800
3 000
3 000 | Remarks The suffix CA represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix CA. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | D : N . | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | ions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--------------------------------------|--------------------------------|-----------------|-----------------|-------------------|------------------------|-------------------|-----------------------|-----------------|-------------|---------------------------------|----------------------|----------------------|-------------------|----------------------|----------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | 1 | e Cup
r _a
lax. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32914 J | 2BC | 79 | 76 | 94 | 93 | 96 | 4 | 4 | 1 | 1 | 17.6 | 0.32 | 1.9 | 1.1 | 0.494 | | HR 32014 XJ | 4CC | 81 | 77 | 101 | 98 | 105 | 5 | 6 | 1.5 | 1.5 | 23.7 | 0.43 | 1.4 | 0.76 | 0.869 | | HR 33014 J | 2CE | 81 | 78 | 101 | 100 | 105 | 5 | 5.5 | 1.5 | 1.5 | 22.2 | 0.28 | 2.1 | 1.2 | 1.11 | | HR 33114 J | 3DE | 82 | 79 | 111 | 104 | 115 | 6 | 8 | 2 | 1.5 | 27.9 | 0.38 | 1.6 | 0.87 | 1.71 | | HR 30214 J | 3EB | 82 | 81 | 116 | 110 | 118 | 4 | 5 | 2 | 1.5 | 25.6 | 0.42 | 1.4 | 0.79 | 1.3 | | HR 32214 J | 3EC | 82 | 80 | 116 | 108 | 119 | 4 | 6 | 2 | 1.5 | 28.6 | 0.42 | 1.4 | 0.79 | 1.66 | | HR 33214 J | 3EE | 82 | 78 | 116 | 107 | 120 | 7 | 9 | 2 | 1.5 | 30.4 | 0.41 | 1.5 | 0.81 | 2.15 | | T 7 FC070 | 7FC | 88 | 79 | 126 | 106 | 133 | 5 | 12 | 2.5 | 2.5 | 46.4 | 0.87 | 0.69 | 0.38 | 2.55 | | HR 30314 J | 2GB | 88 | 89 | 138 | 132 | 140 | 4 | 8 | 2.5 | 2 | 29.7 | 0.35 | 1.7 | 0.96 | 3.03 | | HR 30314 DJ | 7GB | 94 | 85 | 138 | 118 | 142 | 4 | 13 | 2.5 | 2 | 45.8 | 0.83 | 0.73 | 0.40 | 2.94 | | HR 31314 J | 7GB | 94 | 85 | 138 | 118 | 142 | 4 | 13 | 2.5 | 2 | 45.8 | 0.83 | 0.73 | 0.40 | 2.94 | | HR 32314 J | 2GD | 91 | 86 | 138 | 124 | 140 | 4 | 12 | 2.5 | 2 | 36.1 | 0.35 | 1.7 | 0.96 | 4.35 | | HR 32314 CJ | 5GD | 91 | 84 | 138 | 115 | 141 | 4 | 12 | 2.5 | 2 | 43.3 | 0.55 | 1.1 | 0.60 | 4.47 | | HR 32915 J | 2BC | 84 | 81 | 99 | 98 | 101 | 4 | 4 | 1 | 1 | 18.7 | 0.33 | 1.8 | 0.99 | 0.53 | | HR 32015 XJ | 4CC | 86 | 82 | 106 | 103 | 110 | 5 | 6 | 1.5 | 1.5 | 25.1 | 0.46 | 1.3 | 0.72 | 0.925 | | HR 33015 J | 2CE | 86 | 83 | 106 | 104 | 110 | 6 | 5.5 | 1.5 | 1.5 | 23.0 | 0.30 | 2.0 | 1.1 | 1.18 | | HR 33115 J | 3DE | 87 | 83 | 115 | 109 | 120 | 6 | 8 | 2 | 2 | 29.2 | 0.40 | 1.5 | 0.83 | 1.8 | | HR 30215 J | 4DB | 87 | 85 | 121 | 115 | 124 | 4 | 5 | 2 | 1.5 | 27.0 | 0.44 | 1.4 | 0.76 | 1.43 | | HR 32215 J | 4DC | 87 | 84 | 121 | 113
| 125 | 4 | 6 | 2 | 1.5 | 29.8 | 0.44 | 1.4 | 0.76 | 1.72 | | HR 33215 J | 3EE | 87 | 83 | 121 | 111 | 125 | 7 | 10 | 2 | 1.5 | 31.6 | 0.43 | 1.4 | 0.77 | 2.25 | | HR 30315 J | 2GB | 93 | 95 | 148 | 141 | 149 | 4 | 9 | 2.5 | 2 | 31.8 | 0.35 | 1.7 | 0.96 | 3.63 | | HR 30315 DJ | 7GB | 99 | 91 | 148 | 129 | 152 | 6 | 14 | 2.5 | 2 | 48.8 | 0.83 | 0.73 | 0.40 | 3.47 | | HR 31315 J | 7GB | 99 | 91 | 148 | 129 | 152 | 6 | 14 | 2.5 | 2 | 48.8 | 0.83 | 0.73 | 0.40 | 3.47 | | HR 32315 J | 2GD | 96 | 91 | 148 | 134 | 149 | 4 | 13 | 2.5 | 2 | 38.9 | 0.35 | 1.7 | 0.96 | 5.31 | | 32315 CA | — | 96 | 90 | 148 | 124 | 153 | 4 | 15 | 2.5 | 2 | 47.7 | 0.58 | 1.0 | 0.57 | 5.3 | | HR 32916 J | 2BC | 89 | 85 | 104 | 102 | 106 | 4 | 4 | 1 | 1 | 19.8 | 0.35 | 1.7 | 0.94 | 0.56 | | HR 32016 XJ | 3CC | 91 | 89 | 116 | 112 | 120 | 6 | 7 | 1.5 | 1.5 | 26.9 | 0.42 | 1.4 | 0.78 | 1.32 | | HR 33016 J | 2CE | 91 | 88 | 116 | 112 | 119 | 6 | 6.5 | 1.5 | 1.5 | 25.5 | 0.28 | 2.2 | 1.2 | 1.66 | | HR 33116 J
HR 30216 J
30216 CA | 3DE
3EB | 82
95
95 | 88
91
92 | 121
130
130 | 113
124
122 | 126
132
133 | 6
4
4 | 8
6
8 | 2
2
2 | 1.5
2
2 | 30.4
28.1
33.8 | 0.42
0.42
0.58 | 1.4
1.4
1.0 | 0.79
0.79
0.57 | 1.88
1.68
1.66 | | HR 32216 J | 3EC | 95 | 90 | 130 | 122 | 134 | 4 | 7 | 2 | 2 | 30.6 | 0.42 | 1.4 | 0.79 | 2.13 | | HR 33216 J | 3EE | 95 | 89 | 130 | 119 | 135 | 7 | 11 | 2 | 2 | 34.8 | 0.43 | 1.4 | 0.78 | 2.93 | | HR 30316 J | 2GB | 98 | 102 | 158 | 150 | 159 | 4 | 9.5 | 2.5 | 2 | 34.0 | 0.35 | 1.7 | 0.96 | 4.27 | | HR 30316 DJ | 7GB | 104 | 97 | 158 | 136 | 159 | 6 | 15.5 | 2.5 | 2 | 51.8 | 0.83 | 0.73 | 0.40 | 4.07 | | HR 31316 J | 7GB | 104 | 97 | 158 | 136 | 159 | 6 | 15.5 | 2.5 | 2 | 51.8 | 0.83 | 0.73 | 0.40 | 4.07 | | HR 32316 J | 2GD | 101 | 98 | 158 | 143 | 159 | 4 | 13.5 | 2.5 | 2 | 41.4 | 0.35 | 1.7 | 0.96 | 6.35 | | HR 32316 CJ | 5GD | 101 | 95 | 158 | 132 | 160 | 4 | 13.5 | 2.5 | 2 | 49.3 | 0.55 | 1.1 | 0.60 | 6.59 | Bore Diameter 85 – 100 mm | | | Boun | dary Dimensi | ons | | | | Basic Load | Ratings | | Limiting | Speeds | |-----|---|--|--|--|---|---|---|---|--|--|--|--| | | | | (mm) | | Cone | Cup | 1) | 1) | {kg | gf} | (mir | ı ⁻¹) | | d | D | T | В | С | | rin. | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 85 | 120
130
130
140
150
150
150
180
180
180 | 23
29
36
41
30.5
30.5
38.5
49
44.5
44.5
63.5 | 23
29
36
41
28
28
36
49
41
41
41
60 | 18
22
29.5
32
24
22
30
37
34
28
28 | 1.5
1.5
1.5
2.5
2.5
2.5
2.5
2.5
4
4
4 | 1.5
1.5
1.5
2
2
2
2
2
3
3
3 | 93 500
143 000
180 000
230 000
184 000
171 000
210 000
281 000
261 000
410 000 | 157 000
231 000
305 000
365 000
233 000
226 000
277 000
415 000
375 000
315 000
535 000 | 9 550
14 600
18 400
23 500
18 700
17 500
21 400
28 700
31 500
26 600
42 000 | 16 000
23 600
31 000
37 000
23 800
23 000
28 200
42 500
38 000
32 000
54 500 | 2 800
2 600
2 600
2 400
2 400
2 200
2 200
2 400
2 000
1 900
1 900
2 000 | 3 800
3 600
3 600
3 400
3 200
3 200
3 200
2 800
2 800
2 800
2 800
2 800 | | 90 | 125
140
140
150
160
160
190
190
190 | 23
32
39
45
32.5
42.5
46.5
46.5
46.5
67.5 | 23
32
39
45
30
40
43
43
43
64 | 18
24
32.5
35
26
34
36
30
30
53 | 1.5
2
2
2.5
2.5
2.5
2.5
4
4
4 | 1.5
1.5
1.5
2
2
2
3
3
3 | 97 000
170 000
220 000
259 000
256 000
345 000
264 000
450 000 | 167 000
273 000
360 000
405 000
256 000
350 000
425 000
315 000
315 000
590 000 | 9 850
17 300
22 400
26 500
20 500
26 100
35 500
26 900
26 900
46 000 | 17 000
27 800
37 000
41 500
26 100
35 500
43 000
32 000
32 000
60 500 | 2 600
2 400
2 400
2 400
2 200
2 200
1 900
1 800
2 800 | 3 600
3 200
3 200
3 200
3 000
3 000
2 600
2 400
2 600 | | 95 | 130
145
145
160
170
170
200
200
200
200
200 | 23
32
39
46
34.5
45.5
49.5
49.5
49.5
71.5 | 23
32
39
46
32
43
45
45
45
45 | 18
24
32.5
38
27
37
38
36
32
32
55 | 1.5
2
3
3
3
4
4
4
4 | 1.5
1.5
1.5
3.5
2.5
3.3
3.3
3.3 | 98 000
173 000
231 000
283 000
283 000
289 000
370 000
310 000
310 000
525 000 | 172 000
283 000
390 000
445 000
286 000
400 000
455 000
435 000
375 000
375 000
710 000 | 10 000
17 600
23 500
28 800
29 500
38 000
35 500
31 500
31 500
53 500 | 17 500
28 900
39 500
45 500
29 200
40 500
46 500
44 000
38 500
72 500 | 2 400
2 400
2 400
2 200
2 200
2 200
1 900
1 800
1 700
1 700
1 900 | 3 400
3 200
3 200
3 000
2 800
2 800
2 600
2 400
2 400
2 400
2 600 | | 100 | 140
145
150
150
165
180
180
215
215
215 | 25
24
32
39
52
37
49
63
51.5
56.5
77.5 | 25
22.5
32
39
52
34
46
63
47
51
73 | 20
17.5
24
32.5
40
29
39
48
39
35
60 | 1.5
3
2
2.5
3
3
4
4 | 1.5
3 1.5
1.5
2.5
2.5
2.5
3
3 | 117 000
113 000
176 000
235 000
315 000
255 000
325 000
410 000
425 000
385 000
565 000 | 205 000
163 000
294 000
405 000
515 000
450 000
635 000
525 000
505 000
755 000 | 12 000
11 500
17 900
24 000
32 500
26 000
33 000
42 000
43 000
39 000
57 500 | 20 900
16 600
30 000
41 500
52 500
34 000
46 000
65 000
53 500
51 500
77 000 | 2 200
2 200
2 200
2 200
2 200
2 000
2 000
2 000
1 700
1 500
1 700 | 3 200
3 000
3 000
3 000
2 800
2 600
2 600
2 400
2 200
2 400 | Remarks The suffix CA represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix CA. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Danis a Novakasa | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | sions | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--------------------------------------|--------------------------------|-------------------|-----------------|-------------------|---------------------|-------------------|-----------------|-----------------|---|----------------------|----------------------|-------------------|----------------------|----------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cup $oldsymbol{\mathcal{Y}}_{\mathrm{a}}$ max. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32917 J | 2BC | 96 | 92 | 111 | 111 | 115 | 5 | 5 | 1.5 1.5 | 20.9 | 0.33 | 1.8 | 1.0 | 0.8 | | HR 32017 XJ | 4CC | 96 | 94 | 121 | 116 | 125 | 6 | 7 | 1.5 1.5 | 28.2 | 0.44 | 1.4 | 0.75 | 1.38 | | HR 33017 J | 2CE | 96 | 94 | 121 | 117 | 125 | 6 | 6.5 | 1.5 1.5 | 26.5 | 0.29 | 2.1 | 1.1 | 1.75 | | HR 33117 J
HR 30217 J
30217 CA | 3DE
3EB | 100
100
100 | 94
97
98 | 130
140
140 | 122
133
131 | 135
141
142 | 7
5
5 | 9
6.5
8.5 | 2 2
2 2
2 2 | 32.7
30.3
36.2 | 0.41
0.42
0.58 | 1.5
1.4
1.0 | 0.81
0.79
0.57 | 2.51
2.12
2.07 | | HR 32217 J | 3EC | 100 | 96 | 140 | 131 | 142 | 5 | 8.5 | 2 2 | 33.9 | 0.42 | 1.4 | 0.79 | 2.64 | | HR 33217 J | 3EE | 100 | 95 | 140 | 129 | 144 | 7 | 12 | 2 2 | 37.3 | 0.42 | 1.4 | 0.79 | 3.57 | | HR 30317 J | 2GB | 106 | 108 | 166 | 157 | 167 | 5 | 10.5 | 3 2.5 | 35.8 | 0.35 | 1.7 | 0.96 | 5.08 | | HR 30317 DJ | 7GB | 113 | 103 | 166 | 144 | 169 | 6 | 16.5 | 3 2.5 | 55.4 | 0.83 | 0.73 | 0.40 | 4.88 | | HR 31317 J | 7GB | 113 | 103 | 166 | 144 | 169 | 6 | 16.5 | 3 2.5 | 55.4 | 0.83 | 0.73 | 0.40 | 4.88 | | HR 32317 J | 2GD | 110 | 104 | 166 | 151 | 167 | 5 | 14.5 | 3 2.5 | 43.6 | 0.35 | 1.7 | 0.96 | 7.31 | |
HR 32918 J | 2BC | 101 | 97 | 116 | 116 | 120 | 5 | 5 | 1.5 1.5 | 22.0 | 0.34 | 1.8 | 0.96 | 0.838 | | HR 32018 XJ | 3CC | 102 | 99 | 131 | 124 | 134 | 6 | 8 | 2 1.5 | 29.7 | 0.42 | 1.4 | 0.78 | 1.78 | | HR 33018 J | 2CE | 102 | 99 | 131 | 129 | 135 | 7 | 6.5 | 2 1.5 | 27.9 | 0.27 | 2.2 | 1.2 | 2.21 | | HR 33118 J | 3DE | 105 | 100 | 140 | 132 | 144 | 7 | 10 | 2 2 | 35.2 | 0.40 | 1.5 | 0.83 | 3.14 | | HR 30218 J | 3FB | 105 | 103 | 150 | 141 | 150 | 5 | 6.5 | 2 2 | 31.7 | 0.42 | 1.4 | 0.79 | 2.6 | | HR 32218 J | 3FC | 105 | 102 | 150 | 139 | 152 | 5 | 8.5 | 2 2 | 36.2 | 0.42 | 1.4 | 0.79 | 3.41 | | HR 30318 J | 2GB | 111 | 114 | 176 | 176 | 176 | 5 | 10.5 | 3 2.5 | 37.3 | 0.35 | 1.7 | 0.96 | 5.91 | | HR 30318 DJ | 7GB | 118 | 110 | 176 | 152 | 179 | 6 | 16.5 | 3 2.5 | 58.7 | 0.83 | 0.73 | 0.40 | 5.52 | | HR 31318 J | 7GB | 118 | 110 | 176 | 152 | 179 | 6 | 16.5 | 3 2.5 | 58.7 | 0.83 | 0.73 | 0.40 | 5.52 | | HR 32318 J | 2GD | 115 | 109 | 176 | 158 | 177 | 5 | 14.5 | 3 2.5 | 46.5 | 0.35 | 1.7 | 0.96 | 8.6 | | HR 32919 J | 2BC | 106 | 102 | 121 | 121 | 125 | 5 | 5 | 1.5 1.5 | 23.2 | 0.36 | 1.7 | 0.92 | 0.877 | | HR 32019 XJ | 4CC | 107 | 104 | 136 | 131 | 140 | 6 | 8 | 2 1.5 | 31.2 | 0.44 | 1.4 | 0.75 | 1.88 | | HR 33019 J | 2CE | 107 | 103 | 136 | 133 | 139 | 7 | 6.5 | 2 1.5 | 28.6 | 0.28 | 2.2 | 1.2 | 2.3 | | T 2 ED095 | 2ED | 113 | 108 | 146 | 141 | 152 | 6 | 8 | 2.5 2.5 | 34.5 | 0.34 | 1.8 | 0.97 | 3.74 | | HR 30219 J | 3FB | 113 | 110 | 158 | 150 | 159 | 5 | 7.5 | 2.5 2 | 33.7 | 0.42 | 1.4 | 0.79 | 3.13 | | HR 32219 J | 3FC | 113 | 108 | 158 | 147 | 161 | 5 | 8.5 | 2.5 2 | 39.3 | 0.42 | 1.4 | 0.79 | 4.22 | | HR 30319 J | 2GB | 116 | 119 | 186 | 172 | 184 | 5 | 11.5 | 3 2.5 | 38.6 | 0.35 | 1.7 | 0.96 | 6.92 | | 30319 CA | — | 116 | 119 | 186 | 168 | 188 | 5 | 13.5 | 3 2.5 | 48.6 | 0.54 | 1.1 | 0.61 | 6.71 | | HR 30319 DJ | 7GB | 123 | 115 | 186 | 158 | 187 | 6 | 17.5 | 3 2.5 | 61.9 | 0.83 | 0.73 | 0.40 | 6.64 | | HR 31319 J | 7GB | 123 | 115 | 186 | 158 | 187 | 6 | 17.5 | 3 2.5 | 61.9 | 0.83 | 0.73 | 0.40 | 6.64 | | HR 32319 J | 2GD | 120 | 115 | 186 | 167 | 186 | 5 | 16.5 | 3 2.5 | 48.6 | 0.35 | 1.7 | 0.96 | 10.4 | | HR 32920 J | 2CC | 111 | 109 | 132 | 132 | 134 | 5 | 5 | 1.5 1.5 | 24.2 | 0.33 | 1.8 | 1.0 | 1.18 | | T 4 CB100 | 4CB | 118 | 108 | 135 | 135 | 142 | 6 | 6.5 | 2.5 2.5 | 30.1 | 0.47 | 1.3 | 0.70 | 1.18 | | HR 32020 XJ | 4CC | 112 | 109 | 141 | 136 | 144 | 6 | 8 | 2 1.5 | 32.5 | 0.46 | 1.3 | 0.72 | 1.95 | | HR 33020 J | 2CE | 112 | 107 | 141 | 137 | 143 | 7 | 6.5 | 2 1.5 | 29.3 | 0.29 | 2.1 | 1.2 | 2.38 | | HR 33120 J | 3EE | 115 | 110 | 155 | 144 | 159 | 8 | 12 | 2 2 | 40.5 | 0.41 | 1.5 | 0.81 | 4.32 | | HR 30220 J | 3FB | 118 | 116 | 168 | 158 | 168 | 5 | 8 | 2.5 2 | 36.1 | 0.42 | 1.4 | 0.79 | 3.78 | | HR 32220 J | 3FC | 118 | 115 | 168 | 155 | 171 | 5 | 10 | 2.5 2 | 41.5 | 0.42 | 1.4 | 0.79 | 5.05 | | HR 33220 J | 3FE | 118 | 113 | 168 | 152 | 172 | 10 | 15 | 2.5 2 | 46.0 | 0.40 | 1.5 | 0.82 | 6.76 | | HR 30320 J | 2GB | 121 | 128 | 201 | 185 | 197 | 5 | 12.5 | 3 2.5 | 41.4 | 0.35 | 1.7 | 0.96 | 8.41 | | HR 31320 J | 7GB | 136 | 125 | 201 | 169 | 202 | 7 | 21.5 | 3 2.5 | 67.7 | 0.83 | 0.73 | 0.40 | 9.02 | | HR 32320 J | 2GD | 125 | 125 | 201 | 178 | 200 | 5 | 17.5 | 3 2.5 | 53.2 | 0.35 | 1.7 | 0.96 | 12.7 | Bore Diameter 105 – 130 mm | | | Bound | ary Dimen | sions | | | | Basic Load F | - | | Limiting | | |-----|------------|------------|-----------|----------|--------|---------------------------|--------------------|----------------------|------------------|-------------------|----------------|----------------| | d | D | T | В | С | | e Cup
<i>Y</i>
nin. | $C_{\rm r}$ | N) $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | (mir
Grease | oil | | 105 | 145 | 25 | 25 | 20 | 1.5 | 1.5 | 119 000 | 212 000 | 12 100 | 21 600 | 2 200 | 3 000 | | | 160 | 35 | 35 | 26 | 2.5 | 2 | 204 000 | 340 000 | 20 800 | 34 500 | 2 000 | 2 800 | | | 160 | 43 | 43 | 34 | 2.5 | 2 | 256 000 | 435 000 | 26 100 | 44 000 | 2 000 | 2 800 | | | 190 | 39 | 36 | 30 | 3 | 2.5 | 280 000 | 365 000 | 28 500 | 37 500 | 1 900 | 2 600 | | | 190 | 53 | 50 | 43 | 3 | 2.5 | 360 000 | 510 000 | 37 000 | 52 000 | 1 900 | 2 600 | | | 225 | 53.5 | 49 | 41 | 4 | 3 | 455 000 | 565 000 | 46 500 | 57 500 | 1 600 | 2 200 | | | 225
225 | 58
81.5 | 53
77 | 36
63 | 4
4 | 3 | 415 000
670 000 | 540 000
925 000 | 42 000
68 000 | 55 000
94 500 | 1 500
1 700 | 2 000
2 200 | | 110 | 150 | 25 | 25 | 20 | 1.5 | 1.5 | 123 000 | 224 000 | 12 500 | 22 800 | 2 200 | 2 800 | | | 170 | 38 | 38 | 29 | 2.5 | 2 | 236 000 | 390 000 | 24 000 | 40 000 | 2 000 | 2 600 | | | 170 | 47 | 47 | 37 | 2.5 | 2 | 294 000 | 515 000 | 30 000 | 52 500 | 2 000 | 2 600 | | | 180 | 56 | 56 | 43 | 2.5 | 2 | 365 000 | 610 000 | 37 500 | 62 000 | 1 900 | 2 600 | | | 200 | 41 | 38 | 32 | 3 | 2.5 | 315 000 | 420 000 | 32 000 | 43 000 | 1 800 | 2 400 | | | 200 | 56 | 53 | 46 | 3 | 2.5 | 400 000 | 565 000 | 40 500 | 57 500 | 1 800 | 2 400 | | | 240 | 54.5 | 50 | 42 | 4 | 3 | 485 000 | 595 000 | 49 500 | 60 500 | 1 500 | 2 000 | | | 240 | 63 | 57 | 38 | 4 | 3 | 470 000 | 605 000 | 48 000 | 62 000 | 1 400 | 1 900 | | | 240 | 84.5 | 80 | 65 | 4 | 3 | 675 000 | 910 000 | 68 500 | 93 000 | 1 500 | 2 000 | | 120 | 165 | 29 | 29 | 23 | 1.5 | 1.5 | 161 000 | 291 000 | 16 400 | 29 700 | 1 900 | 2 600 | | | 170 | 27 | 25 | 19.5 | 3 | 3 | 153 000 | 243 000 | 51 600 | 24 800 | 1 800 | 2 600 | | | 180 | 38 | 38 | 29 | 2.5 | 2 | 242 000 | 405 000 | 24 600 | 41 000 | 1 800 | 2 400 | | | 180 | 48 | 48 | 38 | 2.5 | 2 | 300 000 | 540 000 | 30 500 | 55 000 | 1 800 | 2 600 | | | 200 | 62 | 62 | 48 | 2.5 | 2 | 460 000 | 755 000 | 46 500 | 77 000 | 1 700 | 2 400 | | | 215 | 43.5 | 40 | 34 | 3 | 2.5 | 335 000 | 450 000 | 34 000 | 46 000 | 1 600 | 2 200 | | | 215 | 61.5 | 58 | 50 | 3 | 2.5 | 440 000 | 635 000 | 44 500 | 65 000 | 1 600 | 2 200 | | | 260 | 59.5 | 55 | 46 | 4 | 3 | 535 000 | 655 000 | 54 500 | 67 000 | 1 400 | 1 900 | | | 260 | 68 | 62 | 42 | 4 | 3 | 560 000 | 730 000 | 57 000 | 74 500 | 1 300 | 1 800 | | | 260 | 90.5 | 86 | 69 | 4 | 3 | 770 000 | 1 060 000 | 78 500 | 108 000 | 1 400 | 1 900 | | 130 | 180 | 32 | 30 | 26 | 2 | 1.5 | 167 000 | 281 000 | 17 000 | 28 600 | 1 800 | 2 400 | | | 180 | 32 | 32 | 25 | 2 | 1.5 | 200 000 | 365 000 | 20 400 | 37 500 | 1 800 | 2 400 | | | 185 | 29 | 27 | 21 | 3 | 3 | 183 000 | 296 000 | 18 600 | 30 000 | 1 700 | 2 400 | | | 200 | 45 | 45 | 34 | 2.5 | 2 | 320 000 | 535 000 | 32 500 | 54 500 | 1 600 | 2 200 | | | 200 | 55 | 55 | 43 | 2.5 | 2 | 395 000 | 715 000 | 40 500 | 73 000 | 1 700 | 2 200 | | | 230 | 43.75 | 40 | 34 | 4 | 3 | 375 000 | 505 000 | 38 000 | 51 500 | 1 500 | 2 000 | | | 230 | 67.75 | 64 | 54 | 4 | 3 | 530 000 | 790 000 | 54 000 | 80 500 | 1 500 | 2 000 | | | 280 | 63.75 | 58 | 49 | 5 | 4 | 545 000 | 675 000 | 56 000 | 68 500 | 1 300 | 1 800 | | | 280 | 63.75 | 58 | 49 | 5 | 4 | 650 000 | 820 000 | 66 000 | 83 500 | 1 300 | 1 800 | | | 280 | 72 | 66 | 44 | 5 | 4 | 625 000 | 820 000 | 63 500 | 83 500 | 1 200 | 1 700 | | | 280 | 98.75 | 93 | 78 | 5 | 4 | 830 000 | 1 150 000 | 84 500 | 117 000 | 1 300 | 1 800 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | r _r e | $F_{\rm a}/I$ | $r_{\rm r}$ e | |---------------|------------------|---------------|---------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}=0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | D : N . | ISO355 | | | Abutn | nent ar | nd Fillet
(mm) | Dimens | sions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |-----------------|--------------------------------|-----------------|-----------------|---------------|------------------------|-------------------|-----------------|-----------------|-----|------------------------------|----------------------|----------|-------|--------------|--------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | <i>1</i> max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | 1 | Cup
r _a
ax. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32921 J | 2CC | 116 | 114 | 137 | 137 | 140 | 5 | 5 | 1.5 | 1.5 | 25.3 | 0.34 | 1.8 | 0.96 | 1.23 | | HR 32021 XJ | 4DC | 120 | 115 | 150 | 144 | 154 | 6 | 9 | 2 | 2 | 34.3 | 0.44 | 1.4 | 0.74 | 2.48 | | HR 33021 J | 2DE | 120 | 115 | 150 | 146 | 153 | 7 | 9 | 2 | 2 | 30.9 | 0.28 | 2.1 | 1.2 | 3.03 | | HR 30221 J | 3FB | 123 | 123 | 178 | 166 | 177 | 6 | 9 | 2.5 | 2 | 38.1 | 0.42 | 1.4 | 0.79 | 4.51 | | HR 32221 J | 3FC | 123 | 120 | 178 | 162 | 180 | 5 | 10 | 2.5 | 2 | 44.8 | 0.42 | 1.4 | 0.79 | 6.25 | | HR 30321 J | 2GB | 126 | 133 | 211 | 195 | 206 | 6 | 12.5 | 3 | 2.5 | 43.3 | 0.35 | 1.7 | 0.96 | 9.52 | | HR 31321 J | 7GB | 141 | 130 | 211 | 177 | 211 | 7 | 22 | 3 | 2.5 | 70.2 | 0.83 | 0.73 | 0.40 | 10 | | HR 32321 J | 2GD | 130 | 129 | 211 | 186 | 209 | 6 | 18.5 | 3 | 2.5 | 55.2 | 0.35 | 1.7 | 0.96 | 14.9 | | HR 32922 J | 2CC | 121 | 119 | 142 | 142 | 145 | 5 | 5 | 1.5 | 1.5 | 26.5 | 0.36 | 1.7 | 0.93 | 1.29 | | HR 32022 XJ | 4DC | 125 | 121 | 160 | 153 | 163 | 7 | 9 | 2 | 2 | 35.9 | 0.43 | 1.4 | 0.77 | 3.09 | | HR 33022 J | 2DE | 125 | 121 | 160 | 153 | 161 | 7 | 10 | 2 | 2 | 33.7 | 0.29 | 2.1 | 1.2 | 3.84 | | HR 33122 J | 3EE | 125 | 121 | 170 | 156 | 174 | 9 | 13 | 2 | 2 | 44.1 | 0.42 | 1.4 | 0.79 | 5.54 | | HR 30222 J | 3FB | 128 | 129 | 188 | 175 | 187 | 6 | 9 | 2.5 | 2 | 40.2 | 0.42 | 1.4 | 0.79 | 5.28 | | HR 32222 J | 3FC | 128 | 127 | 188 | 171 | 190 | 5 | 10 | 2.5 | 2 | 47.2 | 0.42 | 1.4 | 0.79 | 7.35 | | HR 30322 J | 2GB | 131 | 143 | 226 | 208 | 220 | 6 | 12.5 | 3 | 2.5 | 45.1 | 0.35 | 1.7 | 0.96 | 11 | | HR 31322 J | 7GB | 146 | 136 | 226 | 191 | 224 | 7 | 25 | 3 | 2.5 | 74.8 | 0.83 | 0.73 | 0.40 | 12.3 | | HR 32322 J | 2GD | 135 | 139 | 226 | 201 | 222 | 6 | 19.5 | 3 | 2.5 | 58.6 | 0.35 | 1.7 | 0.96 | 17.1 | |
HR 32924 J | 2CC | 131 | 129 | 156 | 155 | 160 | 6 | 6 | 1.5 | 1.5 | 29.2 | 0.35 | 1.7 | 0.95 | 1.8 | | T 4 CB120 | 4CB | 138 | 129 | 158 | 158 | 164 | 7 | 7.5 | 2.5 | 2.5 | 35.0 | 0.47 | 1.3 | 0.70 | 1.78 | | HR 32024 XJ | 4DC | 135 | 131 | 170 | 162 | 173 | 7 | 9 | 2 | 2 | 39.7 | 0.46 | 1.3 | 0.72 | 3.27 | | HR 33024 J | 2DE | 135 | 130 | 168 | 161 | 171 | 6 | 10 | 2 | 2 | 36.0 | 0.31 | 2.0 | 1.1 | 4.2 | | HR 33124 J | 3FE | 135 | 133 | 190 | 173 | 192 | 9 | 14 | 2 | 2 | 47.9 | 0.40 | 1.5 | 0.83 | 7.67 | | HR 30224 J | 4FB | 138 | 141 | 203 | 190 | 201 | 6 | 9.5 | 2.5 | 2 | 44.4 | 0.44 | 1.4 | 0.76 | 6.28 | | HR 32224 J | 4FD | 138 | 137 | 203 | 181 | 204 | 6 | 11.5 | 2.5 | 2 | 52.1 | 0.44 | 1.4 | 0.76 | 9.0 | | HR 30324 J | 2GB | 141 | 154 | 246 | 223 | 237 | 6 | 13.5 | 3 | 2.5 | 50.0 | 0.35 | 1.7 | 0.96 | 13.9 | | HR 31324 J | 7GB | 156 | 148 | 246 | 206 | 244 | 9 | 26 | 3 | 2.5 | 81.7 | 0.83 | 0.73 | 0.40 | 15.6 | | HR 32324 J | 2GD | 145 | 149 | 246 | 216 | 239 | 6 | 21.5 | 3 | 2.5 | 62.5 | 0.35 | 1.7 | 0.96 | 21.8 | | 32926 | | 142 | 141 | 171 | 168 | 175 | 6 | 6 | 2 | 1.5 | 34.7 | 0.36 | 1.7 | 0.92 | 2.25 | | HR 32926 J | 2CC | 142 | 140 | 170 | 168 | 173 | 6 | 7 | 2 | 1.5 | 31.4 | 0.34 | 1.8 | 0.97 | 2.46 | | T 4 CB130 | 4CB | 148 | 141 | 171 | 171 | 179 | 8 | 8 | 2.5 | 2.5 | 37.5 | 0.47 | 1.3 | 0.70 | 2.32 | | HR 32026 XJ | 4EC | 145 | 144 | 190 | 179 | 192 | 8 | 11 | 2 | 2 | 43.9 | 0.43 | 1.4 | 0.76 | 5.06 | | HR 33026 J | 2EE | 145 | 144 | 188 | 179 | 192 | 8 | 12 | 2 | 2 | 42.4 | 0.34 | 1.8 | 0.97 | 6.25 | | HR 30226 J | 4FB | 151 | 151 | 216 | 205 | 217 | 7 | 9.5 | 3 | 2.5 | 45.9 | 0.44 | 1.4 | 0.76 | 7.25 | | HR 32226 J | 4FD | 151 | 147 | 216 | 196 | 219 | 7 | 13.5 | 3 | 2.5 | 57.0 | 0.44 | 1.4 | 0.76 | 11.3 | | 30326 | — | 157 | 168 | 262 | 239 | 255 | 8 | 14.5 | 4 | 3 | 53.9 | 0.36 | 1.7 | 0.92 | 16.6 | | HR 30326 J | 2GB | 157 | 166 | 262 | 241 | 255 | 8 | 14.5 | 4 | 3 | 52.8 | 0.35 | 1.7 | 0.96 | 17.2 | | HR 31326 J | 7GB | 174 | 159 | 262 | 220 | 261 | 9 | 28 | 4 | 3 | 87.1 | 0.83 | 0.73 | 0.40 | 18.8 | | 32326 | — | 162 | 165 | 262 | 233 | 263 | 8 | 20.5 | 4 | | 69.2 | 0.36 | 1.7 | 0.92 | 26.6 | Bore Diameter 140 – 170 mm | | Boundary Dimensions
(mm)
Cou | | | | | | | Basic Load F | - | _ | Limiting | | |-----|------------------------------------|-----------------------|-----------------------|----------------------|------------------|------------------|--|--|------------|---|----------------------------------|----------------------------------| | d | D | T | В | С | | Cup
r
nin. | $C_{\rm r}$ | N) $C_{0\mathrm{r}}$ | $C_{ m r}$ | gf} $C_{0\mathrm{r}}$ | (mir
Grease | n)
Oil | | 140 | 190 | 32 | 32 | 25 | 2 | 1.5 | 206 000 | 390 000 | 21 000 | 39 500 | 1 700 | 2 200 | | | 210 | 45 | 45 | 34 | 2.5 | 2 | 325 000 | 555 000 | 33 000 | 57 000 | 1 600 | 2 200 | | | 210 | 56 | 56 | 44 | 2.5 | 2 | 410 000 | 770 000 | 42 000 | 78 500 | 1 600 | 2 200 | | | 250 | 45.75 | 42 | 36 | 4 | 3 | 390 000 | 515 000 | 40 000 | 52 500 | 1 400 | 1 900 | | | 250 | 71.75 | 68 | 58 | 4 | 3 | 610 000 | 915 000 | 62 000 | 93 500 | 1 400 | 1 900 | | | 300 | 67.75 | 62 | 53 | 5 | 4 | 740 000 | 945 000 | 75 500 | 96 500 | 1 200 | 1 700 | | | 300 | 77 | 70 | 47 | 5 | 4 | 695 000 | 955 000 | 71 000 | 97 500 | 1 100 | 1 500 | | | 300 | 107.75 | 102 | 85 | 5 | 4 | 985 000 | 1 440 000 | 101 000 | 147 000 | 1 200 | 1 600 | | 150 | 210 | 38 | 36 | 31 | 2.5 | 2 | 247 000 | 440 000 | 25 200 | 45 000 | 1 500 | 2 000 | | | 210 | 38 | 38 | 30 | 2.5 | 2 | 281 000 | 520 000 | 28 600 | 53 000 | 1 500 | 2 000 | | | 225 | 48 | 48 | 36 | 3 | 2.5 | 375 000 | 650 000 | 38 000 | 66 500 | 1 400 | 2 000 | | | 225 | 59 | 59 | 46 | 3 | 2.5 | 435 000 | 805 000 | 44 000 | 82 000 | 1 400 | 2 000 | | | 270 | 49 | 45 | 38 | 4 | 3 | 485 000 | 665 000 | 49 000 | 67 500 | 1 300 | 1 800 | | | 270 | 77 | 73 | 60 | 4 | 3 | 705 000 | 1 080 000 | 71 500 | 110 000 | 1 300 | 1 800 | | | 320
320
320
320 | 72
72
82
114 | 65
65
75
108 | 55
55
50
90 | 5
5
5
5 | 4
4
4
4 | 690 000
825 000
790 000
1 120 000 | 860 000
1 060 000
1 100 000
1 700 000 | | 87 500
108 000
112 000
174 000 | 1 100
1 100
1 000
1 100 | 1 500
1 600
1 400
1 500 | | 160 | 220 | 38 | 38 | 30 | 2.5 | 2 | 296 000 | 570 000 | 30 000 | 58 000 | 1 400 | 1 900 | | | 240 | 51 | 51 | 38 | 3 | 2.5 | 425 000 | 750 000 | 43 500 | 76 500 | 1 300 | 1 800 | | | 290 | 52 | 48 | 40 | 4 | 3 | 530 000 | 730 000 | 54 000 | 74 500 | 1 200 | 1 600 | | | 290
340
340 | 84
75
75 | 80
68
68 | 67
58
58 | 4
5
5 | 3
4
4 | 795 000
765 000
870 000 | 1 220 000
960 000
1 110 000 | 78 000 | 125 000
98 000
113 000 | 1 200
1 000
1 100 | 1 600
1 400
1 400 | | | 340 | 75 | 68 | 48 | 5 | 4 | 675 000 | 875 000 | 69 000 | 89 000 | 950 | 1 300 | | | 340 | 121 | 114 | 95 | 5 | 4 | 1 210 000 | 1 770 000 | 123 000 | 181 000 | 1 000 | 1 400 | | 170 | 230 | 38 | 36 | 31 | 2.5 | 2.5 | 258 000 | 485 000 | 26 300 | 49 500 | 1 300 | 1 800 | | | 230 | 38 | 38 | 30 | 2.5 | 2 | 294 000 | 560 000 | 30 000 | 57 000 | 1 400 | 1 800 | | | 260 | 57 | 57 | 43 | 3 | 2.5 | 505 000 | 890 000 | 51 500 | 90 500 | 1 200 | 1 700 | | | 310
310
360 | 57
91
80 | 52
86
72 | 43
71
62 | 5
5
5 | 4
4
4 | 630 000
930 000
845 000 | 885 000
1 450 000
1 080 000 | | 90 000
148 000
110 000 | 1 100
1 100
950 | 1 500
1 500
1 300 | | | 360
360
360 | 80
80
127 | 72
72
120 | 62
50
100 | 5
5
5 | 4
4
4 | 960 000
760 000
1 370 000 | 1 230 000
1 040 000
2 050 000 | | 125 000
106 000
209 000 | 1 000
900
1 000 | 1 300
1 200
1 300 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{ m r}\!>\!$ 0.5 $F_{ m r}\!+\!Y_0F_{ m a}$, use $P_0\!=\!F_{ m r}$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | Pagring Numbers | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | sions | Can | . Cun | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------|----------------------|---------------|---------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|----------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | 1 | e Cup
r _a
nax. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32928 J | 2CC | 152 | 150 | 180 | 178 | 184 | 6 | 7 | 2 | 1.5 | 33.6 | 0.36 | 1.7 | 0.92 | 2.64 | | HR 32028 XJ | 4DC | 155 | 152 | 200 | 189 | 202 | 8 | 11 | 2 | 2 | 46.6 | 0.46 | 1.3 | 0.72 | 5.32 | | HR 33028 J | 2DE | 155 | 153 | 198 | 189 | 202 | 7 | 12 | 2 | 2 | 45.5 | 0.36 | 1.7 | 0.92 | 6.74 | | HR 30228 J | 4FB | 161 | 164 | 236 | 221 | 234 | 7 | 9.5 | 3 | 2.5 | 48.9 | 0.44 | 1.4 | 0.76 | 8.74 | | HR 32228 J | 4FD | 161 | 159 | 236 | 213 | 238 | 9 | 13.5 | 3 | 2.5 | 60.5 | 0.44 | 1.4 | 0.76 | 14.3 | | HR 30328 J | 2GB | 167 | 177 | 282 | 256 | 273 | 9 | 14.5 | 4 | 3 | 55.7 | 0.35 | 1.7 | 0.96 | 21.1 | | HR 31328 J | 7GB | 184 | 174 | 282 | 236 | 280 | 9 | 30 | 4 | 3 | 92.9 | 0.83 | 0.73 | 0.40 | 28.5 | | 32328 | — | 172 | 177 | 282 | 246 | 281 | | 22.5 | 4 | 3 | 76.4 | 0.37 | 1.6 | 0.88 | 33.9 | | 32930
HR 32930 J
HR 32030 XJ | 2DC
4EC | 165
165
168 | 162
163
164 | 200
198
213 | 195
196
202 | 201
202
216 | 7
7
8 | 7
8
12 | 2
2
2.5 | 2
2
2 | 36.7
36.5
49.8 | 0.33
0.33
0.46 | 1.8
1.8
1.3 | 1.0
1.0
0.72 | 3.8
4.05
6.6 | | HR 33030 J | 2EE | 168 | 165 | 213 | 203 | 217 | 8 | 13 | 2.5 | 2 | 48.7 | 0.36 | 1.7 | 0.90 | 8.07 | | HR 30230 J | 2GB | 171 | 175 | 256 | 236 | 250 | 7 | 11 | 3 | 2.5 | 51.3 | 0.44 | 1.4 | 0.76 | 11.2 | | HR 32230 J | 4GD | 171 | 171 | 256 | 228 | 254 | 8 | 17 | 3 | 2.5 | 64.7 | 0.44 | 1.4 | 0.76 | 17.8 | | 30330
HR 30330 J
HR 31330 J
32330 | —
2GB
7GB | 177
177
194
182 | 193
190
187
191 | 302
302
302
302 | 275
276
253
262 | 292
292
300
297 | 8
8
9
8 | 17
17
32
24 | 4
4
4 | 3
3
3 | 61.4
60.0
99.3
81.5 | 0.36
0.35
0.83
0.37 | 1.7
1.7
0.73
1.6 | 0.92
0.96
0.40
0.88 | 24.2
25
28.5
41.4 | | HR 32932 J | 2DC | 175 | 173 | 208 | 206 | 212 | 7 | 8 | 2 | 2 | 38.7 | 0.35 | 1.7 | 0.95 | 4.32 | | HR 32032 XJ | 4EC | 178 | 175 | 228 | 216 | 231 | 8 | 13 | 2.5 | 2 | 53.0 | 0.46 | 1.3 | 0.72 | 7.93 | | HR 30232 J | 4GB | 181 | 189 | 276 | 253 | 269 | 8 | 12 | 3 | 2.5 | 55.0 | 0.44 | 1.4 | 0.76 | 13.7 | | HR 32232 J | 4GD | 181 | 184 | 276 | 243 | 274 | 10 | 17 | 3 | 2.5 | 70.5 | 0.44 | 1.4 | 0.76 | 22.7 | | 30332 | — | 187 | 205 | 322 | 293 | 311 | 10 | 17 | 4 | 3 | 64.6 | 0.36 | 1.7 | 0.92 | 28.4 | | HR 30332 J | 2GB | 187 | 201 | 322 | 293 | 310 | 10 | 17 | 4 | 3 | 62.9 | 0.35 | 1.7 | 0.96 | 29.2 | | 30332 D
32332 | = | 196
192 | 198
202 | 322
322 | 270
281 | 313
319 | 9
10 | 27
26 | 4
4 | 3 | 99.4
87.1 | 0.81
0.37 | 0.74
1.6 | 0.41
0.88 | 27.5
48.3 | | 32934
HR 32934 J
HR 32034 XJ | 3DC
4EC | 185
185
188 | 183
180
187 | 220
218
248 |
216
215
232 | 223
222
249 | 7
7
10 | 7
8
14 | 2
2
2.5 | 2
2
2 | 41.6
41.7
56.6 | 0.36
0.38
0.44 | 1.7
1.6
1.4 | 0.90
0.86
0.74 | 4.3
4.44
10.6 | | HR 30234 J | 4GB | 197 | 202 | 292 | 273 | 288 | 8 | 14 | 4 | 3 | 59.4 | 0.44 | 1.4 | 0.76 | 17.1 | | HR 32234 J | 4GD | 197 | 197 | 292 | 262 | 294 | 10 | 20 | 4 | 3 | 76.4 | 0.44 | 1.4 | 0.76 | 28 | | 30334 | — | 197 | 221 | 342 | 312 | 332 | 10 | 18 | 4 | 3 | 70.1 | 0.37 | 1.6 | 0.90 | 33.5 | | HR 30334 J | 2GB | 197 | 214 | 342 | 310 | 329 | 10 | 18 | 4 | 3 | 67.3 | 0.35 | 1.7 | 0.96 | 34.5 | | 30334 D | — | 206 | 215 | 342 | 288 | 332 | 10 | 30 | 4 | 3 | 107.3 | 0.81 | 0.74 | 0.41 | 33.4 | | 32334 | — | 202 | 213 | 342 | 297 | 337 | 10 | 27 | 4 | 3 | 91.3 | 0.37 | 1.6 | 0.88 | 57 | B 131 B 130 Bore Diameter 180 – 240 mm | | Boundary Dimensions
(mm)
Cone | | | | | | , | Basic Load R | - | f) | Limiting | | |-----|-------------------------------------|-----------------------|-----------------------|-----------------------|------------------|-------------------|--|--|----------------------------|--|----------------------------|----------------------------------| | d | D | Т | В | С | | Cup
r
nin. | $C_{\rm r}$ | N) $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | (mir
Grease | oil | | 180 | 250
280
320 | 45
64
57 | 45
64
52 | 34
48
43 | 2.5
3
5 | 2
2.5
4 | 350 000
640 000
650 000 | 685 000
1 130 000
930 000 | 36 000
65 000
66 000 | 69 500
115 000
95 000 | 1 300
1 200
1 100 | 1 700
1 600
1 400 | | | 320
380
380
380 | 91
83
83
134 | 86
75
75
126 | 71
64
53
106 | 5
5
5
5 | 4
4
4
4 | 960 000
935 000
820 000
1 520 000 | 1 540 000
1 230 000
1 120 000
2 290 000 | 95 500
83 500 | 157 000
126 000
114 000
234 000 | 1 100
900
850
950 | 1 400
1 300
1 200
1 300 | | 190 | 260
290
340 | 45
64
60 | 45
64
55 | 34
48
46 | 2.5
3
5 | 2
2.5
4 | 365 000
650 000
715 000 | 715 000
1 170 000
1 020 000 | | 73 000
119 000
104 000 | 1 200
1 100
1 000 | 1 600
1 500
1 300 | | | 340
400
400 | 97
86
140 | 92
78
132 | 75
65
109 | 5
6
6 | 4
5
5 | 1 110 000
1 010 000
1 660 000 | 1 770 000
1 340 000
2 580 000 | 103 000 | 181 000
136 000
263 000 | 1 000
850
850 | 1 400
1 200
1 200 | | 200 | 280
280
310 | 51
51
70 | 48
51
70 | 41
39
53 | 3
3
3 | 2.5
2.5
2.5 | 410 000
480 000
760 000 | 780 000
935 000
1 370 000 | 42 000
48 500
77 500 | 80 000
95 000
139 000 | 1 100
1 100
1 000 | 1 500
1 500
1 400 | | | 360
360
420 | 64
104
89 | 58
98
80 | 48
82
67 | 5
5
6 | 4
4
5 | 795 000
1 210 000
1 030 000 | 1 120 000
1 920 000
1 390 000 | 123 000 | 114 000
196 000
142 000 | 950
950
850 | 1 300
1 300
1 200 | | | 420
420 | 89
146 | 80
138 | 56
115 | 6
6 | 5
5 | 965 000
1 820 000 | 1 330 000
2 870 000 | | 136 000
292 000 | 750
800 | 1 000
1 100 | | 220 | 300
340
400 | 51
76
72 | 51
76
65 | 39
57
54 | 3
4
5 | 2.5
3
4 | 490 000
885 000
810 000 | 990 000
1 610 000
1 150 000 | 90 500 | 101 000
164 000
117 000 | 1 000
950
850 | 1 400
1 300
1 100 | | | 400
460
460 | 114
97
154 | 108
88
145 | 90
73
122 | 5
6
6 | 4
5
5 | 1 340 000
1 430 000
2 020 000 | 2 210 000
1 990 000
3 200 000 | 146 000 | 225 000
203 000
325 000 | 850
750
750 | 1 100
1 000
1 000 | | 240 | 320
360
440 | 51
76
79 | 51
76
72 | 39
57
60 | 3
4
5 | 2.5
3
4 | 500 000
920 000
990 000 | 1 040 000
1 730 000
1 400 000 | 94 000 | 107 000
177 000
142 000 | 950
850
750 | 1 300
1 200
1 000 | | | 440
500
500 | 127
105
165 | 120
95
155 | 100
80
132 | 5
6
6 | 4
5
5 | 1 630 000
1 660 000
2 520 000 | 2 730 000
2 340 000
4 100 000 | 169 000 | 278 000
238 000
415 000 | 750
670
670 | 1 000
950
900 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5 F_r + Y_0 F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Numbers | ISO355
Dimension | | | Abutn | nent ar | d Fillet
(mm) | Dimens | ions | Coro | : Cup | Eff. Load
Centers
(mm) | Constant | Axial I
Fact | | Mass
(kg) | |---|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------|----------------------|-------------------|-----------------------|-------------------------------|------------------------------|---------------------------|------------------------------|------------------------------| | • | Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $_{ m max.}$ |) _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | 1 | r _a
ax. | a | e | Y_1 | Y_0 | approx. | | HR 32936 J | 4DC | 195 | 192 | 240 | 227 | 241 | 8 | 11 | 2 | 2 | 53.9 | 0.48 | 1.3 | 0.69 | 6.56 | | HR 32036 XJ | 3FD | 198 | 199 | 268 | 248 | 267 | 10 | 16 | 2.5 | 2 | 60.4 | 0.42 | 1.4 | 0.78 | 14.3 | | HR 30236 J | 4GB | 207 | 210 | 302 | 281 | 297 | 9 | 14 | 4 | 3 | 61.8 | 0.45 | 1.3 | 0.73 | 17.8 | | HR 32236 J
30336
30336 D
32336 | 4GD
—
—
— | 207
207
216
212 | 205
233
229
225 | 302
362
362
362 | 270
324
304
310 | 303
345
352
353 | 10
10
10
10 | 20
19
30
28 | 4
4
4 | 3
3
3
3 | 78.9
72.5
113.1
96.6 | 0.45
0.36
0.81
0.37 | 1.3
1.7
0.74
1.6 | 0.73
0.92
0.41
0.88 | 29.8
39.3
38.5
66.8 | | HR 32938 J | 4DC | 205 | 201 | 250 | 237 | 251 | 8 | 11 | 2 | 2 | 55.3 | 0.48 | 1.3 | 0.69 | 6.83 | | HR 32038 XJ | 4FD | 208 | 209 | 278 | 258 | 279 | 10 | 16 | 2.5 | 2 | 63.4 | 0.44 | 1.4 | 0.75 | 14.9 | | HR 30238 J | 4GB | 217 | 223 | 322 | 302 | 318 | 9 | 14 | 4 | 3 | 65.6 | 0.44 | 1.4 | 0.76 | 21.4 | | HR 32238 J | 4GD | 217 | 216 | 322 | 290 | 323 | 10 | 22 | 4 | 3 | 80.5 | 0.44 | 1.4 | 0.76 | 35.2 | | 30338 | — | 223 | 248 | 378 | 346 | 366 | 11 | 21 | 5 | 4 | 76.1 | 0.36 | 1.7 | 0.92 | 46 | | 32338 | — | 229 | 243 | 378 | 332 | 375 | 11 | 31 | 5 | 4 | 102.7 | 0.37 | 1.6 | 0.88 | 78.9 | | 32940
HR 32940 J
HR 32040 XJ | 3EC
4FD | 218
218
218 | 217
216
221 | 268
268
298 | 256
258
277 | 269
271
297 | 9
9
11 | 10
12
17 | 2.5
2.5
2.5 | 2
2
2 | 53.4
54.2
67.4 | 0.37
0.39
0.43 | 1.6
1.5
1.4 | 0.88
0.84
0.77 | 9.26
9.65
18.9 | | HR 30240 J | 4GB | 227 | 236 | 342 | 318 | 336 | 10 | 16 | 4 | 3 | 69.1 | 0.44 | 1.4 | 0.76 | 25.5 | | HR 32240 J | 3GD | 227 | 230 | 342 | 305 | 340 | 11 | 22 | 4 | 3 | 85.1 | 0.41 | 1.5 | 0.81 | 42.6 | | 30340 | — | 233 | 253 | 398 | 346 | 368 | 11 | 22 | 5 | 4 | 81.4 | 0.37 | 1.6 | 0.88 | 52.3 | | 30340 D | _ | 244 | 253 | 398 | 336 | 385 | 11 | 33 | 5 | 4 | 122.9 | 0.81 | 0.74 | 0.41 | 49.6 | | 32340 | | 239 | 253 | 398 | 346 | 392 | 11 | 31 | 5 | 4 | 106.7 | 0.37 | 1.6 | 0.88 | 90.9 | | HR 32944 J | 3EC | 238 | 235 | 288 | 278 | 293 | 9 | 12 | 2.5 | 2 | 59.2 | 0.43 | 1.4 | 0.78 | 10.3 | | HR 32044 XJ | 4FD | 241 | 244 | 326 | 303 | 326 | 12 | 19 | 3 | 2.5 | 73.6 | 0.43 | 1.4 | 0.77 | 24.4 | | 30244 | — | 247 | 267 | 382 | 350 | 367 | 11 | 18 | 4 | 3 | 74.7 | 0.40 | 1.5 | 0.82 | 33.6 | | 32244 | _ | 247 | 260 | 382 | 340 | 377 | 12 | 24 | 4 | 3 | 93.0 | 0.40 | 1.5 | 0.82 | 57.4 | | 30344 | _ | 253 | 283 | 438 | 390 | 414 | 12 | 24 | 5 | 4 | 85.4 | 0.36 | 1.7 | 0.92 | 72.4 | | 32344 | _ | 259 | 274 | 438 | 372 | 421 | 12 | 32 | 5 | 4 | 114.9 | 0.37 | 1.6 | 0.88 | 114 | | HR 32948 J | 4EC | 258 | 255 | 308 | 297 | 314 | 9 | 12 | 2.5 | 2 | 65.1 | 0.46 | 1.3 | 0.72 | 11.1 | | HR 32048 XJ | 4FD | 261 | 262 | 346 | 321 | 346 | 12 | 19 | 3 | 2.5 | 79.1 | 0.46 | 1.3 | 0.72 | 26.2 | | 30248 | — | 267 | 288 | 422 | 384 | 408 | 11 | 19 | 4 | 3 | 85.1 | 0.44 | 1.4 | 0.74 | 45.2 | | 32248 | _ | 267 | 285 | 422 | 374 | 416 | 12 | 27 | 4 | 3 | 102.5 | 0.40 | 1.5 | 0.82 | 78 | | 30348 | _ | 273 | 308 | 478 | 422 | 447 | 12 | 25 | 5 | 4 | 92.8 | 0.36 | 1.7 | 0.92 | 92.6 | | 32348 | _ | 279 | 301 | 478 | 410 | 464 | 12 | 33 | 5 | 4 | 123.2 | 0.37 | 1.6 | 0.88 | 145 | Bore Diameter 260 – 440 mm | | | Boun | dary Dimen | sions | | | | Basic Load F | - | | Limiting | • | |-----|-------------------|-------------------|-------------------|------------------|---------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------|-------------------------------|-------------------|-----------------------| | d | D | T | В | С | | Cup
Y
nin. | $C_{\rm r}$ | $C_{0 m r}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | (min
Grease | oil | | 260 | 360
400
480 | 63.5
87
89 | 63.5
87
80 | 48
65
67 | 3
5
6 | 2.5
4
5 | 730 000
1 160 000
1 190 000 | 1 450 000
2 160 000
1 700 000 | 74 500
118 000
121 000 | | 850
800
670 | 1 100
1 100
900 | | | 480
540
540 | 137
113
176 | 130
102
165 | 106
85
136 | 6
6
6 | 5
6
6 | 1 900 000
1 870 000
2 910 000 | 3 300 000
2 640 000
4
800 000 | 190 000 | 335 000
269 000
490 000 | 670
630
630 | 950
850
850 | | 280 | 380
420
500 | 63.5
87
89 | 63.5
87
80 | 48
65
67 | 3
5
6 | 2.5
4
5 | 765 000
1 180 000
1 240 000 | 1 580 000
2 240 000
1 900 000 | | 162 000
228 000
194 000 | 800
710
630 | 1 100
1 000
850 | | | 500
580 | 137
187 | 130
175 | 106
145 | 6
6 | 5
6 | 1 950 000
3 300 000 | 3 450 000
5 400 000 | | 355 000
550 000 | 630
560 | 850
800 | | 300 | 420
420
460 | 76
76
100 | 72
76
100 | 62
57
74 | 4
4
5 | 3
3
4 | 895 000
1 010 000
1 440 000 | 1 820 000
2 100 000
2 700 000 | 103 000 | 186 000
214 000
275 000 | 710
710
670 | 950
950
900 | | | 540
540 | 96
149 | 85
140 | 71
115 | 6
6 | 5
5 | 1 440 000
2 220 000 | 2 100 000
3 700 000 | | 214 000
380 000 | 600
600 | 800
800 | | 320 | 440
440
480 | 76
76
100 | 72
76
100 | 63
57
74 | 4
4
5 | 3
3
4 | 900 000
1 040 000
1 510 000 | 1 880 000
2 220 000
2 910 000 | 106 000 | 192 000
227 000
297 000 | 970
670
630 | 900
900
850 | | | 580
580
670 | 104
159
210 | 92
150
200 | 75
125
170 | 6
6
7.5 | 5
5
7.5 | 1 640 000
2 860 000
4 200 000 | 2 420 000
5 050 000
7 100 000 | 168 000
292 000
430 000 | 515 000 | 530
530
480 | 750
750
670 | | 340 | 460
460
520 | 76
76
112 | 72
76
106 | 63
57
92 | 4
4
6 | 3
3
5 | 910 000
1 050 000
1 650 000 | 1 940 000
2 220 000
3 400 000 | 107 000 | 197 000
226 000
345 000 | 630
630
560 | 850
850
750 | | 360 | 480
480
540 | 76
76
112 | 72
76
106 | 62
57
92 | 4
4
6 | 3
3
5 | 945 000
1 080 000
1 680 000 | 2 100 000
2 340 000
3 500 000 | 110 000 | 214 000
239 000
355 000 | 600
560
530 | 800
800
750 | | 380 | 520 | 87 | 82 | 71 | 5 | 4 | 1 210 000 | 2 550 000 | 124 000 | 260 000 | 560 | 750 | | 400 | 540
600 | 87
125 | 82
118 | 71
100 | 5
6 | 4
5 | 1 250 000
1 960 000 | 2 700 000
4 050 000 | | 276 000
415 000 | 530
480 | 710
670 | | 420 | 560
620 | 87
125 | 82
118 | 72
100 | 5
6 | 4
5 | 1 300 000
2 000 000 | 2 810 000
4 200 000 | | 287 000
430 000 | 500
450 | 670
630 | | 440 | 650 | 130 | 122 | 104 | 6 | 6 | 2 230 000 | 4 600 000 | 227 000 | 470 000 | 430 | 600 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | | |---------------|------------|---------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | Y_1 | | | | | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Decring Numbers | ISO355 | | | Abutn | nent ar | nd Fillet
(mm) | Dimens | ions | (| | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | Mass
(kg) | |------------------------------|--------------------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-----------------|-----------------|-------------|-----------------------|-----------------------|----------------------|-------------------|----------------------|----------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | <i>1</i> max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | 1 | r _a
ax. | (mm)
a | e | Y_1 | Y_0 | approx. | | HR 32952 J | 3EC | 278 | 278 | 348 | 333 | 347 | 11 | 15.5 | 2.5 | 2 | 69.8 | 0.41 | 1.5 | 0.81 | 18.6 | | HR 32052 XJ | 4FC | 287 | 287 | 382 | 357 | 383 | 14 | 22 | 4 | 3 | 86.3 | 0.43 | 1.4 | 0.76 | 38.5 | | 30252 | — | 293 | 316 | 458 | 421 | 447 | 12 | 22 | 5 | 4 | 94.6 | 0.44 | 1.4 | 0.74 | 60.7 | | 32252 | _ | 293 | 305 | 458 | 394 | 446 | 14 | 31 | 5 | 4 | 116.0 | 0.45 | 1.3 | 0.73 | 103 | | 30352 | | 293 | 336 | 512 | 460 | 487 | 16 | 28 | 5 | 5 | 101.6 | 0.36 | 1.7 | 0.92 | 114 | | 32352 | | 293 | 328 | 512 | 441 | 495 | 13 | 40 | 5 | 5 | 130.5 | 0.37 | 1.6 | 0.88 | 188 | | HR 32956 J | 4EC | 298 | 297 | 368 | 352 | 368 | 12 | 15.5 | 2.5 | 2 | 75.3 | 0.43 | 1.4 | 0.76 | 20 | | HR 32056 XJ | 4FC | 307 | 305 | 402 | 374 | 402 | 14 | 22 | 4 | 3 | 91.6 | 0.46 | 1.3 | 0.72 | 40.6 | | 30256 | — | 313 | 339 | 478 | 436 | 462 | 12 | 22 | 5 | 4 | 98.5 | 0.44 | 1.4 | 0.74 | 66.3 | | 32256 | _ | 313 | 325 | 478 | 412 | 467 | 14 | 31 | 5 | 4 | 123.1 | 0.47 | 1.3 | 0.70 | 109 | | 32356 | | 319 | 353 | 552 | 475 | 532 | 14 | 42 | 5 | 5 | 139.6 | 0.37 | 1.6 | 0.89 | 224 | | 32960 | — | 321 | 326 | 406 | 386 | 405 | 13 | 14 | 3 | 2.5 | 79.3 | 0.37 | 1.6 | 0.88 | 30.5 | | HR 32960 J | 3FD | 321 | 324 | 406 | 387 | 405 | 13 | 19 | 3 | 2.5 | 79.9 | 0.39 | 1.5 | 0.84 | 31.4 | | HR 32060 XJ | 4GD | 327 | 330 | 442 | 408 | 439 | 15 | 26 | 4 | 3 | 98.4 | 0.43 | 1.4 | 0.76 | 56.6 | | 30260 | _ | 333 | 355 | 518 | 470 | 499 | 14 | 25 | 5 | 4 | 105.1 | 0.44 | 1.4 | 0.74 | 80.6 | | 32260 | | 333 | 352 | 518 | 458 | 514 | 15 | 34 | 5 | 4 | 131.7 | 0.46 | 1.3 | 0.72 | 132 | | 32964 | — | 341 | 345 | 426 | 404 | 425 | 13 | 13 | 3 | 2.5 | 84.3 | 0.39 | 1.5 | 0.84 | 32 | | HR 32964 J | 3FD | 341 | 344 | 426 | 406 | 426 | 13 | 19 | 3 | 2.5 | 85.0 | 0.42 | 1.4 | 0.79 | 33.3 | | HR 32064 XJ | 4GD | 347 | 350 | 462 | 430 | 461 | 15 | 26 | 4 | 3 | 104.5 | 0.46 | 1.3 | 0.72 | 60 | | 30264 | _ | 353 | 381 | 558 | 503 | 533 | 14 | 29 | 5 | 4 | 113.7 | 0.44 | 1.4 | 0.74 | 99.3 | | 32264 | | 353 | 383 | 558 | 487 | 550 | 15 | 34 | 5 | 4 | 141.7 | 0.46 | 1.3 | 0.72 | 175 | | 32364 | | 383 | 412 | 634 | 547 | 616 | 14 | 42 | 6 | 6 | 157.5 | 0.37 | 1.6 | 0.88 | 343 | | 32968 | 4FD | 361 | 364 | 446 | 426 | 446 | 13 | 13 | 3 | 2.5 | 89.2 | 0.41 | 1.5 | 0.80 | 33.6 | | HR 32968 J | | 361 | 362 | 446 | 427 | 446 | 13 | 19 | 3 | 2.5 | 91.0 | 0.44 | 1.4 | 0.75 | 34.3 | | 32068 | | 373 | 386 | 498 | 464 | 496 | 3.5 | 22 | 5 | 4 | 104.5 | 0.37 | 1.6 | 0.89 | 83.7 | | 32972
HR 32972 J
32072 | 4FD
— | 381
381
393 | 386
381
402 | 466
466
518 | 445
445
480 | 465
466
514 | 14
13
5.5 | 14
19
22 | 3
3
5 | 2.5
2.5
4 | 91.4
96.8
108.6 | 0.40
0.46
0.38 | 1.5
1.3
1.6 | 0.82
0.72
0.86 | 35.8
36.1
86.5 | | 32976 | _ | 407 | 406 | 502 | 478 | 501 | 16 | 16 | 4 | 3 | 95.2 | 0.39 | 1.6 | 0.86 | 49.5 | | 32980 | = | 427 | 428 | 522 | 499 | 524 | 16 | 16 | 4 | 3 | 100.8 | 0.40 | 1.5 | 0.82 | 52.7 | | 32080 | | 433 | 443 | 578 | 533 | 565 | 5 | 25 | 5 | 4 | 115.3 | 0.36 | 1.7 | 0.92 | 116 | | 32984 | _ | 447 | 448 | 542 | 521 | 544 | 3.5 | 15 | 4 | 3 | 106.1 | 0.41 | 1.5 | 0.81 | 54.8 | | 32084 | | 453 | 463 | 598 | 552 | 586 | 6.5 | 25 | 5 | 4 | 120.0 | 0.37 | 1.6 | 0.88 | 121 | | 32088 | _ | 473 | 487 | 622 | 582 | 616 | 5 | 26 | 5 | 5 | 126.3 | 0.36 | 1.7 | 0.92 | 136 | ## Bore Diameter 12.000 - 22.225 mm | | | | Dimension | S | | | | Basic Loa | d Ratings | | Limiting | Speeds | |--------|--------|--------|-----------|--------|--------------|-----|------------------|-------------------|-------------|----------|----------|-------------------| | | | (m | nm) | | Cone | Cup | (| N) | {k | gf} | (mi | n ⁻¹) | | d | D | T | В | С | r
∂
mi | • | C_{r} | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 12.000 | 31.991 | 10.008 | 10.785 | 7.938 | 0.8 | 1.3 | 10 300 | 8 900 | 1 050 | 905 | 13 000 | 18 000 | | 12.700 | 34.988 | 10.998 | 10.988 | 8.730 | 1.3 | 1.3 | 11 700 | 10 900 | 1 200 | 1 110 | 12 000 | 16 000 | | 15.000 | 34.988 | 10.998 | 10.988 | 8.730 | 0.8 | 1.3 | 11 700 | 10 900 | 1 200 | 1 110 | 12 000 | 16 000 | | 15.875 | 34.988 | 10.998 | 10.998 | 8.712 | 1.3 | 1.3 | 13 800 | 13 400 | 1 410 | 1 360 | 11 000 | 15 000 | | | 39.992 | 12.014 | 11.153 | 9.525 | 1.3 | 1.3 | 14 900 | 15 700 | 1 520 | 1 600 | 9 500 | 13 000 | | | 41.275 | 14.288 | 14.681 | 11.112 | 1.3 | 2.0 | 21 300 | 19 900 | 2 170 | 2 030 | 10 000 | 13 000 | | | 42.862 | 14.288 | 14.288 | 9.525 | 1.5 | 1.5 | 17 300 | 17 200 | 1 770 | 1 750 | 8 500 | 12 000 | | | 42.862 | 16.670 | 16.670 | 13.495 | 1.5 | 1.5 | 26 900 | 26 300 | 2 750 | 2 680 | 9 500 | 13 000 | | | 44.450 | 15.494 | 14.381 | 11.430 | 1.5 | 1.5 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | | 49.225 | 19.845 | 21.539 | 14.288 | 0.8 | 1.3 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | 16.000 | 47.000 | 21.000 | 21.000 | 16.000 | 1.0 | 2.0 | 35 000 | 36 500 | 3 600 | 3 750 | 9 000 | 12 000 | | 16.993 | 39.992 | 12.014 | 11.153 | 9.525 | 0.8 | 1.3 | 14 900 | 15 700 | 1 520 | 1 600 | 9 500 | 13 000 | | 17.455 | 36.525 | 11.112 | 11.112 | 7.938 | 1.5 | 1.5 | 11 600 | 11 000 | 1 190 | 1 120 | 10 000 | 14 000 | | 17.462 | 39.878 | 13.843 | 14.605 | 10.668 | 1.3 | 1.3 | 22 500 | 22 500 | 2 290 | 2 290 | 10 000 | 13 000 | | | 47.000 | 14.381 | 14.381 | 11.112 | 0.8 | 1.3 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | 19.050 | 39.992 | 12.014 | 11.153 | 9.525 | 1.0 | 1.3 | 14 900 | 15 700 | 1 520 | 1 600 | 9 500 | 13 000 | | | 45.237 | 15.494 | 16.637 | 12.065 | 1.3 | 1.3 | 28 500 | 28 900 | 2 910 | 2 950 | 9 000 | 12 000 | | | 47.000 | 14.381 | 14.381 | 11.112 | 1.3 | 1.3 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | | 49.225 | 18.034 | 19.050 | 14.288 | 1.3 | 1.3 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 49.225 | 19.845 | 21.539 | 14.288 | 1.2 | 1.3 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 49.225 | 21.209 | 19.050 | 17.462 | 1.3 | 1.5 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 49.225 | 23.020 | 21.539 | 17.462 | C1.5 | 3.5 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 53.975 | 22.225 | 21.839 | 15.875 | 1.5 | 2.3 | 40 500 | 39 500 | 4 150 | 4 000 | 7 500 |
10 000 | | 19.990 | 47.000 | 14.381 | 14.381 | 11.112 | 1.5 | 1.3 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | 20.000 | 51.994 | 15.011 | 14.260 | 12.700 | 1.5 | 1.3 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | 20.625 | 49.225 | 23.020 | 21.539 | 17.462 | 1.5 | 1.5 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | 20.638 | 49.225 | 19.845 | 19.845 | 15.875 | 1.5 | 1.5 | 36 000 | 37 000 | 3 650 | 3 750 | 8 000 | 11 000 | | 21.430 | 50.005 | 17.526 | 18.288 | 13.970 | 1.3 | 1.3 | 38 500 | 40 000 | 3 950 | 4 100 | 8 000 | 11 000 | | 22.000 | 45.237 | 15.494 | 16.637 | 12.065 | 1.3 | 1.3 | 29 200 | 33 500 | 2 980 | 3 400 | 8 500 | 11 000 | | | 45.975 | 15.494 | 16.637 | 12.065 | 1.3 | 1.3 | 29 200 | 33 500 | 2 980 | 3 400 | 8 500 | 11 000 | | 22.225 | 50.005 | 13.495 | 14.260 | 9.525 | 1.3 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 50.005 | 17.526 | 18.288 | 13.970 | 1.3 | 1.3 | 38 500 | 40 000 | 3 950 | 4 100 | 8 000 | 11 000 | | | 52.388 | 19.368 | 20.168 | 14.288 | 1.5 | 1.5 | 40 500 | 43 000 | 4 100 | 4 400 | 7 500 | 10 000 | | | 53.975 | 19.368 | 20.168 | 14.288 | 1.5 | 1.5 | 40 500 | 43 000 | 4 100 | 4 400 | 7 500 | 10 000 | | | 56.896 | 19.368 | 19.837 | 15.875 | 1.3 | 1.3 | 38 000 | 40 500 | 3 900 | 4 150 | 7 100 | 9 500 | | | 57.150 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 48 000 | 50 000 | 4 850 | 5 100 | 7 100 | 9 500 | B 137 #### Dynamic Equivalent Load #### Static Equivalent Load $P_0=0.5F_r+Y_0F_a$ When $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ The values of $e,\ Y_1$, and Y_0 are given in the table below. | Bearing | Numbers | Al | outment | and Fille
(mm) | | | | Eff. Load
Centers | Constant | | Load
tors | | ass
:g) | |-------------|------------|-------------------------------------|-------------------------------|-------------------|------------|------------------|-----|----------------------|----------|-------|--------------|-------------|-------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone
γ | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | rox.
CUP | | *A 2047 | A 2126 | 16.5 | 15.5 | 26 | 29 | 0.8 | 1.3 | 6.8 | 0.41 | 1.5 | 0.81 | 0.023 | 0.017 | | A 4050 | A 4138 | 18.5 | 17 | 29 | 32 | 1.3 | 1.3 | 8.2 | 0.45 | 1.3 | 0.73 | 0.033 | 0.022 | | *A 4059 | A 4138 | 19.5 | 19 | 29 | 32 | 0.8 | 1.3 | 8.2 | 0.45 | 1.3 | 0.73 | 0.029 | 0.022 | | L 21549 | L 21511 | 21.5 | 19.5 | 29 | 32.5 | 1.3 | 1.3 | 7.7 | 0.32 | 1.9 | 1.0 | 0.031 | 0.018 | | A 6062 | A 6157 | 22 | 20.5 | 34 | 37 | 1.3 | 1.3 | 10.3 | 0.53 | 1.1 | 0.63 | 0.044 | 0.031 | | 03062 | 03162 | 21.5 | 20 | 34 | 37.5 | 1.3 | 2 | 9.1 | 0.31 | 1.9 | 1.1 | 0.061 | 0.035 | | 11590 | 11520 | 24.5 | 22.5 | 34.5 | 39.5 | 1.5 | 1.5 | 13.0 | 0.70 | 0.85 | 0.47 | 0.061 | 0.040 | | 17580 | 17520 | 23 | 21 | 36.5 | 39 | 1.5 | 1.5 | 10.6 | 0.33 | 1.8 | 1.0 | 0.075 | 0.048 | | 05062 | 05175 | 23.5 | 21 | 38 | 42 | 1.5 | 1.5 | 11.2 | 0.36 | 1.7 | 0.93 | 0.081 | 0.039 | | 09062 | 09195 | 22 | 21.5 | 42 | 44.5 | 0.8 | 1.3 | 10.7 | 0.27 | 2.3 | 1.2 | 0.139 | 0.065 | | *HM 81649 | **HM 81610 | 27.5 | 23 | 37.5 | 43 | 1 | 2 | 14.9 | 0.55 | 1.1 | 0.60 | 0.115 | 0.082 | | A 6067 | A 6157 | 22 | 21 | 34 | 37 | 0.8 | 1.3 | 10.3 | 0.53 | 1.1 | 0.63 | 0.042 | 0.031 | | A 5069 | A 5144 | 23.5 | 21.5 | 30 | 33.5 | 1.5 | 1.5 | 8.9 | 0.49 | 1.2 | 0.68 | 0.030 | 0.020 | | † LM 11749 | † LM 11710 | 23 | 21.5 | 34 | 37 | 1.3 | 1.3 | 8.7 | 0.29 | 2.1 | 1.2 | 0.055 | 0.028 | | 05068 | 05185 | 23 | 22.5 | 40.5 | 42.5 | 0.8 | 1.3 | 10.1 | 0.36 | 1.7 | 0.93 | 0.082 | 0.047 | | A 6075 | A 6157 | 24 | 23 | 34 | 37 | 1 | 1.3 | 10.3 | 0.53 | 1.1 | 0.63 | 0.037 | 0.031 | | † LM 11949 | † LM 11910 | 25 | 23.5 | 39.5 | 41.5 | 1.3 | 1.3 | 9.5 | 0.30 | 2.0 | 1.1 | 0.081 | 0.044 | | 05075 | 05185 | 25 | 23.5 | 40.5 | 42.5 | 1.3 | 1.3 | 10.1 | 0.36 | 1.7 | 0.93 | 0.077 | 0.047 | | 09067 | 09195 | 25.5 | 24 | 42 | 44.5 | 1.3 | 1.3 | 10.7 | 0.27 | 2.3 | 1.2 | 0.115 | 0.065 | | 09078 | 09195 | 25.5 | 24 | 42 | 44.5 | 1.2 | 1.3 | 10.7 | 0.27 | 2.3 | 1.2 | 0.124 | 0.065 | | 09067 | 09196 | 25.5 | 24 | 41.5 | 44.5 | 1.3 | 1.5 | 13.8 | 0.27 | 2.3 | 1.2 | 0.115 | 0.085 | | 09074 | 09194 | 26 | 24 | 39 | 44.5 | 1.5 | 3.5 | 13.8 | 0.27 | 2.3 | 1.2 | 0.124 | 0.082 | | 21075 | 21212 | 31.5 | 26 | 43 | 50 | 1.5 | 2.3 | 16.3 | 0.59 | 1.0 | 0.56 | 0.156 | 0.097 | | 05079 | 05185 | 26.5 | 24 | 40.5 | 42.5 | 1.5 | 1.3 | 10.1 | 0.36 | 1.7 | 0.93 | 0.073 | 0.047 | | 07079 | 07204 | 27.5 | 27 | 45 | 48 | 1.5 | 1.3 | 12.1 | 0.40 | 1.5 | 0.82 | 0.105 | 0.061 | | 09081 | 09196 | 27.5 | 25.5 | 41.5 | 44.5 | 1.5 | 1.5 | 13.8 | 0.27 | 2.3 | 1.2 | 0.115 | 0.085 | | 12580 | 12520 | 28.5 | 26 | 42.5 | 45.5 | 1.5 | 1.5 | 12.9 | 0.32 | 1.9 | 1.0 | 0.114 | 0.067 | | † M 12649 | † M 12610 | 27.5 | 25.5 | 44 | 46 | 1.3 | 1.3 | 10.9 | 0.28 | 2.2 | 1.2 | 0.115 | 0.059 | | *† LM 12749 | † LM 12710 | 27.5 | 26 | 39.5 | 42.5 | 1.3 | 1.3 | 10.0 | 0.31 | 2.0 | 1.1 | 0.078 | 0.038 | | *† LM 12749 | † LM 12711 | 27.5 | 26 | 40 | 42.5 | 1.3 | 1.3 | 10.0 | 0.31 | 2.0 | 1.1 | 0.078 | 0.043 | | 07087 | 07196 | 28.5 | 27 | 44.5 | 47 | 1.3 | 1 | 10.6 | 0.40 | 1.5 | 0.82 | 0.097 | 0.035 | | † M 12648 | † M 12610 | 28.5 | 26.5 | 44 | 46 | 1.3 | 1.3 | 10.9 | 0.28 | 2.2 | 1.2 | 0.111 | 0.059 | | 1380 | 1328 | 29.5 | 27 | 45 | 48.5 | 1.5 | 1.5 | 11.3 | 0.29 | 2.1 | 1.1 | 0.137 | 0.067 | | 1380 | 1329 | 29.5 | 27 | 46 | 49 | 1.5 | 1.5 | 11.3 | 0.29 | 2.1 | 1.1 | 0.137 | 0.082 | | 1755 | 1729 | 29 | 27.5 | 49 | 51 | 1.3 | 1.3 | 12.2 | 0.31 | 2.0 | 1.1 | 0.152 | 0.102 | | 1280 | 1220 | 29.5 | 29 | 49 | 52 | 0.8 | 1.5 | 15.1 | 0.35 | 1.7 | 0.95 | 0.183 | 0.106 | - The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). - * † The tolerance for the bore diameter is 0 to $-20~\mu m$, and for overall bearing width is +356 to 0 μm . ## Bore Diameter 22.606 - 28.575 mm | | | | Dimension | S | | | | Basic L | | Limiting Speeds | | | |--------|--------|--------|-----------|--------|----------------|-----|-------------|----------|------------|-----------------|--------|-------------------| | | | (n | nm) | | Cone | Cup | (1 | N) | {k | gf} | (mi | n ⁻¹) | | d | D | T | В | С | <i>1</i>
mi | | $C_{\rm r}$ | C_{0r} | $C_{ m r}$ | C_{0r} | Grease | Oil | | 22.606 | 47.000 | 15.500 | 15.500 | 12.000 | 1.5 | 1.0 | 26 300 | 30 000 | 2 680 | 3 100 | 8 000 | 11 000 | | 23.812 | 50.292 | 14.224 | 14.732 | 10.668 | 1.5 | 1.3 | 27 600 | 32 000 | 2 820 | 3 250 | 7 100 | 10 000 | | | 56.896 | 19.368 | 19.837 | 15.875 | 0.8 | 1.3 | 38 000 | 40 500 | 3 900 | 4 150 | 7 100 | 9 500 | | 24.000 | 55.000 | 25.000 | 25.000 | 21.000 | 2.0 | 2.0 | 49 500 | 55 000 | 5 050 | 5 650 | 7 100 | 9 500 | | 24.981 | 51.994 | 15.011 | 14.260 | 12.700 | 1.5 | 1.3 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 52.001 | 15.011 | 14.260 | 12.700 | 1.5 | 2.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 62.000 | 16.002 | 16.566 | 14.288 | 1.5 | 1.5 | 37 000 | 39 500 | 3 750 | 4 000 | 6 300 | 8 500 | | 25.000 | 50.005 | 13.495 | 14.260 | 9.525 | 1.5 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 51.994 | 15.011 | 14.260 | 12.700 | 1.5 | 1.3 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | 25.400 | 50.005 | 13.495 | 14.260 | 9.525 | 3.3 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 50.005 | 13.495 | 14.260 | 9.525 | 1.0 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 50.292 | 14.224 | 14.732 | 10.668 | 1.3 | 1.3 | 27 600 | 32 000 | 2 820 | 3 250 | 7 100 | 10 000 | | | 57.150 | 17.462 | 17.462 | 13.495 | 1.3 | 1.5 | 39 500 | 45 500 | 4 050 | 4 650 | 6 700 | 9 000 | | | 57.150 | 19.431 | 19.431 | 14.732 | 1.5 | 1.5 | 42 500 | 49 000 | 4 300 | 5 000 | 6 700 | 9 000 | | | 59.530 | 23.368 | 23.114 | 18.288 | 0.8 | 1.5 | 50 000 | 58 000 | 5 100 | 5 900 | 6 300 | 9 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 63.500 | 20.638 | 20.638 | 15.875 | 3.5 | 1.5 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 000 | 64 500 | 5 200 | 6 600 | 5 600 | 8 000 | | | 65.088 | 22.225 | 21.463 | 15.875 | 1.5 | 1.5 | 45 000 | 47 500 | 4 600 | 4 850 | 5 600 | 8 000 | | | 68.262 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 55 000 | 64 000 | 5 600 | 6 550 | 5 600 | 7 500 | | | 72.233 | 25.400 | 25.400 | 19.842 | 0.8 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 100 | | | 72.626 | 24.608 | 24.257 | 17.462 | 2.3 | 1.5 | 60 000 | 58 000 | 6 100 | 5 900 | 5 600 | 7 500 | | 26.988 | 50.292 | 14.224 | 14.732 | 10.668 | 3.5 | 1.3 | 27 600 | 32 000 | 2 820 | 3 250 | 7 100 | 10 000 | | | 57.150 | 19.845 | 19.355 | 15.875 | 3.3 | 1.5 | 40 000 | 44 500 | 4 100 | 4 500 | 6 700 | 9 000 | | | 60.325 | 19.842 | 17.462 | 15.875 | 3.5 | 1.5 | 39 500 | 45 500 | 4 050 | 4 650 | 6 700 | 9 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | 28.575 | 57.150 | 19.845 | 19.355 | 15.875 | 3.5 | 1.5 | 40 000 | 44 500 | 4 100 | 4 500 | 6 700 | 9 000 | | | 59.131 | 15.875 | 16.764 | 11.811 | spec. | 1.3 | 34 500 | 41 500 | 3 550 | 4 200 | 6 300 | 8 500 | | | 62.000 | 19.050 | 20.638 | 14.288 | 3.5 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 000 | 64 500 | 5 200 | 6 600 | 5 600 | 8 000 | | | 68.262 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 55 000 | 64 000 | 5 600 | 6 550 | 5 600 | 7 500 | | | 72.626 | 24.608 | 24.257 | 17.462 | 4.8 | 1.5 | 60 000 | 58 000 | 6 100 | 5 900 | 5 600 | 7 500 | | |
72.626 | 24.608 | 24.257 | 17.462 | 1.5 | 1.5 | 60 000 | 58 000 | 6 100 | 5 900 | 5 600 | 7 500 | | | 73.025 | 22.225 | 22.225 | 17.462 | 0.8 | 3.3 | 54 500 | 64 500 | 5 550 | 6 600 | 5 300 | 7 100 | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | r _r ≦e | $F_{\rm a}/F_{\rm r} > e$ | | | | | | |---------------|-------------------|---------------------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | #### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing Nu | mbers | Al | outment | and Fille
(mm) | | | | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | Mass
(kg) | 3 | |---------------------------------------|-------------------------------------|------------------------------|------------------------------|------------------------|------------------------|---------------------------------|--------------------------|------------------------------|------------------------------|---------------------------|------------------------------|----------------------|------------------------------| | CONE | CUP | d_{a} | $d_{ ext{b}}$ | D_{a} | $D_{ ext{b}}$ | Cone (${m \gamma}_{ m a}$ max. | · | (mm)
<i>a</i> | e | Y_1 | Y_0 | approx
CONE C | CUP | | LM 72849 | LM 72810 | 29 | 27 | 40.5 | 44.5 | 1.5 | 1 | 12.2 | 0.47 | 1.3 | 0.70 | 0.086 0. | .046 | | † L 44640
1779 | † L 44610
1729 | 30.5
29.5 | 28.5
28.5 | 44.5
49 | 47
51 | | 1.3
1.3 | 10.9
12.2 | 0.37
0.31 | 1.6
2.0 | 0.88
1.1 | | .039
.102 | | ▲JHM 33449 | ▲JHM 33410 | 35 | 30 | 47 | 52 | 2 | 2 | 15.8 | 0.35 | 1.7 | 0.93 | 0.181 0. | .107 | | 07098
07098
17098 | 07204
07205
17244 | 31
31
33 | 29
29
30.5 | 45
44.5
54 | 48
48
57 | 1.5 | 1.3
2
1.5 | 12.1
12.1
12.8 | 0.40
0.40
0.38 | 1.5
1.5
1.6 | 0.82
0.82
0.86 | 0.085 0. | .061
.061
.091 | | 07097
07097 | 07196
07204 | 31
31 | 29
29 | 44.5
45 | 47
48 | | 1
1.3 | 10.6
12.1 | 0.40
0.40 | 1.5
1.5 | 0.82
0.82 | | .035
.061 | | 07100 SA
07100
† L 44643 | 07196
07196
† L 44610 | 35
30.5
31.5 | 29.5
29.5
29.5 | 44.5
44.5
44.5 | 47
47
47 | 1 | 1
1
1.3 | 10.6
10.6
10.9 | 0.40
0.40
0.37 | 1.5
1.5
1.6 | 0.82
0.82
0.88 | 0.084 0. | .035
.035
.039 | | 15578
M 84548
M 84249 | 15520
M 84510
M 84210 | 32.5
36
36 | 30.5
33
32.5 | 51
48.5
49.5 | 53
54
56 | 1.5 | 1.5
1.5
1.5 | 12.4
16.1
18.3 | 0.35
0.55
0.55 | 1.7
1.1
1.1 | 0.95
0.60
0.60 | 0.156 0. | .070
.089
.13 | | 15101
15100
M 86643 | 15245
15250 X
M 86610 | 32.5
38
38 | 31.5
31.5
36.5 | 55
55
54 | 58
59
61 | 3.5 | 1.3
1.5
1.5 | 13.3
14.9
17.7 | 0.35
0.35
0.55 | 1.7
1.7
1.1 | 0.94
0.94
0.60 | 0.22 0. | .081
.113
.128 | | 23100
02473
HM 88630
41100 | 23256
02420
HM 88610
41286 | 39
34.5
39.5
41 | 34.5
33.5
39.5
36.5 | 53
59
60
61 | 61
63
69
68 | 8.0
8.0 | 1.5
1.5
2.3
1.5 | 20.0
16.9
20.7
20.7 | 0.73
0.42
0.55
0.60 | 0.82
1.4
1.1
1.0 | 0.45
0.79
0.60
0.55 | 0.28 0.
0.398 0. | .142
.152
.188
.177 | | † L 44649
1997 X
15580
15106 | † L 44610
1922
15523
15245 | 37.5
37.5
38.5
33.5 | 31
31.5
32
33 | 44.5
51
51
55 | 47
53.5
54
58 | 3.3
3.5 | 1.3
1.5
1.5
1.3 | 10.9
13.9
14.7
13.3 | 0.37
0.33
0.35
0.35 | 1.6
1.8
1.7
1.7 | 0.88
1.0
0.95
0.94 | 0.152 0.
0.141 0. | .039
.077
.123
.081 | | 1988
† LM 67043
15112 | 1922
† LM 67010
15245 | 39.5
40
40 | 33.5
33.5
34 | 51
52
55 | 53.5
56
58 | 3.5 | 1.5
1.3
1.3 | 13.9
12.6
13.3 | 0.33
0.41
0.35 | 1.8
1.5
1.7 | 1.0
0.80
0.94 | 0.147 0. | .077
.062
.081 | | 15113
M 86647
02474 | 15245
M 86610
02420 | 34.5
40
36.5 | 34
38
36 | 55
54
59 | 58
61
63 | 1.5 | 1.3
1.5
1.5 | 13.3
17.7
16.9 | 0.35
0.55
0.42 | 1.7
1.1
1.4 | 0.94
0.60
0.79 | 0.223 0. | .081
.128
.152 | | 41125
41126
02872 | 41286
41286
02820 | 48
41.5
37.5 | 36.5
36.5
37 | 61
61
62 | 68
68
68 | 1.5
0.8 | 1.5
1.5
3.3 | 20.7
20.7
18.3 | 0.60
0.60
0.45 | 1.0
1.0
1.3 | 0.55
0.55
0.73 | 0.295 0.
0.321 0. | .177
.177
.16 | † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. ## SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) ## Bore Diameter 29.000 - 32.000 mm | | | | Dimension | S | | | | Basic Loa | d Ratings | | Limiting | Speeds | |--------|--------|--------|-----------|--------|-------|----------|-------------|-----------|-------------|----------|----------|-------------------| | | | (m | nm) | | Cone | Cup | (| N) | {k | gf} | (mir | n ⁻¹) | | d | D | T | В | С | 1 | r
in. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 29.000 | 50.292 | 14.224 | 14.732 | 10.668 | 3.5 | 1.3 | 26 800 | 34 000 | 2 730 | 3 500 | 7 100 | 9 500 | | 29.367 | 66.421 | 23.812 | 25.433 | 19.050 | 3.5 | 1.3 | 65 000 | 73 000 | 6 600 | 7 450 | 6 000 | 8 000 | | 30.000 | 62.000 | 16.002 | 16.566 | 14.288 | 1.5 | 1.5 | 37 000 | 39 500 | 3 750 | 4 000 | 6 300 | 8 500 | | | 62.000 | 19.050 | 20.638 | 14.288 | 1.3 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 63.500 | 20.638 | 20.638 | 15.875 | 1.3 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 72.000 | 19.000 | 18.923 | 15.875 | 1.5 | 1.5 | 52 000 | 56 000 | 5 300 | 5 700 | 5 600 | 7 500 | | 30.112 | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | 30.162 | 58.738 | 14.684 | 15.080 | 10.716 | 3.5 | 1.0 | 28 800 | 33 500 | 2 940 | 3 450 | 6 000 | 8 000 | | | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 000 | 64 500 | 5 200 | 6 600 | 5 600 | 8 000 | | | 68.262 | 22.225 | 22.225 | 17.462 | 2.3 | 1.5 | 55 500 | 70 500 | 5 650 | 7 200 | 5 300 | 7 500 | | | 69.850 | 23.812 | 25.357 | 19.050 | 2.3 | 1.3 | 71 000 | 84 000 | 7 200 | 8 550 | 5 600 | 7 500 | | | 69.850 | 23.812 | 25.357 | 19.050 | 0.8 | 1.3 | 71 000 | 84 000 | 7 200 | 8 550 | 5 600 | 7 500 | | | 76.200 | 24.608 | 24.074 | 16.670 | 1.5 | C3.3 | 67 500 | 69 500 | 6 850 | 7 100 | 5 000 | 6 700 | | 30.213 | 62.000 | 19.050 | 20.638 | 14.288 | 3.5 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 1.5 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | 30.955 | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 000 | 64 500 | 5 200 | 6 600 | 5 600 | 8 000 | | 31.750 | 58.738 | 14.684 | 15.080 | 10.716 | 1.0 | 1.0 | 28 800 | 33 500 | 2 940 | 3 450 | 6 000 | 8 000 | | | 59.131 | 15.875 | 16.764 | 11.811 | spec. | 1.3 | 34 500 | 41 500 | 3 550 | 4 200 | 6 300 | 8 500 | | | 62.000 | 18.161 | 19.050 | 14.288 | spec. | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 3.5 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 63.500 | 20.638 | 20.638 | 15.875 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 68.262 | 22.225 | 22.225 | 17.462 | 3.5 | 1.5 | 55 000 | 64 000 | 5 600 | 6 550 | 5 600 | 7 500 | | | 68.262 | 22.225 | 22.225 | 17.462 | 1.5 | 1.5 | 55 500 | 70 500 | 5 650 | 7 200 | 5 300 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 3.5 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 69.012 | 26.982 | 26.721 | 15.875 | 4.3 | 3.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 69.850 | 23.812 | 25.357 | 19.050 | 0.8 | 1.3 | 71 000 | 84 000 | 7 200 | 8 550 | 5 600 | 7 500 | | | 69.850 | 23.812 | 25.357 | 19.050 | 3.5 | 1.3 | 71 000 | 84 000 | 7 200 | 8 550 | 5 600 | 7 500 | | | 72.626 | 30.162 | 29.997 | 23.812 | 0.8 | 3.3 | 79 500 | 90 000 | 8 100 | 9 200 | 5 300 | 7 500 | | | 73.025 | 29.370 | 27.783 | 23.020 | 1.3 | 3.3 | 74 000 | 100 000 | 7 550 | 10 200 | 5 000 | 7 100 | | | 80.000 | 21.000 | 22.403 | 17.826 | 0.8 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | 32.000 | 72.233 | 25.400 | 25.400 | 19.842 | 3.3 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 100 | #### Dynamic Equivalent Load $P = XF_r + YF_a$ $F_c / F_c \le e$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | |---------------|------------|---------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | Y_1 | | | | | #### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | † L 45449 † L 45410 39.5 33 44.5 48 3.5 1.3 10.8 0.37 1.6 0.89 0.079 0.0 2690 2631 41 35 58 60 3.5 1.3 10.8 0.37 1.6 0.89 0.079 0.0 * 17118 17244 37 34.5 54 57 1.5 1.5 12.8 0.38 1.6 0.86 0.136 0.0 * 15117 15245 36.5 35 55 58 1.3 1.3 13.3 0.35 1.7 0.94 0.189 0.0 * 15117 15250 36.5 35 56 59 1.3 1.3 14.9 0.35 1.7 0.94 0.189 0.0 * 26118 26283 38 36 62 65 1.5 1.5 14.8 0.36 1.7 0.94 0.189 0.0 15116 15245 36 35.5 55< | Mass
(kg) | |
--|--------------------------|--| | 2690 2631 41 35 58 60 3.5 1.3 14.3 0.25 2.4 1.3 0.242 0.7 * 17118 17244 37 34.5 54 57 1.5 1.5 12.8 0.38 1.6 0.86 0.136 0.0 * 15117 15245 36.5 35 55 58 1.3 1.3 13.3 0.35 1.7 0.94 0.189 0.0 * 15117 15250 36.5 35 56 59 1.3 1.3 14.9 0.35 1.7 0.94 0.189 0.0 * 26118 26283 38 36 62 65 1.5 1.5 14.8 0.36 1.7 0.94 0.189 0.0 15116 15245 36 35.5 55 58 0.8 1.3 13.3 0.35 1.7 0.94 0.189 0.0 15116 15245 36 35.5 55 58 0.8 1.3 13.3 0.35 1.7 0.94 0.189 0.0 | UP | | | * 15117 15245 36.5 35 55 58 1.3 1.3 1.3 0.35 1.7 0.94 0.189 0.0 * 15117 15250 36.5 35 56 59 1.3 1.3 1.4 0.35 1.7 0.94 0.189 0.0 * 26118 26283 38 36 62 65 1.5 1.5 1.5 1.4 0.36 1.7 0.94 0.189 0.0 15116 15245 36 35.5 55 58 0.8 1.3 13.3 0.35 1.7 0.94 0.189 0.0 08118 08231 41.5 35 52 55 3.5 1 13.3 0.35 1.7 0.94 0.189 0.0 M 86649 M 86610 41 38 54 61 1.5 1.5 1.7 0.55 1.1 0.60 0.211 0.2 M 88043 M 88010 43.5 39.5 58 65 2.3 1.5 19.1 0.55 1.1 0.60 0.263 | 036
165 | | | 08118 08231 41.5 35 52 55 3.5 1 13.3 0.47 1.3 0.70 0.12 0.6 M 86649 M 86610 41 38 54 61 1.5 1.5 1.7 0.55 1.1 0.60 0.211 0.7 M 88043 M 88010 43.5 39.5 58 65 2.3 1.5 19.1 0.55 1.1 0.60 0.263 0.7 2558 2523 40 36.5 61 64 2.3 1.3 14.5 0.27 2.2 1.2 0.297 0.2 2559 2523 37 36.5 61 64 0.8 1.3 14.5 0.27 2.2 1.2 0.298 0.2 | 091
081
113
163 | | | M 86649
M 88043 M 86610
M 88010 41
43.5 38
39.5 54
58 61
65 1.5
2.3 1.5
1.5 17.7
1.5 0.55
1.1 1.1
0.60 0.211
0.263 0.2
0.263 0.2
0.263 2558
2523 40
36.5
37 61
36.5
36.5 61
36.5
36.5 64
36.5
36.5 61
36.5
36.5 64
36.5
36.5 61
36.5
36.5 64
36.5
36.5 61
36.5
36.5 64
36.5
36.5 61
36.5
36.5 64
36.5
36.5 61
36.5
36.5 64
36.5
36.5 64
36.5
36.5
36.5 64
36.5
36.5
36.5 64
36.5
36.5
36.5 64
36.5
36.5
36.5 64
36.5
36.5
36.5
36.5
36.5 64
36.5
36.5
36.5
36.5
36.5
36.5
36.5
36.5 | 081 | | | 2559 2523 37 36.5 61 64 0.8 1.3 14.5 0.27 2.2 1.2 0.298 0.7 | 057
128
146 | | | 10110 10 12 07 70 1.0 0.0 0.40 0.00 0.40 0.00 0.40 | 169
169
146 | | | | 081
081
081 | | | M 86648 A M 86610 42 38 54 61 1.5 1.5 17.7 0.55 1.1 0.60 0.205 0.1 | 128 | | | † LM 67048 † LM 67010 42.5 36 52 56 3.5 1.3 12.6 0.41 1.5 0.80 0.127 0.0 | 057
062
081 | | | 15125 15245 42.5 36.5 55 58 3.5 1.3 13.3 0.35 1.7 0.94 0.174 0.0 | 081
081
113 | | | M 88046 M 88010 43 40.5 58 65 1.5 1.5 19.1 0.55 1.1 0.60 0.25 0.15 | 152
146
135 | | | 2580 2523 38.5 37.5 61 64 0.8 1.3 14.5 0.27 2.2 1.2 0.282 0.1 | 132
169
169 | | | HM 88542 HM 88510 45.5 42.5 59 70 1.3 3.3 23.5 0.55 1.1 0.60 0.379 0.2 | 225
242
146 | | | *HM 88638 HM 88610 48.5 42.5 60 69 3.3 2.3 20.7 0.55 1.1 0.60 0.337 0.00 | 188 | | Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). ## Bore Diameter 33.338 - 35.000 mm | | | | Dimension | S | | | | Basic Load | • | | Limiting | | |--------|--------|--------|-----------|--------|----------------|-----|------------------|------------|------------------|----------|----------|-------------------| | | | (m | nm) | | Cone | Cup | (| N) | {k | cgf} | (mir | n ⁻¹) | | d | D | T | В | С | <i>1</i>
mi | | C_{r} | C_{0r} | C_{r} | C_{0r} | Grease | Oil | | 33.338 | 66.675 | 20.638 | 20.638 | 15.875 | 3.5 | 1.5 | 46 000 | 53 500 | 4 650 | 5 450 | 5 600 | 7 500 | | | 68.262 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 55 500 | 70 500 | 5 650 | 7 200 | 5 300 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 3.5 | 3.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 0.8 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 50 | | | 69.850 | 23.812 | 25.357 | 19.050 | 3.5 | 1.3 | 71 000 | 84 000 | 7 200 | 8 550 | 5 600 | 7 50 | | | 72.000 | 19.000 | 18.923 | 15.875 | 3.5 | 1.5 | 52 000 | 56 000 | 5 300 | 5 700 | 5 600 | 7 50 | | | 72.626 | 30.162 | 29.997 | 23.812 | 0.8 | 3.3 | 79 500 | 90 000 | 8 100 | 9 200 | 5 300 | 7 50 | | | 73.025 | 29.370 | 27.783 | 23.020 | 0.8 | 3.3 | 74 000 | 100 000 | 7 550 | 10 200 | 5 000 | 7 10 | | | 76.200 | 29.370 | 28.575 | 23.020 | 3.8 | 0.8 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 70 | | | 76.200 | 29.370 | 28.575 | 23.020 | 0.8 | 3.3 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 70 | | | 79.375 | 25.400 | 24.074 | 17.462 | 3.5 | 1.5 | 67 500 | 69 500 | 6 850 | 7 100 | 5 000 | 6 70 | | 34.925 | 65.088 | 18.034 | 18.288 | 13.970 | spec. | 1.3 | 47 500 | 57 500 | 4 850 | 5 900 | 5 600 | 7 50 | | | 65.088 | 20.320 | 18.288 | 16.256 | spec. | 1.3 | 47 500 | 57 500 | 4 850 | 5 900 | 5 600 | 7 50 | | | 66.675 | 20.638 | 20.638 | 16.670 | 3.5 | 2.3 | 53 000 | 62 500 | 5 400 | 6 400 | 5 600 | 7 50 | | | 69.012 | 19.845 | 19.583 | 15.875 | 3.5 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 50 | | | 69.012 | 19.845 | 19.583 | 15.875 | 1.5 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 50 | | | 72.233 | 25.400 | 25.400 | 19.842 | 2.3 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 10 | | | 73.025 | 22.225 | 22.225 | 17.462 | 0.8 | 3.3 | 54 500 | 64 500 | 5 550 | 6 600 | 5 300 | 7 10 | | | 73.025 | 22.225 | 23.812 | 17.462 | 3.5 | 3.3 | 63 500 | 77 000 | 6 500 | 7 850 | 5 300 | 7 10 | | | 73.025 | 23.812 | 24.608 | 19.050 | 1.5 | 0.8 | 71 000 | 86 000 | 7 250 | 8 750 | 5 300 | 7 10 | | | 73.025 | 23.812 | 24.608 | 19.050 | 3.5 | 2.3 | 71 000 | 86 000 | 7 250 | 8 750 | 5 300 | 7 10 | | | 76.200 | 29.370 | 28.575 | 23.020 | 0.8 | 0.8 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 70 | | | 76.200 | 29.370 | 28.575 | 23.020 | 3.5 | 0.8 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 70 | | | 76.200 | 29.370 | 28.575 | 23.020 | 3.5 | 3.3 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 70 | | | 76.200 | 29.370 | 28.575 | 23.812 | 1.5 | 3.3 | 80 500 | 96 500 | 8 200 | 9 850 | 5 000 | 6 70 | | | 79.375 | 29.370 | 29.771 | 23.812 | 3.5 | 3.3 | 88 000 | 106 000 | 8 950 | 10 800 | 4 800 | 6 70 | | 34.976 | 68.262 | 15.875 | 16.520 | 11.908 | 1.5 | 1.5 | 45 000 | 53 500 | 4 600 | 5 450 | 5 300 | 7 10 | | | 72.085 | 22.385 | 19.583 | 18.415 | 1.3 | 2.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 50 | | | 80.000 | 21.006 | 20.940 | 15.875 | 1.5 | 1.5 | 56 500 | 64 500 | 5 750 | 6 600 | 5 000 | 6 70 | | 35.000 | 59.131 | 15.875 | 16.764 | 11.938 | spec. |
1.3 | 35 000 | 47 000 | 3 550 | 4 750 | 6 000 | 8 00 | | | 59.975 | 15.875 | 16.764 | 11.938 | spec. | 1.3 | 35 000 | 47 000 | 3 550 | 4 750 | 6 000 | 8 00 | | | 62.000 | 16.700 | 17.000 | 13.600 | spec. | 1.0 | 38 000 | 50 000 | 3 900 | 5 100 | 5 600 | 8 00 | | | 62.000 | 16.700 | 17.000 | 13.600 | spec. | 1.5 | 38 000 | 50 000 | 3 900 | 5 100 | 5 600 | 8 00 | | | 65.987 | 20.638 | 20.638 | 16.670 | 3.5 | 2.3 | 53 000 | 62 500 | 5 400 | 6 400 | 5 600 | 7 50 | | | 73.025 | 26.988 | 26.975 | 22.225 | 3.5 | 0.8 | 75 500 | 88 500 | 7 650 | 9 050 | 5 300 | 7 50 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Nu | ımbers | Al | outment | and Fille
(mm) | | | 0 | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | | ass
g) | |------------|---------------|------------------|------------|-------------------|------------|---------------------------------|-----|----------------------|----------|--------------|--------------|-------------|-------------| | CONE | CUP | d_{a} | $d_{ m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone
$\gamma_{\rm a}$
max | 1 | (mm)
a | e | Y_1 | Y_0 | app
CONE | rox.
CUP | | 1680 | 1620 | 44.5 | 38.5 | 58 | 61 | 3.5 | 1.5 | 15.2 | 0.37 | 1.6 | 0.89 | 0.196 | 0.121 | | M 88048 | M 88010 | 42.5 | 41 | 58 | 65 | 0.8 | 1.5 | 19.0 | 0.55 | 1.1 | 0.60 | 0.236 | 0.146 | | 14130 | 14274 | 45 | 38.5 | 59 | 63 | 3.5 | 3.3 | 15.3 | 0.38 | 1.6 | 0.86 | 0.207 | 0.132 | | 14131 | 14276 | 39.5 | 38.5 | 60 | 63 | 0.8 | 1.3 | 15.3 | 0.38 | 1.6 | 0.86 | 0.209 | 0.135 | | 2585 | 2523 | 45 | 39 | 61 | 64 | 3.5 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.263 | 0.169 | | 26131 | 26283 | 44.5 | 38.5 | 62 | 65 | 3.5 | 1.5 | 14.7 | 0.36 | 1.7 | 0.92 | 0.20 | 0.163 | | 3197 | 3120 | 41.5 | 40.5 | 61 | 67 | 0.8 | 3.3 | 19.6 | 0.33 | 1.8 | 0.99 | 0.348 | 0.225 | | HM 88547 | HM 88510 | 45.5 | 42.5 | 59 | 70 | 0.8 | 3.3 | 23.5 | 0.55 | 1.1 | 0.60 | 0.362 | 0.242 | | HM 89444 | HM 89411 | 53 | 44.5 | 65 | 73 | 3.8 | 0.8 | 23.6 | 0.55 | 1.1 | 0.60 | 0.419 | 0.261 | | HM 89443 | HM 89410 | 46.5 | 44.5 | 62 | 73 | 0.8 | 3.3 | 23.6 | 0.55 | 1.1 | 0.60 | 0.421 | 0.257 | | 43131 | 43312 | 51 | 42 | 67 | 74 | 3.5 | 1.5 | 23.7 | 0.67 | 0.90 | 0.49 | 0.348 | 0.22 | | † LM 48548 | † LM 48510 | 46 | 40 | 58 | 61 | 3.5 | 1.3 | 14.1 | 0.38 | 1.6 | 0.88 | 0.172 | 0.087 | | † LM 48548 | † LM 48511 | 46 | 40 | 58 | 61 | 3.5 | 1.3 | 16.4 | 0.38 | 1.6 | 0.88 | 0.172 | 0.108 | | M 38549 | M 38510 | 46.5 | 40 | 58 | 62 | 3.5 | 2.3 | 15.2 | 0.35 | 1.7 | 0.94 | 0.194 | 0.112 | | 14138 A | 14276 | 46 | 40 | 60 | 63 | 3.5 | 1.3 | 15.3 | 0.38 | 1.6 | 0.86 | 0.194 | 0.135 | | 14137 A | 14276 | 42 | 40 | 60 | 63 | 1.5 | 1.3 | 15.1 | 0.38 | 1.6 | 0.86 | 0.196 | 0.135 | | HM 88649 | HM 88610 | 48.5 | 42.5 | 60 | 69 | 2.3 | 2.3 | 20.7 | 0.55 | 1.1 | 0.60 | 0.307 | 0.188 | | 02878 | 02820 | 42.5 | 42 | 62 | 68 | 0.8 | 3.3 | 18.3 | 0.45 | 1.3 | 0.73 | 0.266 | 0.16 | | 2877 | 2820 | 47 | 41.5 | 63 | 68 | 3.5 | 3.3 | 16.1 | 0.37 | 1.6 | 0.90 | 0.291 | 0.15 | | 25877 | 25821 | 43 | 40.5 | 65 | 68 | 1.5 | 0.8 | 15.7 | 0.29 | 2.1 | 1.1 | 0.306 | 0.167 | | 25878 | 25820 | 47 | 40.5 | 64 | 68 | 3.5 | 2.3 | 15.7 | 0.29 | 2.1 | 1.1 | 0.304 | 0.165 | | HM 89446 A | HM 89411 | 47.5 | 44.5 | 65 | 73 | 0.8 | 0.8 | 23.6 | 0.55 | 1.1 | 0.60 | 0.403 | 0.261 | | HM 89446 | HM 89411 | 53 | 44.5 | 65 | 73 | 3.5 | 0.8 | 23.6 | 0.55 | 1.1 | 0.60 | 0.40 | 0.261 | | HM 89446 | HM 89410 | 53 | 44.5 | 62 | 73 | 3.5 | 3.3 | 23.6 | 0.55 | 1.1 | 0.60 | 0.40 | 0.257 | | 31594 | 31520 | 46 | 43.5 | 64 | 72 | 1.5 | 3.3 | 21.6 | 0.40 | 1.5 | 0.82 | 0.404 | 0.235 | | 3478 | 3420 | 50 | 43.5 | 67 | 74 | 3.5 | 3.3 | 20.0 | 0.37 | 1.6 | 0.90 | 0.448 | 0.259 | | 19138 | 19268 | 42.5 | 40.5 | 61 | 65 | 1.5 | 1.5 | 14.5 | 0.44 | 1.4 | 0.74 | 0.196 | 0.073 | | 14139 | 14283 | 41.5 | 40 | 60 | 65 | 1.3 | 2.3 | 17.7 | 0.38 | 1.6 | 0.87 | 0.198 | 0.21 | | 28138 | 28315 | 43.5 | 41 | 69 | 73 | 1.5 | 1.5 | 16.0 | 0.40 | 1.5 | 0.82 | 0.308 | 0.199 | | *† L 68149 | † L 68110 | 45.5 | 39 | 52 | 56 | 3.5 | 1.3 | 13.2 | 0.42 | 1.4 | 0.79 | 0.117 | 0.056 | | *† L 68149 | † L 68111 | 45.5 | 39 | 53 | 56 | 3.5 | 1.3 | 13.2 | 0.42 | 1.4 | 0.79 | 0.117 | 0.064 | | * LM 78349 | ** LM 78310 | 46 | 40 | 55 | 59 | 3.5 | 1 | 14.4 | 0.44 | 1.4 | 0.74 | 0.137 | 0.074 | | * LM 78349 | ** LM 78310 A | 46 | 40 | 54 | 59 | 3.5 | 1.5 | 14.4 | 0.44 | 1.4 | 0.74 | 0.138 | 0.073 | | M 38547 | M 38511 | 46 | 39.5 | 59 | 61 | 3.5 | 2.3 | 15.2 | 0.35 | 1.7 | 0.94 | 0.193 | 0.103 | | 23691 | 23621 | 49 | 42 | 63 | 68 | 3.5 | 0.8 | 18.1 | 0.37 | 1.6 | 0.89 | 0.309 | 0.212 | Notes - The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). - * † The tolerance for the bore diameter is 0 to –20 μm , and for overall bearing width is +356 to 0 μm . ## Bore Diameter 35.717 - 41.275 mm | | Boundary Dimensions
(mm) | | | | | | | d Ratings | | Limiting | | | |--------|-----------------------------|--------|--------|--------|-----------------|-----|-------------|-------------------|------------|-----------------------|----------------|-------| | d | D | T | В | С | Cone
1
mi | • | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | gf} $C_{0\mathrm{r}}$ | (mir
Grease | oil | | 35.717 | 72.233 | 25.400 | 25.400 | 19.842 | 3.5 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 100 | | 36.487 | 73.025 | 23.812 | 24.608 | 19.050 | 1.5 | 0.8 | 71 000 | 86 000 | 7 250 | 8 750 | 5 300 | 7 100 | | 36.512 | 76.200 | 29.370 | 28.575 | 23.020 | 3.5 | 3.3 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 79.375 | 29.370 | 29.771 | 23.812 | 0.8 | 3.3 | 88 000 | 106 000 | 8 950 | 10 800 | 4 800 | 6 700 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | | 93.662 | 31.750 | 31.750 | 26.195 | 1.5 | 3.3 | 110 000 | 142 000 | 11 200 | 14 400 | 4 000 | 5 600 | | 38.000 | 63.000 | 17.000 | 17.000 | 13.500 | spec. | 1.3 | 38 500 | 52 000 | 3 900 | 5 300 | 5 600 | 7 500 | | 38.100 | 63.500 | 12.700 | 11.908 | 9.525 | 1.5 | 0.8 | 24 100 | 30 500 | 2 460 | 3 100 | 5 300 | 7 100 | | | 65.088 | 18.034 | 18.288 | 13.970 | 2.3 | 1.3 | 42 500 | 55 000 | 4 300 | 5 650 | 5 300 | 7 500 | | | 65.088 | 18.034 | 18.288 | 13.970 | spec. | 1.3 | 42 500 | 55 000 | 4 300 | 5 650 | 5 300 | 7 500 | | | 65.088 | 19.812 | 18.288 | 15.748 | 2.3 | 1.3 | 42 500 | 55 000 | 4 300 | 5 650 | 5 300 | 7 500 | | | 68.262 | 15.875 | 16.520 | 11.908 | 1.5 | 1.5 | 45 000 | 53 500 | 4 600 | 5 450 | 5 300 | 7 100 | | | 69.012 | 19.050 | 19.050 | 15.083 | 2.0 | 2.3 | 49 000 | 61 000 | 4 950 | 6 250 | 5 300 | 7 100 | | | 69.012 | 19.050 | 19.050 | 15.083 | 3.5 | 0.8 | 49 000 | 61 000 | 4 950 | 6 250 | 5 300 | 7 100 | | | 72.238 | 20.638 | 20.638 | 15.875 | 3.5 | 1.3 | 48 500 | 59 500 | 4 950 | 6 050 | 5 300 | 7 100 | | | 73.025 | 23.812 | 25.654 | 19.050 | 3.5 | 0.8 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 76.200 | 23.812 | 25.654 | 19.050 | 3.5 | 3.3 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 76.200 | 23.812 | 25.654 | 19.050 | 3.5 | 0.8 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 79.375 | 29.370 | 29.771 | 23.812 | 3.5 | 3.3 | 88 000 | 106 000 | 8 950 | 10 800 | 4 800 | 6 700 | | | 80.035 | 24.608 | 23.698 | 18.512 | 0.8 | 1.5 | 69 000 | 84 500 | 7 000 | 8 600 | 4 500 | 6 300 | | | 82.550 | 29.370 | 28.575 | 23.020 | 0.8 | 3.3 | 87 000 | 117 000 | 8 850 | 11 900 | 4 500 | 6 000 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | | 88.501 | 26.988 | 29.083 | 22.225 | 3.5 | 1.5 | 96 500 | 109 000 | 9 800 | 11 100 | 4 500 | 6 000 | | | 95.250 | 30.958 | 28.301 | 20.638 | 1.5 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | 39.688 | 73.025 | 25.654 | 22.098 | 21.336 | 0.8 | 2.3 | 62 500 | 80 000 | 6 400 | 8 150 | 5 000 | 6 700 | | | 76.200 | 23.812 | 25.654 | 19.050 | 3.5 | 3.3 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 80.167 | 29.370 | 30.391 | 23.812 | 0.8 | 3.3 | 92 500 | 108 000 | 9 450 | 11 000 | 4 800 | 6 300 | | 40.000 | 80.000 | 21.000 | 22.403 | 17.826 | 3.5 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 0.8 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | 41.000 | 68.000 | 17.500 | 18.000 | 13.500 | spec. | 1.5 | 43 500 | 58 000 | 4 450 | 5 950 | 5 300 | 7 100 | | 41.275 | 73.025 | 16.667 | 17.462 | 12.700 | 3.5 | 1.5 | 44 500 | 54 000 | 4 550 | 5 500 | 4 800 | 6 700 | | | 73.431 | 19.558 | 19.812 | 14.732 | 3.5 | 0.8 | 54 500 | 67 000 | 5 550 | 6 850 | 4 800 | 6 700 | | | 73.431 | 21.430 | 19.812 | 16.604 | 3.5 | 0.8 | 54 500 | 67 000 | 5 550 | 6 850 | 4 800 | 6 700 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | | | | | | | | - | | | | | | | |------------------------------------|------------------------------------|-------------------------------------|-------------------------------|----------------------
----------------------|------------------------------------|--------------------------|------------------------------|------------------------------|---------------------------|------------------------------|---------------------------------|----------------------------------| | Bearing | Numbers | Ab | outment | and Fille
(mm) | | | | Eff. Load
Centers | Constant | Axial
Fac | | Ma
(k | iss
g) | | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone C
$\gamma_{\rm a}$
max. | up | (mm)
<i>a</i> | e | Y_1 | Y_0 | app
CONE | rox.
CUP | | HM 88648
25880 | HM 88610
25821 | 52
44 | 43
42 | 60
65 | 69
68 | | 2.3 | 20.7
15.7 | 0.55
0.29 | 1.1
2.1 | 0.60
1.1 | 0.298
0.291 | 0.188
0.167 | | HM 89449
3479
44143
46143 | HM 89410
3420
44348
46368 | 54
45.5
54
48.5 | 44.5
44.5
50
46.5 | 62
67
75
79 | 73
74
84
87 | 0.8 3
2.3 1 | 3.3
3.3
1.5
3.3 | 23.6
20.0
27.9
24.0 | 0.55
0.37
0.78
0.40 | 1.1
1.6
0.77
1.5 | 0.60
0.90
0.42
0.82 | 0.38
0.429
0.502
0.765 | 0.257
0.259
0.245
0.405 | | ▲ JL 69349 | ▲ JL 69310 | 49 | 42.5 | 56 | 60 | 3.5 1 | 1.3 | 14.6 | 0.42 | 1.4 | 0.79 | 0.132 | 0.071 | | 13889 | 13830 | 45 | 42.5 | 59 | 60 | 2.3 1 | 0.8 | 11.9 | 0.35 | 1.7 | 0.95 | 0.109 | 0.046 | | LM 29749 | LM 29710 | 46 | 42.5 | 59 | 62 | | 1.3 | 13.7 | 0.33 | 1.8 | 0.99 | 0.16 | 0.079 | | LM 29748 | LM 29710 | 49 | 42.5 | 59 | 62 | | 1.3 | 13.7 | 0.33 | 1.8 | 0.99 | 0.158 | 0.079 | | LM 29749 | LM 29711 | 46 | 42.5 | 58 | 62 | 1.5 1 | 1.3 | 15.5 | 0.33 | 1.8 | 0.99 | 0.16 | 0.094 | | 19150 | 19268 | 45 | 43 | 61 | 65 | | 1.5 | 14.5 | 0.44 | 1.4 | 0.74 | 0.173 | 0.073 | | 13687 | 13621 | 46.5 | 43 | 61 | 65 | | 2.3 | 15.8 | 0.40 | 1.5 | 0.82 | 0.193 | 0.104 | | 13685 | 13620 | 49.5 | 43 | 62 | 65 | 3.5 1 | 0.8 | 15.8 | 0.40 | 1.5 | 0.82 | 0.191 | 0.105 | | 16150 | 16284 | 49.5 | 43 | 63 | 67 | | 1.3 | 16.0 | 0.40 | 1.5 | 0.82 | 0.212 | 0.146 | | 2788 | 2735 X | 50 | 43.5 | 66 | 69 | | 0.8 | 15.9 | 0.30 | 2.0 | 1.1 | 0.312 | 0.135 | | 2788 | 2720 | 50 | 43.5 | 66 | 70 | 3.5 0 | 3.3 | 15.9 | 0.30 | 2.0 | 1.1 | 0.312 | 0.187 | | 2788 | 2729 | 50 | 43.5 | 68 | 70 | | 0.8 | 15.9 | 0.30 | 2.0 | 1.1 | 0.312 | 0.191 | | 3490 | 3420 | 52 | 45.5 | 67 | 74 | | 3.3 | 20.0 | 0.37 | 1.6 | 0.90 | 0.404 | 0.259 | | 27880 | 27820 | 48 | 47 | 68 | 75 | 0.8 3 | 1.5 | 21.5 | 0.56 | 1.1 | 0.59 | 0.362 | 0.209 | | HM 801346 | HM 801310 | 51 | 49 | 68 | 78 | | 3.3 | 24.2 | 0.55 | 1.1 | 0.60 | 0.483 | 0.282 | | 44150 | 44348 | 55 | 51 | 75 | 84 | | 1.5 | 27.9 | 0.78 | 0.77 | 0.42 | 0.484 | 0.245 | | 418 | 414 | 51 | 44.5 | 77 | 80 | | 1.5 | 17.1 | 0.26 | 2.3 | 1.3 | 0.50 | 0.329 | | 53150 | 53375 | 55 | 53 | 81 | 89 | |).8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.665 | 0.365 | | M 201047 | M 201011 | 45.5 | 48 | 64 | 69 | 3.5 3 | 2.3 | 19.7 | 0.33 | 1.8 | 0.99 | 0.266 | 0.169 | | 2789 | 2720 | 52 | 45 | 66 | 70 | | 3.3 | 15.9 | 0.30 | 2.0 | 1.1 | 0.292 | 0.187 | | 3386 | 3320 | 46.5 | 45.5 | 70 | 75 | | 3.3 | 18.4 | 0.27 | 2.2 | 1.2 | 0.442 | 0.217 | | 344 | 332 | 52 | 45.5 | 73 | 75 | 0.8 1 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.338 | 0.146 | | 344 A | 332 | 46 | 45.5 | 73 | 75 | | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.339 | 0.146 | | 44157 | 44348 | 56 | 51 | 75 | 84 | | 1.5 | 27.9 | 0.78 | 0.77 | 0.42 | 0.463 | 0.245 | | * LM 300849 | ** LM 300811 | 52 | 45 | 61 | 65 | | 1.5 | 13.9 | 0.35 | 1.7 | 0.95 | 0.16 | 0.082 | | 18590 | 18520 | 53 | 46 | 66 | 69 | 3.5 0 | 1.5 | 14.0 | 0.35 | 1.7 | 0.94 | 0.199 | 0.086 | | LM 501349 | LM 501310 | 53 | 46.5 | 67 | 70 | |).8 | 16.3 | 0.40 | 1.5 | 0.83 | 0.226 | 0.108 | | LM 501349 | LM 501314 | 53 | 46.5 | 66 | 70 | |).8 | 18.2 | 0.40 | 1.5 | 0.83 | 0.226 | 0.129 | | Notes & 7 | The maximum here diar | motor ic I | iotod one | 1 ita tala | ranga ia | nogotivo | 100 | o Toblo | 0 4 4 | an Dogg | ACO\ | | | Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. B 144 B 145 ## Bore Diameter 41.275 – 44.450 mm | | | | Dimension | S | | | | | ad Ratings | | Limiting | | |--------|--------|--------|-----------|--------|----------------|-----|-------------|----------|-------------|----------|----------|-------------------| | | | (m | nm) | | Cone | Cun | 1) | ۷) | {k | gf} | (mir | n ⁻¹) | | d | D | T | В | С | ≯
mi | • | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 41.275 | 76.200 | 18.009 | 17.384 | 14.288 | 1.5 | 1.5 | 42 500 | 51 000 | 4 350 | 5 200 | 4 500 | 6 300 | | | 76.200 | 22.225 | 23.020 | 17.462 | 3.5 | 0.8 | 66 000 | 82 000 | 6 700 | 8 400 | 4 800 | 6 700 | | | 76.200 | 25.400 | 23.020 | 20.638 | 3.5 | 2.3 | 66 000 | 82 000 | 6 700 | 8 400 | 4 800 | 6 700 | | | 79.375 | 23.812 | 25.400 | 19.050 | 3.5 | 0.8 | 77 000 | 98 500 | 7 850 | 10 000 | 4 800 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 0.8 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 3.5 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 80.167 | 25.400 | 25.400 | 20.638 | 3.5 | 3.3 | 77 000 | 98 500 | 7 850 | 10 000 | 4 800 | 6 300 | | | 82.550 | 26.543 | 25.654 | 20.193 | 3.5 | 3.3 | 78 500 | 102 000 | 8 000 | 10 400 | 4 300 | 6 000 | | | 85.725 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 91 000 | 115 000 | 9 300 | 11 700 | 4 300 | 6 000 | | | 87.312 | 30.162 | 30.886 | 23.812 | 0.8 | 3.3 | 96 000 | 120 000 | 9 800 | 12 200 | 4 300 | 6 000 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | | 88.900 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 96 500 | 129 000 | 9 800 | 13 200 | 4 000 | 5 600 | | | 88.900 | 30.162 | 29.370 | 23.020 | 0.8 | 3.3 | 96 500 | 129 000 | 9 800 | 13 200 | 4 000 | 5 600 | | | 90.488 | 39.688 | 40.386 | 33.338 | 3.5 | 3.3 | 139 000 | 180 000 | 14 200 | 18 400 | 4 300 | 5 600 | | | 93.662 | 31.750 | 31.750 | 26.195 | 0.8 | 3.3 | 110 000 | 142 000 | 11 200 | 14 400 | 4 000 | 5 600 | | | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | | 98.425 | 30.958 | 28.301 | 20.638 | 1.5 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | 42.862 | 76.992 | 17.462 | 17.145 | 11.908 | 1.5 | 1.5 | 44 000 | 54 000 | 4 450 | 5 500 | 4 500 | 6 000 | | | 82.550 | 19.842 | 19.837 | 15.080 | 2.3 | 1.5 | 58 500 | 69 000 | 5 950 | 7 050 | 4 500 | 6 300 | | | 82.931 | 23.812 | 25.400 | 19.050 | 2.3 | 0.8 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 82.931 | 26.988 | 25.400 | 22.225 | 2.3 | 2.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | 42.875 | 76.200 | 25.400 | 25.400 | 20.638 | 3.5 | 1.5 | 77 000 | 98 500 | 7 850 | 10 000 | 4 800 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 3.5 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 82.931 | 26.988 | 25.400 | 22.225 | 3.5 | 2.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 83.058 | 23.812 | 25.400 | 19.050 | 3.5 | 3.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | 43.000 | 74.988 | 19.368 | 19.837 | 14.288 | 1.5 | 1.3 | 52 500 | 68 000 | 5 350 | 6 900 | 4 800 | 6 300 | | 44.450 | 80.962 | 19.050 | 17.462 | 14.288 | 0.3 | 1.5 | 45 000 | 57 000 | 4 600 | 5 800 | 4 300 | 6 000 | | | 82.931 | 23.812 | 25.400 | 19.050 | 3.5 | 0.8 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 83.058 | 23.812 | 25.400 | 19.050 | 3.5 | 3.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 87.312 | 30.162 | 30.886 | 23.812 | 3.5 | 3.3 | 96 000 | 120 000 | 9 800 | 12 200 | 4 300 | 6 000 | | | 88.900 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 96 500 | 129 000 | 9 800 | 13 200 | 4 000 | 5 600 | | | 93.264 | 30.162 | 30.302 | 23.812 | 3.5 | 3.2 | 103 000 | 136 000 | 10 500 | 13 900 | 3 800 | 5 300 | | | 93.662 | 31.750 | 31.750 | 25.400 | 0.8 | 3.3 | 120 000 | 147 000 | 12 200 | 15 000 | 4 000 | 5 600 | | | 93.662 | 31.750 | 31.750 | 25.400 | 3.5 | 3.3 | 120 000 | 147 000 | 12 200 | 15 000 | 4 000 | 5 600 | | | 93.662 | 31.750 | 31.750 | 26.195 | 3.5 | 3.3 | 110 000 | 142 000 | 11 200 | 14 400 | 4 000 | 5 600 | | | 95.250 | 27.783 | 29.901 | 22.225 | 3.5 | 2.3 | 106 000 | 126 000 | 10 800 | 12 900 | 4 300 | 5 600 | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing Nur | nbers | Al | outment | and Fille
(mm) | | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | | |-------------|-----------|------------------|---------------|-------------------|---------------|---------------------------|-----|----------------------|----------|-------|--------------|--------------|-------------| | CONE | CUP | d_{a} | $d_{ ext{b}}$ | $D_{\rm a}$ | $D_{ ext{b}}$ | Cone
γ_z
max | 1 | (mm)
a | e | Y_1 | Y_0 | app
CONE | rox.
CUP | | 11162 | 11300 | 49 | 46.5 | 67 | 71 | 1.5 | 1.5 | 17.4 | 0.49 | 1.2 | 0.68 | 0.212 | 0.129 | | 24780 | 24720 | 53 | 47.5 | 68 | 72 | 3.5 | 0.8 | 17.0 | 0.39 | 1.5 | 0.84 | 0.279 | 0.15 | | 24780 | 24721 | 54 | 47 | 66 | 72 | 3.5 | 2.3 | 20.2 | 0.39 | 1.5 | 0.84 | 0.279 | 0.189 | | 26882 | 26822 | 54 | 47 | 71 | 74 | 3.5 | 0.8 | 16.4 | 0.32 | 1.9 | 1.0 | 0.349 | 0.186 | | 336 | 332 | 47 | 46 | 73 | 75 | 0.8 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.325 | 0.146 | | 342 | 332 | 53 | 46 | 73 | 75 | 3.5 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.323 | 0.146 | |
26882 | 26820 | 54 | 47 | 69 | 74 | 3.5 | 3.3 | 18.0 | 0.32 | 1.9 | 1.0 | 0.349 | 0.219 | | M 802048 | M 802011 | 57 | 51 | 70 | 79 | 3.5 | 3.3 | 22.9 | 0.55 | 1.1 | 0.60 | 0.406 | 0.23 | | 3877 | 3820 | 57 | 50 | 73 | 81 | 3.5 | 3.3 | 21.8 | 0.40 | 1.5 | 0.82 | 0.506 | 0.285 | | 3576 | 3525 | 49 | 48 | 75 | 81 | 0.8 | 3.3 | 19.5 | 0.31 | 2.0 | 1.1 | 0.532 | 0.304 | | 44162 | 44348 | 57 | 51 | 75 | 84 | 2.3 | 1.5 | 28.0 | 0.78 | 0.77 | 0.42 | 0.447 | 0.245 | | HM 803146 | HM 803110 | 60 | 53 | 74 | 85 | 3.5 | 3.3 | 25.6 | 0.55 | 1.1 | 0.60 | 0.579 | 0.322 | | HM 803145 | HM 803110 | 54 | 53 | 74 | 85 | 0.8 | 3.3 | 25.6 | 0.55 | 1.1 | 0.60 | 0.582 | 0.322 | | 4388 | 4335 | 57 | 51 | 77 | 85 | 3.5 | 3.3 | 24.6 | 0.28 | 2.1 | 1.2 | 0.789 | 0.459 | | 46162 | 46368 | 52 | 51 | 79 | 87 | 0.8 | 3.3 | 24.0 | 0.40 | 1.5 | 0.82 | 0.695 | 0.405 | | HM 804840 | HM 804810 | 61 | 54 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.726 | 0.354 | | 53162 | 53387 | 57 | 53 | 82 | 91 | 1.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.618 | 0.442 | | 12168 | 12303 | 51 | 48.5 | 68 | 73 | 1.5 | 1.5 | 17.7 | 0.51 | 1.2 | 0.65 | 0.228 | 0.098 | | 22168 | 22325 | 52 | 48.5 | 73 | 76 | 2.3 | 1.5 | 17.6 | 0.43 | 1.4 | 0.77 | 0.283 | 0.176 | | 25578 | 25520 | 53 | 49.5 | 74 | 77 | 2.3 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.383 | 0.203 | | 25578 | 25523 | 53 | 49.5 | 72 | 77 | 2.3 | 2.3 | 20.8 | 0.33 | 1.8 | 0.99 | 0.383 | 0.248 | | 26884 | 26823 | 55 | 48.5 | 69 | 73 | 3.5 | 1.5 | 18.0 | 0.32 | 1.9 | 1.0 | 0.337 | 0.136 | | 342 S | 332 | 54 | 47.5 | 73 | 75 | 3.5 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.305 | 0.146 | | 25577 | 25523 | 55 | 49 | 72 | 77 | 3.5 | 2.3 | 20.8 | 0.33 | 1.8 | 0.99 | 0.381 | 0.248 | | 25577 | 25521 | 55 | 49 | 72 | 77 | 3.5 | 3.3 | 17.6 | 0.33 | 1.8 | 0.99 | 0.381 | 0.201 | | * 16986 | 16929 | 51 | 48.5 | 67 | 71 | 1.5 | 1.3 | 17.2 | 0.44 | 1.4 | 0.74 | 0.24 | 0.106 | | 13175 | 13318 | 50 | 50 | 72 | 76 | 0.3 | 1.5 | 20.1 | 0.53 | 1.1 | 0.63 | 0.252 | 0.144 | | 25580 | 25520 | 57 | 50 | 74 | 77 | 3.5 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.359 | 0.203 | | 25580 | 25521 | 56 | 51 | 72 | 78 | 3.5 | 3.3 | 17.6 | 0.33 | 1.8 | 0.99 | 0.359 | 0.201 | | 3578 | 3525 | 57 | 51 | 75 | 81 | 3.5 | 3.3 | 19.5 | 0.31 | 2.0 | 1.1 | 0.477 | 0.304 | | HM 803149 | HM 803110 | 62 | 53 | 74 | 85 | 3.5 | 3.3 | 25.6 | 0.55 | 1.1 | 0.60 | 0.528 | 0.322 | | 3782 | 3720 | 58 | 52 | 82 | 88 | 3.5 | 3.2 | 22.4 | 0.34 | 1.8 | 0.97 | 0.678 | 0.292 | | 49176 | 49368 | 54 | 53 | 82 | 87 | 0.8 | 3.3 | 21.6 | 0.36 | 1.7 | 0.92 | 0.648 | 0.371 | | 49175 | 49368 | 59 | 53 | 82 | 87 | 3.5 | 3.3 | 21.6 | 0.36 | 1.7 | 0.92 | 0.645 | 0.371 | | 46176 | 46368 | 60 | 54 | 79 | 87 | 3.5 | 3.3 | 24.0 | 0.40 | 1.5 | 0.82 | 0.635 | 0.405 | | 438 | 432 | 57 | 51 | 83 | 87 | 3.5 | 2.3 | 18.6 | 0.28 | 2.1 | 1.2 | 0.555 | 0.384 | Note * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). ## Bore Diameter 44.450 - 47.625 mm | | | | Dimension | S | | | ļ , | Basic Loa | ad Ratings
{kgf} | Limiting
(mir | | |------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------------------|--------------------------------------|--|----------------------------------|------------------------------| | d | D | T | В | С | Cone
1
mi | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ $C_{0 m r}$ | Grease | Oil | | 44.450 | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 14 500 | 3 800 | 5 30 | | | 95.250 | 30.958 | 28.301 | 20.638 | 3.5 | 0.8 | 87 500 | 97 000 | 8 950 9 850 | 3 600 | 5 30 | | | 95.250 | 30.958 | 28.301 | 20.638 | 1.3 | 0.8 | 87 500 | 97 000 | 8 950 9 850 | 3 600 | 5 30 | | | 95.250 | 30.958 | 28.301 | 20.638 | 2.0 | 0.8 | 87 500 | 97 000 | 8 950 9 850 | 3 600 | 5 30 | | | 95.250 | 30.958 | 28.301 | 22.225 | 1.3 | 0.8 | 100 000 | 122 000 | 10 200 12 500 | 3 600 | 5 00 | | | 95.250 | 30.958 | 28.575 | 22.225 | 3.5 | 0.8 | 100 000 | 122 000 | 10 200 12 500 | 3 600 | 5 00 | | | 98.425 | 30.958 | 28.301 | 20.638 | 3.5 | 0.8 | 87 500 | 97 000 | 8 950 9 850 | 3 600 | 5 30 | | | 103.188 | 43.658 | 44.475 | 36.512 | 1.3 | 3.3 | 178 000 | 238 000 | 18 100 24 300 | 3 800 | 5 00 | | | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 3.3 | 139 000 | 192 000 | 14 200 19 600 | 3 400 | 4 80 | | | 107.950 | 27.783 | 29.317 | 22.225 | 3.5 | 0.8 | 116 000 | 149 000 | 11 800 15 200 | 3 400 | 4 80 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 11 200 | 3 200 | 4 30 | | | 114.300 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 172 000 | 205 000 | 17 500 20 900 | 3 600 | 4 80 | | 44.983 | 82.931 | 23.812 | 25.400 | 19.050 | 1.5 | 0.8 | 76 500 | 99 000 | 7 800 10 100 | 4 500 | 6 00 | | 45.000 | 93.264 | 20.638 | 22.225 | 15.082 | 0.8 | 1.3 | 77 000 | 93 000 | 7 900 9 500 | 3 800 | 5 30 | | 45.230 | 79.985 | 19.842 | 20.638 | 15.080 | 2.0 | 1.3 | 62 000 | 78 500 | 6 300 8 000 | 4 500 | 6 00 | | 45.242 | 73.431 | 19.558 | 19.812 | 15.748 | 3.5 | 0.8 | 53 500 | 75 000 | 5 450 7 650 | 4 800 | 6 30 | | | 77.788 | 19.842 | 19.842 | 15.080 | 3.5 | 0.8 | 56 000 | 71 000 | 5 700 7 250 | 4 500 | 6 30 | | | 77.788 | 21.430 | 19.842 | 16.667 | 3.5 | 0.8 | 56 000 | 71 000 | 5 700 7 250 | 4 500 | 6 30 | | 45.618 | 82.931 | 23.812 | 25.400 | 19.050 | 3.5 | 0.8 | 76 500 | 99 000 | 7 800 10 100 | 4 500 | 6 00 | | | 82.931 | 26.988 | 25.400 | 22.225 | 3.5 | 2.3 | 76 500 | 99 000 | 7 800 10 100 | 4 500 | 6 00 | | 46.000
46.038 | 75.000
79.375
80.962
85.000 | 18.000
17.462
19.050
20.638 | 18.000
17.462
17.462
21.692 | 14.000
13.495
14.288
17.462 | 2.3
2.8
0.8
2.3 | 1.5
1.5
1.5
1.3 | 51 000
46 000
45 000
71 500 | 71 500
57 000
57 000
81 500 | 5 200 7 300
4 700 5 800
4 600 5 800
7 300 8 300 | 4 500
4 500
4 300
4 300 | 6 30
6 00
6 00
6 00 | | | 85.000 | 25.400 | 25.608 | 20.638 | 3.5 | 1.3 | 79 500 | 105 000 | 8 100 10 700 | 4 300 | 6 00 | | | 95.250 | 27.783 | 29.901 | 22.225 | 3.5 | 0.8 | 106 000 | 126 000 | 10 800 12 900 | 4 300 | 5 60 | | 47.625 | 88.900 | 20.638 | 22.225 | 16.513 | 3.5 | 1.3 | 73 000 | 85 000 | 7 450 8 650 | 4 000 | 5 60 | | | 88.900 | 25.400 | 25.400 | 19.050 | 3.5 | 3.3 | 86 000 | 107 000 | 8 750 10 900 | 4 000 | 5 60 | | | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 14 500 | 3 800 | 5 30 | | | 101.600 | 34.925 | 36.068 | 26.988 | 3.5 | 3.3 | 137 000 | 169 000 | 14 000 17 200 | 3 800 | 5 00 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 11 200 | 3 200 | 4 30 | | | 112.712 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 11 200 | 3 200 | 4 30 | | | 117.475 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 137 000 | 156 000 | 13 900 15 900 | 3 200 | 4 30 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 16 400 | 3 000 | 4 00 | ### Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | |---------------|--------------------------|---------------|-----------------------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load $P_0=0.5F_r+Y_0F_a$ When $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing N | 'umbers | Al | butment | t and Fille
(mm | | | | Eff. Load
Centers | Constant | | Load | | ass
<g)< th=""></g)<> | |-------------|--------------|------------------|-------------------------------|--------------------|------------|------------------------|-----|----------------------|----------|-------|-------|-------------|--------------------------| | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone
γ
ma | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | prox.
CUP | | HM 804843 | HM 804810 | 63 | 57 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.677 | 0.354 | | 53177 | 53375 | 63 | 53 | 81 | 89 | 3.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.572 | 0.365 | | 53176 | 53375 | 59 | 53 | 81 | 89 | 1.3 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.574 | 0.365 | | 53178 | 53375 | 60 | 53 | 81 | 89 | 2 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.574 | 0.365 | | HM 903247 | HM 903210 | 61 | 54 | 81 | 91 | 1.3 | 0.8 | 31.5 | 0.74 | 0.81 | 0.45 | 0.651 | 0.389 | | HM 903249 | HM 903210 | 65 | 54 | 81 | 91 | 3.5 | 0.8 | 31.5 | 0.74 | 0.81 | 0.45 | 0.635 | 0.389 | | 53177 | 53387 | 63 | 53 | 82 | 91 | 3.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.568 | 0.442 | | 5356 | 5335 | 58 | 56 | 89 | 97 | 1.3 | 3.3 | 27.0 | 0.30 | 2.0 | 1.1 | 1.23 | 0.637 | | HM 807040 | HM 807010 | 66 | 59 | 89 | 100 | 3.5 | 3.3 | 29.7 | 0.49 | 1.2 | 0.68 | 1.14 | 0.502 | | 460 | 453 A | 60 | 54 | 97 | 100 | 3.5 | 0.8 | 20.7 | 0.34 | 1.8 | 0.98 | 0.93 | 0.42 | | 55175 | 55437 | 67 | 60 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.867 | 0.514 | | 65385 | 65320 | 65 | 59 | 97 | 107 | 3.5 | 3.3 | 32.2 | 0.43 | 1.4 | 0.77 | 1.39 | 0.894 | | 25584 | 25520 | 53 | 51 | 74 | 77 | 1.5 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.354 | | | 376 | 374 | 54 | 54 | 85 | 88 | 0.8 | 1.3 | 17.1 | 0.34 | 1.8 | 0.97 | 0.492 | | | 17887 | 17831 | 57 | 52 | 68 | 74 | 2 | 1.3 | 15.9 | 0.37 | 1.6 | 0.90 | 0.274 | | | LM 102949 | LM 102910 | 56 | 50 | 68 | 70 | 3.5 | 0.8 | 14.6 | 0.31 | 2.0 | 1.1 | 0.213 | 0.102 | | LM 603049 | LM 603011 | 57 | 50 | 71 | 74 | 3.5 | 0.8 | 17.2 | 0.43 | 1.4 | 0.77 | 0.249 | 0.119 | | LM 603049 | LM 603012 | 57 | 50 | 70 | 74 | 3.5 | 0.8 | 18.8 | 0.43 | 1.4 | 0.77 | 0.249 | 0.137 | | 25590 | 25520 | 58 | 51 | 74 | 77 | 3.5 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.343 | 0.203 | | 25590 | 25523 | 58 | 51 | 72 | 77 | 3.5 | 2.3 | 20.8 | 0.33 | 1.8 | 0.99 | 0.343 | 0.248 | | * LM 503349 |
** LM 503310 | 55 | 51 | 67 | 71 | 2.3 | 1.5 | 15.9 | 0.40 | 1.5 | 0.82 | 0.209 | 0.096 | | 18690 | 18620 | 56 | 51 | 71 | 74 | 2.8 | 1.5 | 15.5 | 0.37 | 1.6 | 0.88 | 0.211 | 0.126 | | 13181 | 13318 | 52 | 52 | 72 | 76 | 0.8 | 1.5 | 20.1 | 0.53 | 1.1 | 0.63 | 0.236 | 0.144 | | 359 S | 354 A | 55 | 51 | 77 | 80 | 2.3 | 1.3 | 15.4 | 0.31 | 2.0 | 1.1 | 0.343 | 0.162 | | 2984 | 2924 | 58 | 52 | 76 | 80 | 3.5 | 1.3 | 19.0 | 0.35 | 1.7 | 0.95 | 0.397 | 0.223 | | 436 | 432 A | 59 | 52 | 84 | 87 | 3.5 | 0.8 | 18.6 | 0.28 | 2.1 | 1.2 | 0.536 | 0.381 | | 369 A | 362 A | 60 | 53 | 81 | 84 | 3.5 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.381 | 0.166 | | M 804049 | M 804010 | 63 | 56 | 77 | 85 | 3.5 | 3.3 | 23.8 | 0.55 | 1.1 | 0.60 | 0.455 | 0.218 | | HM 804846 | HM 804810 | 66 | 57 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.626 | 0.354 | | 528 | 522 | 62 | 55 | 89 | 95 | 3.5 | 3.3 | 22.1 | 0.29 | 2.1 | 1.2 | 0.894 | 0.416 | | 55187 | 55437 | 69 | 62 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.817 | 0.514 | | 55187 | 55443 | 69 | 62 | 92 | 106 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.816 | 0.554 | | 66187 | 66462 | 66 | 62 | 100 | 111 | 3.5 | 3.3 | 32.1 | 0.63 | 0.96 | 0.53 | 1.19 | 0.552 | | 72187 | 72487 | 72 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.29 | 0.79 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). ## Bore Diameter 48.412 - 52.388 mm | | | | Dimension | S | | | | Basic Loa | | Limiting Speeds | | | |----------|---------|--------|-----------|--------|-------------|------|-------------|-------------------|------------------|-------------------|--------|-------------------| | | | (m | nm) | | Cone | Cup | 1) | N) | {k | gf} | (mir | n ⁻¹) | | <i>d</i> | D | T | В | С | 1 mi | , '' | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | | 48.412 | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | | 95.250 | 30.162 | 29.370 | 23.020 | 2.3 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | 49.212 | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 0.8 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | | 114.300 | 44.450 | 44.450 | 36.068 | 3.5 | 3.3 | 196 000 | 243 000 | 20 000 | 24 800 | 3 400 | 4 800 | | 50.000 | 82.000 | 21.500 | 21.500 | 17.000 | 3.0 | 0.5 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 82.550 | 21.590 | 22.225 | 16.510 | 0.5 | 1.3 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 88.900 | 20.638 | 22.225 | 16.513 | 2.3 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 90.000 | 28.000 | 28.000 | 23.000 | 3.0 | 2.5 | 104 000 | 136 000 | 10 600 | 13 900 | 4 000 | 5 600 | | | 105.000 | 37.000 | 36.000 | 29.000 | 3.0 | 2.5 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | 50.800 | 80.962 | 18.258 | 18.258 | 14.288 | 1.5 | 1.5 | 53 000 | 81 000 | 5 400 | 8 250 | 4 300 | 5 600 | | | 82.550 | 23.622 | 22.225 | 18.542 | 3.5 | 0.8 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 82.931 | 21.590 | 22.225 | 16.510 | 3.5 | 1.3 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 85.000 | 17.462 | 17.462 | 13.495 | 3.5 | 1.5 | 48 500 | 63 000 | 4 950 | 6 450 | 4 300 | 5 600 | | | 85.725 | 19.050 | 18.263 | 12.700 | 1.5 | 1.5 | 42 500 | 54 000 | 4 350 | 5 500 | 4 000 | 5 300 | | | 88.900 | 20.638 | 22.225 | 16.513 | 3.5 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 88.900 | 20.638 | 22.225 | 16.513 | 1.5 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 92.075 | 24.608 | 25.400 | 19.845 | 3.5 | 0.8 | 84 500 | 117 000 | 8 600 | 11 900 | 4 000 | 5 300 | | | 93.264 | 30.162 | 30.302 | 23.812 | 0.8 | 0.8 | 103 000 | 136 000 | 10 500 | 13 900 | 3 800 | 5 300 | | | 93.264 | 30.162 | 30.302 | 23.812 | 3.5 | 0.8 | 103 000 | 136 000 | 10 500 | 13 900 | 3 800 | 5 300 | | | 95.250 | 27.783 | 28.575 | 22.225 | 3.5 | 2.3 | 110 000 | 144 000 | 11 200 | 14 700 | 3 800 | 5 300 | | | 101.600 | 31.750 | 31.750 | 25.400 | 3.5 | 3.3 | 118 000 | 150 000 | 12 100 | 15 200 | 3 600 | 5 000 | | | 101.600 | 34.925 | 36.068 | 26.988 | 0.8 | 3.3 | 137 000 | 169 000 | 14 000 | 17 200 | 3 800 | 5 000 | | | 101.600 | 34.925 | 36.068 | 26.988 | 3.5 | 3.3 | 137 000 | 169 000 | 14 000 | 17 200 | 3 800 | 5 000 | | | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 0.8 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 3.3 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | | 108.966 | 34.925 | 36.512 | 26.988 | 3.5 | 3.3 | 145 000 | 181 000 | 14 700 | 18 500 | 3 600 | 4 800 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 113 000 | 152 000 | 11 500 | 15 400 | 3 000 | 4 300 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | | | 127.000 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 199 000 | 258 000 | 20 200 | 26 300 | 3 000 | 4 000 | | | 127.000 | 50.800 | 52.388 | 41.275 | 3.5 | 3.3 | 236 000 | 300 000 | 24 000 | 31 000 | 3 200 | 4 300 | | 52.388 | 92.075 | 24.608 | 25.400 | 19.845 | 3.5 | 0.8 | 84 500 | 117 000 | 8 600 | 11 900 | 4 000 | 5 300 | | | 100.000 | 25.000 | 22.225 | 21.824 | 2.3 | 2.0 | 77 000 | 93 000 | 7 900 | 9 500 | 3 800 | 5 300 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing N | lumbers | A | butmen | t and Fille
(mm | | | 0 | Eff. Load
Centers | Constant | | Load
tors | | ass
<g)< th=""></g)<> | |---------------|--------------|------------|------------|--------------------|------------|------------------|-------|----------------------|----------|-------|--------------|-------------|--------------------------| | CONE | CUP | $d_{ m a}$ | $d_{ m b}$ | D_{a} | $D_{ m b}$ | Cone
γ |
a | (mm)
a | e | Y_1 | Y_0 | app
CONE | prox.
CUP | | HM 804849 | HM 804810 | 66 | 57 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.61 | 0.354 | | HM 804848 | HM 804810 | 63 | 57 | 81 | 91 | 2.3 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.614 | 0.354 | | HM 807044 | HM 807011 | 69 | 63 | 91 | 100 | 3.5 | 0.8 | 29.7 | 0.49 | 1.2 | 0.68 | 1.03 | 0.508 | | HH 506348 | HH 506310 | 71 | 61 | 97 | 107 | 3.5 | 3.3 | 30.8 | 0.40 | 1.5 | 0.82 | 1.43 | 0.837 | | ▲ JLM 104948 | ▲ JLM 104910 | 60 | 55 | 76 | 78 | 3 | 0.5 | 16.1 | 0.31 | 2.0 | 1.1 | 0.306 | 0.129 | | * LM 104947 A | LM 104911 | 55 | 55 | 75 | 78 | 0.5 | 1.3 | 15.7 | 0.31 | 2.0 | 1.1 | 0.316 | 0.133 | | 366 | 362 A | 59 | 55 | 81 | 84 | 2.3 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.351 | 0.166 | | ▲ JM 205149 | ▲ JM 205110 | 62 | 57 | 80 | 85 | 3 | 2.5 | 19.9 | 0.33 | 1.8 | 1.0 | 0.507 | 0.246 | | ▲ JHM 807045 | ▲ JHM 807012 | 69 | 63 | 90 | 100 | 3 | 2.5 | 29.7 | 0.49 | 1.2 | 0.68 | 1.01 | 0.523 | | L 305649 | L 305610 | 58 | 56 | 73 | 77 | 1.5 | 1.5 | 15.7 | 0.36 | 1.7 | 0.93 | 0.239 | 0.119 | | LM 104949 | LM 104911 A | 62 | 55 | 75 | 78 | 3.5 | 0.8 | 17.8 | 0.31 | 2.0 | 1.1 | 0.303 | 0.156 | | LM 104949 | LM 104912 | 62 | 55 | 75 | 78 | 3.5 | 1.3 | 15.7 | 0.31 | 2.0 | 1.1 | 0.301 | 0.14 | | 18790 | 18720 | 62 | 56 | 77 | 80 | 3.5 | 1.5 | 16.7 | 0.41 | 1.5 | 0.81 | 0.239 | 0.136 | | 18200 | 18337 | 59 | 56 | 76 | 81 | 1.5 | 1.5 | 21.0 | 0.57 | 1.1 | 0.58 | 0.268 | 0.136 | | 368 A | 362 A | 62 | 56 | 81 | 84 | 3.5 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.338 | 0.166 | | 368 | 362 A | 58 | 56 | 81 | 84 | 1.5 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.341 | 0.166 | | 28580 | 28521 | 63 | 57 | 83 | 87 | 3.5 | 0.8 | 20.0 | 0.38 | 1.6 | 0.87 | 0.46 | 0.247 | | 3775 | 3730 | 58 | 58 | 84 | 88 | 0.8 | 0.8 | 22.4 | 0.34 | 1.8 | 0.97 | 0.568 | 0.297 | | 3780 | 3730 | 64 | 58 | 84 | 88 | 3.5 | 0.8 | 22.4 | 0.34 | 1.8 | 0.97 | 0.564 | 0.297 | | 33889 | 33821 | 64 | 58 | 85 | 90 | 3.5 | 2.3 | 19.8 | 0.33 | 1.8 | 1.0 | 0.601 | 0.267 | | 49585 | 49520 | 66 | 59 | 88 | 96 | 3.5 | 3.3 | 23.4 | 0.40 | 1.5 | 0.82 | 0.744 | 0.389 | | 529 | 522 | 59 | 58 | 89 | 95 | 0.8 | 3.3 | 22.1 | 0.29 | 2.1 | 1.2 | 0.822 | 0.416 | | 529 X | 522 | 65 | 58 | 89 | 95 | 3.5 | 3.3 | 22.1 | 0.29 | 2.1 | 1.2 | 0.819 | 0.416 | | HM 807046 | HM 807011 | 70 | 63 | 91 | 100 | 3.5 | 0.8 | 29.7 | 0.49 | 1.2 | 0.68 | 0.992 | 0.508 | | HM 807046 | HM 807010 | 70 | 63 | 89 | 100 | 3.5 | 3.3 | 29.7 | 0.49 | 1.2 | 0.68 | 0.993 | 0.502 | | 59200 | 59429 | 68 | 61 | 93 | 101 | 3.5 | 3.3 | 25.4 | 0.40 | 1.5 | 0.82 | 0.943 | 0.594 | | 55200 C | 55437 | 71 | 65 | 92 | 105 | 3.5 | 3.3 | 37.6 | 0.88 | 0.68 | 0.37 | 0.845 | 0.514 | | 55200 | 55437 | 71 | 64 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.767 | 0.514 | | 72200 C | 72487 | 77 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.33 | 0.79 | | 72200 | 72487 | 74 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.22 | 0.79 | | 65200 | 65500 | 75 | 69 | 107 | 119 | 3.5 | 3.3 | 35.0 | 0.49 | 1.2 | 0.68 | 1.86 | 1.03 | | 6279 | 6220 | 71 | 65 | 108 | 117 | 3.5 | 3.3 | 30.7 | 0.30 | 2.0 | 1.1 | 2.08 | 1.22 | | 28584 | 28521 | 65 | 58 | 83 | 87 | 3.5 | 0.8 | 20.0 | 0.38 | 1.6 | 0.87 | 0.435 | 0.247 | | 377 | 372 | 62 | 58 | 86 | 90 | 2.3 | 2 | 21.4 | 0.34 | 1.8 | 0.97 | 0.392 | 0.435 | | 55206 | 55437 | 72 | 64 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37
 0.737 | 0.514 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. ## Bore Diameter 53.975 - 58.738 mm | | Boundary Dimensions
(mm) | | | | | | | | ad Ratings | 0 | Limiting Speeds
(min ⁻¹) | | | |--------|-----------------------------|--------|--------|--------|------|-----|----------------|-------------|-------------|--------------|---|-------|--| | d | D | T | В | С | Cone | Cup | $C_{\rm r}$ | N) C_{0r} | $C_{\rm r}$ | gf} C_{0r} | Grease | Oil | | | и | D | 1 | D | C | mii | | C _r | c_{0r} | $c_{\rm r}$ | c_{0r} | dicaso | OII | | | 53.975 | 104.775 | 39.688 | 40.157 | 33.338 | 3.5 | 3.3 | 148 000 | 207 000 | 15 100 | 21 100 | 3 600 | 4 800 | | | | 107.950 | 36.512 | 36.957 | 28.575 | 3.5 | 3.3 | 144 000 | 182 000 | 14 700 | 18 500 | 3 600 | 4 800 | | | | 122.238 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 135 000 | 156 000 | 13 800 | 15 900 | 3 000 | 4 000 | | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | | 127.000 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 199 000 | 258 000 | 20 200 | 26 300 | 3 000 | 4 000 | | | | 127.000 | 50.800 | 52.388 | 41.275 | 3.5 | 3.3 | 236 000 | 300 000 | 24 000 | 31 000 | 3 200 | 4 300 | | | | 130.175 | 36.512 | 33.338 | 23.812 | 3.5 | 3.3 | 133 000 | 154 000 | 13 600 | 15 700 | 2 600 | 3 600 | | | 55.000 | 90.000 | 23.000 | 23.000 | 18.500 | 1.5 | 0.5 | 79 000 | 111 000 | 8 050 | 11 300 | 3 800 | 5 300 | | | | 95.000 | 29.000 | 29.000 | 23.500 | 1.5 | 2.5 | 111 000 | 152 000 | 11 300 | 15 500 | 3 800 | 5 000 | | | | 96.838 | 21.000 | 21.946 | 15.875 | 2.3 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | | 110.000 | 39.000 | 39.000 | 32.000 | 3.0 | 2.5 | 177 000 | 225 000 | 18 000 | 23 000 | 3 400 | 4 500 | | | | 115.000 | 41.021 | 41.275 | 31.496 | 3.0 | 3.0 | 172 000 | 214 000 | 17 500 | 21 800 | 3 200 | 4 500 | | | 55.562 | 97.630 | 24.608 | 24.608 | 19.446 | 3.5 | 0.8 | 89 000 | 129 000 | 9 100 | 13 100 | 3 600 | 5 000 | | | | 122.238 | 43.658 | 43.764 | 36.512 | 1.3 | 3.3 | 198 000 | 292 000 | 20 200 | 29 700 | 3 000 | 4 000 | | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | 57.150 | 96.838 | 21.000 | 21.946 | 15.875 | 3.5 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | | 96.838 | 21.000 | 21.946 | 15.875 | 2.3 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | | 96.838 | 25.400 | 21.946 | 20.275 | 3.5 | 2.3 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | | 98.425 | 21.000 | 21.946 | 17.826 | 3.5 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | | 104.775 | 30.162 | 29.317 | 24.605 | 3.5 | 3.3 | 116 000 | 149 000 | 11 800 | 15 200 | 3 400 | 4 800 | | | | 104.775 | 30.162 | 29.317 | 24.605 | 2.3 | 3.3 | 116 000 | 149 000 | 11 800 | 15 200 | 3 400 | 4 800 | | | | 104.775 | 30.162 | 30.958 | 23.812 | 0.8 | 3.3 | 130 000 | 170 000 | 13 300 | 17 400 | 3 400 | 4 800 | | | | 104.775 | 30.162 | 30.958 | 23.812 | 0.8 | 0.8 | 130 000 | 170 000 | 13 300 | 17 400 | 3 400 | 4 800 | | | | 122.238 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 135 000 | 156 000 | 13 800 | 15 900 | 3 000 | 4 000 | | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | | 140.030 | 36.512 | 33.236 | 23.520 | 3.5 | 2.3 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | | 144.983 | 36.000 | 33.236 | 23.007 | 3.5 | 3.5 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | | 149.225 | 53.975 | 54.229 | 44.450 | 3.5 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | | 57.531 | 96.838 | 21.000 | 21.946 | 15.875 | 3.5 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | 58.738 | 112.712 | 33.338 | 30.048 | 26.988 | 3.5 | 3.3 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | | | |---------------|------------|---------------------------|-----------------------|--|--|--|--|--| | X | Y | X | Y | | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | | ## Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing N | umbers | Ai | butmeni | t and Fille
(mm | | | Cun | Eff. Load
Centers | Constant | Axial
Fact | Load
tors | | ass
kg) | |-------------|-------------|-------------------------------------|------------|--------------------|------------|------------------|-----|----------------------|----------|---------------|--------------|-------------|-------------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{ m b}$ | D_{a} | $D_{ m b}$ | Cone
γ | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | prox.
CUP | | 4595 | 4535 | 70 | 63 | 90 | 99 | 3.5 | 3.3 | 27.4 | 0.34 | 1.79 | 0.98 | 0.989 | 0.589 | | 539 | 532 X | 68 | 61 | 94 | 100 | 3.5 | 3.3 | 24.3 | 0.30 | 2.0 | 1.1 | 0.88 | 0.57 | | 66584 | 66520 | 75 | 68 | 105 | 116 | 3.5 | 3.3 | 34.3 | 0.67 | 0.90 | 0.50 | 1.2 | 0.558 | | 72212 | 72487 | 77 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.16 | 0.79 | | 72212 C | 72487 | 79 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.27 | 0.79 | | 557 S | 552 A | 71 | 65 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.49 | 0.764 | | 65212 | 65500 | 77 | 71 | 107 | 119 | 3.5 | 3.3 | 35.0 | 0.49 | 1.2 | 0.68 | 1.76 | 1.03 | | 6280 | 6220 | 74 | 67 | 108 | 117 | 3.5 | 3.3 | 30.7 | 0.30 | 2.0 | 1.1 | 1.97 | 1.22 | | HM911242 | HM911210 | 79 | 74 | 109 | 124 | 3.5 | 3.3 | 42.2 | 0.82 | 0.73 | 0.40 | 1.45 | 0.725 | | ▲ JLM506849 | ▲ JLM506810 | 63 | 61 | 82 | 86 | 1.5 | 0.5 | 19.7 | 0.40 | 1.5 | 0.82 | 0.378 | 0.186 | | ▲ JM207049 | ▲ JM207010 | 64 | 62 | 85 | 91 | 1.5 | 2.5 | 21.3 | 0.33 | 1.8 | 0.99 | 0.59 | 0.26 | | 385 | 382 A | 65 | 61 | 89 | 92 | 2.3 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.455 | 0.179 | | ▲ JH307749 | ▲ JH307710 | 71 | 64 | 97 | 104 | 3 | 2.5 | 27.2 | 0.35 | 1.7 | 0.95 | 1.13 | 0.567 | | 622 X | 614 X | 70 | 64 | 101 | 108 | 3 | 3 | 26.6 | 0.31 | 1.9 | 1.1 | 1.3 | 0.597 | | 28680 | 28622 | 68 | 62 | 88 | 92 | 3.5 | 0.8 | 21.3 | 0.40 | 1.5 | 0.82 | 0.499 | 0.27 | | 5566 | 5535 | 70 | 68 | 106 | 116 | 1.3 | 3.3 | 29.9 | 0.36 | 1.7 | 0.92 | 1.76 | 0.815 | | 72218 | 72487 | 78 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.12 | 0.79 | | 72218 C | 72487 | 80 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.23 | 0.79 | | 387 A | 382 A | 69 | 62 | 89 | 92 | 3.5 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.42 | 0.179 | | 387 | 382 A | 66 | 62 | 89 | 92 | 2.3 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.423 | 0.179 | | 387 A | 382 S | 69 | 62 | 87 | 91 | 3.5 | 2.3 | 22.0 | 0.35 | 1.7 | 0.93 | 0.42 | 0.249 | | 387 A | 382 | 69 | 62 | 90 | 92 | 3.5 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.42 | | | 469 | 453 X | 70 | 63 | 92 | 98 | 3.5 | 3.3 | 23.1 | 0.34 | 1.8 | 0.98 | 0.692 | | | 462 | 453 X | 67 | 63 | 92 | 98 | 2.3 | 3.3 | 23.1 | 0.34 | 1.8 | 0.98 | 0.694 | | | 45289 | 45220 | 65 | 65 | 93 | 99 | 0.8 | 3.3 | 21.9 | 0.33 | 1.8 | 0.99 | 0.752 | 0.347 | | 45289 | 45221 | 65 | 65 | 95 | 99 | 0.8 | 0.8 | 21.9 | 0.33 | 1.8 | 0.99 | 0.76 | 0.35 | | 66587 | 66520 | 77 | 71 | 105 | 116 | 3.5 | 3.3 | 34.3 | 0.67 | 0.90 | 0.50 | 1.14 | 0.558 | | 72225 C | 72487 | 81 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.19 | 0.79 | | 555 S | 552 A | 83 | 68 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.41 | 0.764 | | 78225 | 78551 | 83 | 77 | 117 | 132 | 3.5 | 2.3 | 44.2 | 0.87 | 0.69 | 0.38 | 1.67 | 0.926 | | 78225 | 78571 | 83 | 77 | 118 | 132 | 3.5 | 3.5 | 43.6 | 0.87 | 0.69 | 0.38 | 1.68 | 1.08 | | 6455 | 6420 | 81 | 75 | 129 | 140 | 3.5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 3.49 | 1.63 | | 388 A | 382 A | 69 | 63 | 89 | 92 | 3.5 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.416 | 0.179 | | 3981 | 3926 | 73 | 67 | 98 | 106 | 3.5 | 3.3 | 28.7 | 0.40 | 1.5 | 0.82 | 0.899 | 0.541 | ## Bore Diameter 60.000 - 64.963 mm | | Boundary Dimensions | | | | | | | Basic Load | l Ratings | | Limiting Speeds | | | |--------|---------------------|--------|--------|--------|----------|-----|-------------|------------|-------------|----------|-----------------|-------------------|--| | | | (m | nm) | | Cone | Cup | 1) | N) | {k | gf} | (min | n ⁻¹) | | | d | D | T | B | С | ν
min | • | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | | | 60.000 | 95.000 | 24.000 | 24.000 | 19.000 | 5.0 | 2.5 | 86 500 | 125 000 | 8 800 | 12 800 | 3 600 | 5 000 | | | | 104.775 | 21.433 | 22.000 | 15.875 | 2.3 | 2.0 | 83 500 | 107 000 | 8 500 | 10 900 | 3 400 | 4 500 | | | | 110.000 | 22.000 | 21.996 | 18.824 | 0.8 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | | 122.238 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 135 000 | 156 000 | 13 800 | 15 900 | 3 000 | 4 000 | | | 60.325 | 100.000 | 25.400 | 25.400 | 19.845 | 3.5 | 3.3 | 91 000 | 135 000 | 9 250 | 13 700 | 3 400 | 4 800 | | | | 101.600 | 25.400 | 25.400 | 19.845 | 3.5 | 3.3 | 91 000 | 135 000 | 9 250 | 13 700 | 3 400 | 4 800 | | | | 122.238 | 38.100 | 36.678 | 30.162 | 2.3 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | | 122.238 | 38.100 | 38.354 | 29.718 | 8.0 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | |
122.238 | 43.658 | 43.764 | 36.512 | 0.8 | 3.3 | 198 000 | 292 000 | 20 200 | 29 700 | 3 000 | 4 000 | | | | 127.000 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 199 000 | 258 000 | 20 200 | 26 300 | 3 000 | 4 000 | | | | 130.175 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | | 135.755 | 53.975 | 56.007 | 44.450 | 3.5 | 3.3 | 264 000 | 355 000 | 27 000 | 36 000 | 2 800 | 3 800 | | | 61.912 | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | | | 146.050 | 41.275 | 39.688 | 25.400 | 3.5 | 3.3 | 193 000 | 225 000 | 19 700 | 22 900 | 2 400 | 3 400 | | | | 152.400 | 47.625 | 46.038 | 31.750 | 3.5 | 3.3 | 237 000 | 267 000 | 24 200 | 27 300 | 2 400 | 3 400 | | | 63.500 | 94.458 | 19.050 | 19.050 | 15.083 | 1.5 | 1.5 | 59 000 | 100 000 | 6 050 | 10 200 | 3 600 | 4 800 | | | | 104.775 | 21.433 | 22.000 | 15.875 | 2.0 | 2.0 | 83 500 | 107 000 | 8 500 | 10 900 | 3 400 | 4 500 | | | | 107.950 | 25.400 | 25.400 | 19.050 | 1.5 | 3.3 | 90 000 | 138 000 | 9 150 | 14 100 | 3 200 | 4 300 | | | | 110.000 | 22.000 | 21.996 | 18.824 | 3.5 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | | 110.000 | 22.000 | 21.996 | 18.824 | 1.5 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | | 112.712 | 30.162 | 30.048 | 23.812 | 3.5 | 3.2 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | | 112.712 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 142 000 | 202 000 | 14 500 | 20 600 | 3 200 | 4 300 | | | | 112.712 | 33.338 | 30.048 | 26.988 | 3.5 | 3.3 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | | 122.238 | 38.100 | 38.354 | 29.718 | 7.0 | 3.3 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | | 122.238 | 38.100 | 38.354 | 29.718 | 7.0 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | | 122.238 | 43.658 | 43.764 | 36.512 | 3.5 | 3.3 | 198 000 | 292 000 | 20 200 | 29 700 | 3 000 | 4 000 | | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | | 130.175 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | | 136.525 | 36.512 | 33.236 | 23.520 | 2.3 | 3.3 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | | 140.030 | 36.512 | 33.236 | 23.520 | 2.3 | 2.3 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | 64.963 | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}\!>\!0.5F_{\rm r}\!+\!Y_0F_{\rm a}$, use $P_0\!=\!F_{\rm r}$ The values of $e,\,Y_1$, and Y_0 are given in the table below. | Bearing N | umbers | Al | butmen | t and Fille
(mm | et Dimer | nsions
Cone | Cup | Eff. Load
Centers
(mm) | Constant | | Load
tors | | ass
(g) | |--------------|--------------|------------|-------------------------------|--------------------|------------|----------------|-----|------------------------------|----------|-------|--------------|-------------|--------------| | CONE | CUP | $d_{ m a}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | ra
ma | a | a (mm) | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | ▲ JLM 508748 | ▲ JLM 508710 | 75 | 66 | 85 | 91 | 5 | 2.5 | 21.6 | 0.40 | 1.5 | 0.82 | 0.43 | 0.20 | | * 39236 | 39412 | 71 | 67 | 96 | 100 | 2.3 | 2 | 20.0 | 0.39 | 1.5 | 0.85 | 0.559 | 0.186 | | 397 | 394 A | 69 | 68 | 101 | 104 | 0.8 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.642 | 0.263 | | 66585 | 66520 | 79 | 73 | 105 | 116 | 3.5 | 3.3 | 34.3 | 0.67 | 0.90 | 0.50 | 1.07 | 0.558 | | 28985 | 28921 | 73 | 67 | 89 | 96 | 3.5 | 3.3 | 22.9 | 0.43 | 1.4 | 0.78 | 0.538 | 0.232 | | 28985 | 28920 | 73 | 67 | 90 | 97 | 3.5 | 3.3 | 22.9 | 0.43 | 1.4 | 0.78 | 0.538 | 0.272 | | 558 | 553 X | 73 | 69 | 108 | 115 | 2.3 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.33 | 0.692 | | HM 212044 | HM 212010 | 85 | 70 | 110 | 116 | 8 | 1.5 | 27.0 | 0.34 | 1.8 | 0.98 | 1.43 | 0.604 | | 5582 | 5535 | 73 | 72 | 106 | 116 | 0.8 | 3.3 | 29.9 | 0.36 | 1.7 | 0.92 | 1.61 | 0.815 | | 65237 | 65500 | 82 | 71 | 107 | 119 | 3.5 | 3.3 | 35.0 | 0.49 | 1.2 | 0.68 | 1.56 | 1.03 | | 637 | 633 | 78 | 72 | 116 | 124 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.87 | 0.712 | | 6376 | 6320 | 81 | 74 | 117 | 126 | 3.5 | 3.3 | 35.0 | 0.32 | 1.8 | 1.0 | 2.45 | 1.39 | | H 715334 | H 715311 | 84 | 78 | 119 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.51 | 0.961 | | H 913842 | H 913810 | 90 | 82 | 124 | 138 | 3.5 | 3.3 | 44.4 | 0.78 | 0.77 | 0.42 | 2.2 | 0.898 | | 9180 | 9121 | 90 | 81 | 130 | 145 | 3.5 | 3.3 | 44.3 | 0.66 | 0.92 | 0.50 | 2.77 | 1.21 | | L 610549 | L 610510 | 71 | 69 | 86 | 91 | 1.5 | 1.5 | 19.6 | 0.42 | 1.4 | 0.78 | 0.306 | 0.154 | | 39250 | 39412 | 73 | 69 | 96 | 100 | 2 | 2 | 20.0 | 0.39 | 1.5 | 0.85 | 0.501 | 0.186 | | 29586 | 29520 | 73 | 71 | 96 | 103 | 1.5 | 3.3 | 24.0 | 0.46 | 1.3 | 0.72 | 0.661 | 0.281 | | 395 | 394 A | 77 | 70 | 101 | 104 | 3.5 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.58 | 0.263 | | 390 A | 394 A | 73 | 70 | 101 | 104 | 1.5 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.583 | 0.263 | | 3982 | 3920 | 77 | 71 | 99 | 106 | 3.5 | 3.2 | 25.5 | 0.40 | 1.5 | 0.82 | 0.789 | 0.454 | | 39585 | 39520 | 77 | 71 | 101 | 107 | 3.5 | 3.3 | 23.5 | 0.34 | 1.8 | 0.97 | 0.899 | 0.359 | | 3982 | 3926 | 78 | 71 | 98 | 106 | 3.5 | 3.3 | 28.7 | 0.40 | 1.5 | 0.82 | 0.789 | 0.541 | | HM 212047 | HM 212011 | 87 | 73 | 108 | 116 | 7 | 3.3 | 26.9 | 0.34 | 1.8 | 0.98 | 1.34 | 0.598 | | HM 212047 | HM 212010 | 87 | 73 | 110 | 116 | 7 | 1.5 | 26.9 | 0.34 | 1.8 | 0.98 | 1.34 | 0.604 | | HM 212046 | HM 212010 | 80 | 73 | 110 | 116 | 3.5 | 1.5 | 26.9 | 0.34 | 1.8 | 0.98 | 1.35 | 0.604 | | 5584 | 5535 | 81 | 75 | 106 | 116 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.92 | 1.5 | 0.815 | | 559 | 522 A | 78 | 73 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.23 | 0.764 | | 565 | 563 | 80 | 73 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.46 | 0.655 | | 639 | 633 | 81 | 74 | 116 | 124 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.77 | 0.712 | | 78250 | 78537 | 85 | 79 | 115 | 130 | 2.3 | 3.3 | 44.2 | 0.87 | 0.69 | 0.38 | 1.51 | 0.782 | | 639 | 632 | 79 | 76 | 119 | 125 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.77 | 1.04 | | 78250 | 78551 | 85 | 79 | 117 | 132 | 2.3 | 2.3 | 44.2 | 0.87 | 0.69 | 0.38 | 1.51 | 0.926 | | 569 | 563 | 81 | 74 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.41 | 0.655 | The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. B 155 B 154 ## Bore Diameter 65.000 - 69.850 mm | | Boundary Dimensions
(mm) | | | | | | | Basic Loa | | Limiting Speeds | | | |--------|-----------------------------|--------|--------|--------|----------------|-----|-------------|-----------|------------------|-------------------|--------|-------| | | | | , | | Cone | Cup | 1) | | | gf} | (mir | | | d | D | T | В | С | ∤
mi | | $C_{\rm r}$ | C_{0r} | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | | 65.000 | 105.000 | 24.000 | 23.000 | 18.500 | 3.0 | 1.0 | 93 000 | 126 000 | 9 500 | 12 900 | 3 400 | 4 500 | | | 110.000 | 28.000 | 28.000 | 22.500 | 3.0 | 2.5 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 120.000 | 29.002 | 29.007 | 23.444 | 2.3 | 3.3 | 123 000 | 169 000 | 12 500 | 17 200 | 3 000 | 4 000 | | | 120.000 | 39.000 | 38.500 | 32.000 | 3.0 | 2.5 | 185 000 | 249 000 | 18 800 | 25 400 | 3 000 | 4 000 | | 65.088 | 135.755 | 53.975 | 56.007 | 44.450 | 3.5 | 3.3 | 264 000 | 355 000 | 27 000 | 36 000 | 2 800 | 3 800 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | 66.675 | 110.000 | 22.000 | 21.996 | 18.824 | 0.8 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 110.000 | 22.000 | 21.996 | 18.824 | 3.5 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.048 | 23.812 | 3.5 | 3.2 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.048 | 23.812 | 5.5 | 3.2 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.162 | 23.812 | 3.5 | 0.8 | 142 000 | 202 000 | 14 500 | 20 600 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 142 000 | 202 000 | 14 500 | 20 600 | 3 200 | 4 300 | | | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 122.238 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 3.3 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | 68.262 | 110.000 | 22.000 | 21.996 | 18.824 | 2.3 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 120.000 | 29.795 | 29.007 | 24.237 | 3.5 | 2.0 | 123 000 | 169 000 | 12 500 | 17 200 | 3 000 | 4 000 | | | 122.238 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2
800 | 3 800 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 229 000 | 297 000 | 23 300 | 30 500 | 2 600 | 3 600 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | | 152.400 | 47.625 | 46.038 | 31.750 | 3.5 | 3.3 | 237 000 | 267 000 | 24 200 | 27 300 | 2 400 | 3 400 | | 69.850 | 112.712 | 22.225 | 21.996 | 15.875 | 1.5 | 0.8 | 85 000 | 113 000 | 8 650 | 11 500 | 3 000 | 4 000 | | | 112.712 | 25.400 | 25.400 | 19.050 | 1.5 | 3.3 | 96 000 | 152 000 | 9 800 | 15 500 | 2 800 | 4 000 | | | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 120.000 | 32.545 | 32.545 | 26.195 | 3.5 | 3.3 | 152 000 | 225 000 | 15 500 | 22 900 | 3 000 | 4 000 | | | 120.650 | 25.400 | 25.400 | 19.050 | 1.5 | 3.3 | 96 000 | 152 000 | 9 800 | 15 500 | 2 800 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 0.8 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 130.175 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 146.050 | 41.275 | 39.688 | 25.400 | 3.5 | 3.3 | 193 000 | 225 000 | 19 700 | 22 900 | 2 400 | 3 400 | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 149.225 | 53.975 | 54.229 | 44.450 | 5.0 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | | |---------------|------------|---------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | Y_1 | | | | | ## Static Equivalent Load given in the table below. $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are | Bearing N | umbers | A | butment | t and Fill
(mm | | | Centers | Constant | | Load
tors | | ass
(g) | |-------------------------------------|-------------------------------------|----------------------|-------------------------------|--------------------------|--------------------------|--|------------------|------------------------------|---------------------------|------------------------------|------------------------------|---------------------------------| | CONE | CUP | $d_{ m a}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone Cu $oldsymbol{\mathcal{Y}}_{\mathrm{a}}$ max. | p (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | ▲ JLM 710949 | ▲ JLM 710910 | 77 | 71 | 96 | 101 | 3 1 | 3 24.3 | 0.45 | 1.3 | 0.73 | 0.526 | 0.237 | | ▲ JM 511946 | ▲ JM 511910 | 78 | 72 | 99 | 105 | 3 2. | | 0.40 | 1.5 | 0.82 | 0.72 | 0.342 | | 478 | 472 A | 77 | 73 | 106 | 114 | 2.3 3. | | 0.38 | 1.6 | 0.86 | 0.942 | 0.466 | | ▲ JH 211749 | ▲ JH 211710 | 80 | 74 | 107 | 114 | 3 2. | | 0.34 | 1.8 | 0.98 | 1.25 | 0.625 | | 6379 | 6320 | 84 | 77 | 117 | 126 | 3.5 3. | | 0.32 | 1.8 | 1.0 | 2.25 | 1.39 | | H 715340 | H 715311 | 88 | 82 | 118 | 132 | 3.5 3. | | 0.47 | 1.3 | 0.70 | 2.4 | 0.961 | | 395 A | 394 A | 73 | 73 | 101 | 104 | 0.8 1. | 3 20.9 | 0.40 | 1.5 | 0.82 | 0.528 | 0.263 | | 395 S | 394 A | 79 | 73 | 101 | 104 | 3.5 1. | | 0.40 | 1.5 | 0.82 | 0.524 | 0.263 | | 3984 | 3920 | 80 | 74 | 99 | 106 | 3.5 3. | | 0.40 | 1.5 | 0.82 | 0.712 | 0.454 | | 3994 | 3920 | 84 | 74 | 99 | 106 | 5.5 3. | 8 23.5 | 0.40 | 1.5 | 0.82 | 0.706 | 0.454 | | 39590 | 39521 | 80 | 74 | 103 | 107 | 3.5 0. | | 0.34 | 1.8 | 0.97 | 0.822 | 0.365 | | 39590 | 39520 | 80 | 74 | 101 | 107 | 3.5 3. | | 0.34 | 1.8 | 0.97 | 0.822 | 0.359 | | 33262 | 33462 | 81 | 75 | 104 | 112 | 3.5 3. | 3 28.8 | 0.44 | 1.4 | 0.76 | 0.911 | 0.442 | | 560 | 553 X | 81 | 75 | 108 | 115 | 3.5 3. | | 0.35 | 1.7 | 0.95 | 1.14 | 0.692 | | HM 212049 | HM 212010 | 82 | 75 | 110 | 116 | 3.5 1. | | 0.34 | 1.8 | 0.98 | 1.25 | 0.604 | | HM 212049 | HM 212011 | 81 | 74 | 108 | 116 | 3.5 3. | 3 28.8 | 0.34 | 1.8 | 0.98 | 1.25 | 0.598 | | 560 | 552 A | 81 | 75 | 109 | 116 | 3.5 3. | | 0.35 | 1.7 | 0.95 | 1.14 | 0.764 | | H 715341 | H 715311 | 89 | 83 | 118 | 132 | 3.5 3. | | 0.47 | 1.3 | 0.70 | 2.34 | 0.961 | | 399 A | 394 A | 78 | 74 | 101 | 104 | 2.3 1. | 25.1 | 0.40 | 1.5 | 0.82 | 0.497 | 0.263 | | 480 | 472 | 83 | 76 | 106 | 113 | 3.5 2 | | 0.38 | 1.6 | 0.86 | 0.862 | 0.493 | | 560 S | 553 X | 83 | 76 | 108 | 115 | 3.5 3. | | 0.35 | 1.7 | 0.95 | 1.09 | 0.692 | | 570
H 414245
H 715343
9185 | 563
H 414210
H 715311
9121 | 83
86
90
94 | 77
82
84
81 | 112
121
118
130 | 120
129
132
145 | 3.5 3.
3.5 3.
3.5 3.
3.5 3. | 3 30.6
3 37.1 | 0.36
0.36
0.47
0.66 | 1.6
1.7
1.3
0.92 | 0.91
0.92
0.70
0.50 | 1.32
1.95
2.28
2.53 | 0.655
0.796
0.961
1.21 | | LM 613449 | LM 613410 | 78 | 76 | 104 | 107 | 1.5 0. | 3 26.3 | 0.42 | 1.4 | 0.79 | 0.562 | 0.238 | | 29675 | 29620 | 80 | 77 | 101 | 109 | 1.5 3. | | 0.49 | 1.2 | 0.68 | 0.695 | 0.273 | | 33275 | 33462 | 84 | 77 | 104 | 112 | 3.5 3. | | 0.44 | 1.4 | 0.76 | 0.83 | 0.442 | | 47487 | 47420 | 84 | 78 | 107 | 114 | 3.5 3. | 3 26.3 | 0.36 | 1.7 | 0.92 | 1.02 | 0.477 | | 29675 | 29630 | 79 | 78 | 105 | 113 | 1.5 3. | | 0.49 | 1.2 | 0.68 | 0.695 | 0.489 | | 566 | 563 X | 85 | 78 | 114 | 120 | 3.5 0. | | 0.36 | 1.6 | 0.91 | 1.27 | 0.658 | | 643 | 633 | 86 | 80 | 116 | 124 | 3.5 3. | 3 44.4 | 0.36 | 1.7 | 0.91 | 1.56 | 0.712 | | H 913849 | H 913810 | 95 | 82 | 124 | 138 | 3.5 3. | | 0.78 | 0.77 | 0.42 | 1.95 | 0.898 | | 655 | 653 | 88 | 82 | 131 | 139 | 3.5 3. | | 0.41 | 1.5 | 0.81 | 2.35 | 0.891 | | 6454 | 6420 | 94 | 85 | 129 | 140 | 5 3. | 3 32.5 | 0.36 | 1.7 | 0.91 | 2.95 | 1.63 | | 745 A | 742 | 88 | 82 | 134 | 142 | 3.5 3. | | 0.33 | 1.8 | 1.0 | 2.82 | 1.07 | B 156 B 157 # SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) Bore Diameter 70.000 - 76.200 mm | | Boundary Dimensions (mm) | | | | | | | Basic Load | l Ratings | | Limiting | Speeds | |--------|-------------------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------|-------------------| | | | (m | nm) | | Cone | Cup | 1) | V) | {k | gf} | (mir | n ⁻¹) | | d | D | T | В | С | r
min | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | | 70.000 | 110.000 | 26.000 | 25.000 | 20.500 | 1.0 | 2.5 | 98 500 | 152 000 | 10 000 | 15 500 | 3 000 | 4 000 | | | 115.000 | 29.000 | 29.000 | 23.000 | 3.0 | 2.5 | 126 000 | 177 000 | 12 900 | 18 100 | 3 000 | 4 000 | | | 120.000 | 29.795 | 29.007 | 24.237 | 2.0 | 2.0 | 123 000 | 169 000 | 12 500 | 17 200 | 3 000 | 4 000 | | 71.438 | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 120.000 | 32.545 | 32.545 | 26.195 | 3.5 | 3.3 | 152 000 | 225 000 | 15 500 | 22 900 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 6.4 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 130.175 | 41.275 | 41.275 | 31.750 | 6.4 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 229 000 | 297 000 | 23 300 | 30 500 | 2 600 | 3 600 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | 73.025 | 112.712 | 25.400 | 25.400 | 19.050 | 3.5 | 3.3 | 96 000 | 152 000 | 9 800 | 15 500 | 2 800 | 4 000 | | | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 149.225 | 53.975 | 54.229 | 44.450 | 3.5 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | 73.817 | 127.000 | 36.512 | 36.170 | 28.575 | 0.8 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | 74.612 | 150.000 | 41.275 | 41.275 | 31.750 | 3.5 | 3.0 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | 75.000 | 115.000 | 25.000 | 25.000 | 19.000 | 3.0 | 2.5 | 101 000 | 150 000 | 10 300 | 15 300 | 3 000 | 4 000 | | | 120.000 | 31.000 | 29.500 | 25.000 | 3.0 | 2.5 | 129 000 | 198 000 | 13 100 | 20 200 | 2 800 | 3 800 | | | 145.000 | 51.000 | 51.000 | 42.000 | 3.0 | 2.5 | 283 000 | 410 000 | 28 900 | 41 500 | 2 600 | 3 400 | | 76.200 | 121.442 | 24.608 | 23.012 | 17.462 | 2.0 | 2.0 | 89 000 | 124 000 | 9 100 | 12 600 | 2 800 | 3 800 | | | 127.000 | 30.162 | 31.000 | 22.225 | 3.5 | 3.3 | 134 000 | 195 000 | 13 700 | 19 900 | 2 800 | 3 800 | | | 127.000 | 30.162 | 31.001 | 22.225 | 6.4 | 3.3 | 134 000 | 195 000 | 13 700 | 19 900 | 2 800 | 3 800 | | | 133.350 | 33.338 | 33.338 | 26.195 | 0.8 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | 135.733 | 44.450 | 46.101 | 34.925 | 3.5 | 3.3 | 216 000 | 340 000 | 22 000 | 35 000 | 2 600 | 3 600 | | | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 136.525 | 30.162 | 29.769 | 22.225 | 6.4 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 139.992 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | 149.225 | 53.975 | 54.229 | 44.450 | 3.5 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 |
3 200 | | | 152.400 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 161.925 | 49.212 | 46.038 | 31.750 | 3.5 | 3.3 | 248 000 | 290 000 | 25 300 | 29 600 | 2 200 | 3 000 | | | 161.925
161.925
161.925 | 53.975
53.975
53.975 | 55.100
55.100
55.100 | 42.862
42.862
42.862 | 3.5
6.4
6.4 | 3.3
3.3
0.8 | 325 000
325 000
325 000 | 480 000
480 000
480 000 | 33 000
33 000
33 000 | 49 000
49 000
49 000 | 2 200
2 200
2 200 | 3 000
3 000 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load given in the table below. $P_0=0.5F_r+Y_0F_a$ When $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ The values of $e,\ Y_1$, and Y_0 are | Bearing Nu | umbers | Al | butment | t and Fille
(mm | et Dimen | | | Eff. Load
Centers | Constant | | Load | | ass
<g)< th=""></g)<> | |--------------|--------------|------------------|------------|--------------------|------------|------------------------|-----|----------------------|----------|-------|-------|-------------|--------------------------| | CONE | CUP | d_{a} | $d_{ m b}$ | D_{a} | $D_{ m b}$ | Cone
Y
ma | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | prox.
CUP | | ▲ JLM 813049 | ▲ JLM 813010 | 78 | 77 | 98 | 105 | 1 | 2.5 | 26.2 | 0.49 | 1.2 | 0.68 | 0.604 | 0.304 | | ▲ JM 612949 | ▲ JM 612910 | 83 | 77 | 103 | 110 | 3 | 2.5 | 26.4 | 0.43 | 1.4 | 0.77 | 0.800 | 0.362 | | 484 | 472 | 80 | 78 | 106 | 113 | 2 | 2 | 25.1 | 0.38 | 1.6 | 0.86 | 0.822 | 0.493 | | 33281 | 33462 | 85 | 79 | 104 | 112 | 3.5 | 3.3 | 26.8 | 0.44 | 1.4 | 0.76 | 0.789 | 0.442 | | 47490 | 47420 | 86 | 79 | 107 | 114 | 3.5 | 3.3 | 26.0 | 0.36 | 1.7 | 0.92 | 0.983 | 0.477 | | 567 S | 563 | 92 | 80 | 112 | 120 | 6.4 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.21 | 0.655 | | 567 A | 563 | 86 | 80 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.23 | 0.655 | | 645 | 633 | 93 | 81 | 116 | 124 | 6.4 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.49 | 0.712 | | 644 | 632 | 87 | 81 | 118 | 125 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.5 | 1.04 | | H 414249 | H 414210 | 89 | 83 | 121 | 129 | 3.5 | 3.3 | 30.6 | 0.36 | 1.7 | 0.92 | 1.83 | 0.796 | | H 715345 | H 715311 | 92 | 84 | 119 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.15 | 0.961 | | 29685 | 29620 | 86 | 80 | 101 | 109 | 3.5 | 3.3 | 26.3 | 0.49 | 1.2 | 0.68 | 0.62 | 0.273 | | 33287 | 33462 | 87 | 80 | 104 | 112 | 3.5 | 3.3 | 26.8 | 0.44 | 1.4 | 0.76 | 0.746 | 0.442 | | 567 | 563 | 88 | 81 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.17 | 0.655 | | 657 | 653 | 91 | 85 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 2.24 | 0.891 | | 6460 | 6420 | 93 | 87 | 129 | 140 | 3.5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 2.8 | 1.63 | | 568 | 563 | 83 | 82 | 112 | 120 | 0.8 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.15 | 0.655 | | 658 | 653 X | 92 | 86 | 133 | 141 | 3.5 | | 33.2 | 0.41 | 1.5 | 0.81 | 2.37 | 0.932 | | ▲ JLM 714149 | ▲ JLM 714110 | 87 | 81 | 104 | 110 | 3 | 2.5 | 25.3 | 0.46 | 1.3 | 0.72 | 0.638 | 0.272 | | ▲ JM 714249 | ▲ JM 714210 | 88 | 83 | 108 | 115 | 3 | 2.5 | 28.8 | 0.44 | 1.4 | 0.74 | 0.863 | 0.436 | | ▲ JH 415647 | ▲ JH 415610 | 94 | 89 | 129 | 139 | 3 | 2.5 | 36.7 | 0.36 | 1.7 | 0.91 | 2.64 | 1.19 | | 34300 | 34478 | 86 | 84 | 111 | 116 | 2 | 2 | 26.3 | 0.45 | 1.3 | 0.73 | 0.65 | 0.316 | | 42687 | 42620 | 90 | 84 | 114 | 121 | 3.5 | 3.3 | 27.3 | 0.42 | 1.4 | 0.79 | 1.03 | 0.438 | | 42688 | 42620 | 94 | 84 | 114 | 121 | 6.4 | 3.3 | 27.3 | 0.42 | 1.4 | 0.79 | 1.01 | 0.438 | | 47680 | 47620 | 86 | 85 | 119 | 128 | 0.8 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.39 | 0.577 | | 5760 | 5735 | 94 | 88 | 119 | 130 | 3.5 | 3.3 | 32.9 | 0.41 | 1.5 | 0.81 | 1.86 | 0.887 | | 495 A | 493 | 92 | 86 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.27 | 0.55 | | 495 AX | 493 | 98 | 86 | 122 | 130 | 6.4 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.26 | 0.55 | | 575 | 572 | 92 | 86 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.61 | 0.788 | | 6461 | 6420 | 96 | 89 | 129 | 140 | 3.5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 2.64 | 1.63 | | 590 A | 592 A | 95 | 89 | 135 | 145 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 2.2 | 1.06 | | 659 | 652 | 93 | 87 | 134 | 141 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 2.11 | 1.26 | | 9285 | 9220 | 103 | 90 | 138 | 153 | 3.5 | 3.3 | 49.8 | 0.71 | 0.85 | 0.47 | 2.82 | 1.4 | | 6576 | 6535 | 99 | 92 | 141 | 154 | 3.5 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.74 | 1.67 | | 6575 | 6535 | 104 | 92 | 141 | 154 | 6.4 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.73 | 1.67 | | 6575 | 6536 | 104 | 92 | 144 | 154 | 6.4 | 0.8 | 40.7 | 0.40 | 1.5 | 0.82 | 3.73 | 1.68 | # SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) Bore Diameter 76.200 - 83.345 mm | Boundary Dimensions
(mm) | | | | | | | | Basic Load | • | | Limiting Speeds | | | |-----------------------------|---------|--------|--------|--------|----------------|-----|-------------|-------------------|------------------|-------------------|-----------------|-------|--| | | | • | , | | Cone | Cup | | N) | | gf} | (mir | | | | d | D | T | В | С | ∤
mi | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | | | 76.200 | 168.275 | 53.975 | 56.363 | 41.275 | 6.4 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | | 168.275 | 53.975 | 56.363 | 41.275 | 0.8 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | | 171.450 | 49.212 | 46.038 | 31.750 | 3.5 | 3.3 | 257 000 | 310 000 | 26 200 | 32 000 | 2 000 | 2 800 | | | | 177.800 | 55.562 | 50.800 | 34.925 | 3.5 | 3.3 | 257 000 | 310 000 | 26 200 | 32 000 | 2 000 | 2 800 | | | 77.788 | 121.442 | 24.608 | 23.012 | 17.462 | 3.5 | 2.0 | 89 000 | 124 000 | 9 100 | 12 600 | 2 800 | 3 800 | | | | 127.000 | 30.162 | 31.000 | 22.225 | 3.5 | 3.3 | 134 000 | 195 000 | 13 700 | 19 900 | 2 800 | 3 800 | | | | 135.733 | 44.450 | 46.101 | 34.925 | 3.5 | 3.3 | 216 000 | 340 000 | 22 000 | 35 000 | 2 600 | 3 600 | | | 79.375 | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | 80.000 | 130.000 | 35.000 | 34.000 | 28.500 | 3.0 | 2.5 | 166 000 | 251 000 | 17 000 | 25 600 | 2 600 | 3 600 | | | 80.962 | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 139.700 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 139.992 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | 82.550 | 125.412 | 25.400 | 25.400 | 19.845 | 3.5 | 1.5 | 102 000 | 164 000 | 10 400 | 16 700 | 2 600 | 3 600 | | | | 133.350 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 133.350 | 33.338 | 33.338 | 26.195 | 3.5 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | | 133.350 | 33.338 | 33.338 | 26.195 | 0.8 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | | 133.350 | 33.338 | 33.338 | 26.195 | 6.8 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | | 133.350 | 39.688 | 39.688 | 32.545 | 6.8 | 3.3 | 179 000 | 310 000 | 18 300 | 31 500 | 2 600 | 3 600 | | | | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 139.700 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 139.992 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 139.992 | 36.512 | 36.098 | 28.575 | 6.8 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 150.000 | 44.455 | 46.672 | 35.000 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | | 152.400 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 161.925 | 53.975 | 55.100 | 42.862 | 3.5 | 3.3 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | | | | 168.275 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 168.275 | 53.975 | 56.363 | 41.275 | 3.5 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | 83.345 | 125.412 | 25.400 | 25.400 | 19.845 | 3.5 | 1.5 | 102 000 | 164 000 | 10 400 | 16 700 | 2 600 | 3 600 | | | | 125.412 | 25.400 | 25.400 | 19.845 | 0.8 | 1.5 | 102 000 | 164 000 | 10 400 | 16 700 | 2 600 | 3 600 | | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing Numb | ers | Al | outment | and Fille | | | | Eff. Load
Centers | Constant | Axial
Fac | | | ass
(g) | |----------------|-------------------------------------|------------------|-------------------------------|-------------|------------|------------------|------------|----------------------|--------------|--------------|--------------|----------------|----------------| | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone
γ | a | (mm)
a | e | Y_1 | Y_0 | app
CONE |
orox.
CUP | | 843 | 832 | 101 | 89 | 149 | 155 | 6.4 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 4.11 | 1.74 | | 837 | 832 | 90 | 89 | 149 | 155 | 0.8 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 4.13 | 1.74 | | 9380 | 9321 | 105 | 98 | 147 | 164 | 3.5 | 3.3 | 54.1 | 0.76 | 0.79 | 0.43 | 3.47 | 1.51 | | 9378 | 9320 | 105 | 98 | 148 | 164 | 3.5 | 3.3 | 57.3 | 0.76 | 0.79 | 0.43 | 3.71 | 2.24 | | 34306 | 34478 | 90 | 84 | 110 | 116 | 3.5 | 2 | 26.3 | 0.45 | 1.3 | 0.73 | 0.612 | 0.316 | | 42690 | 42620 | 91 | 85 | 114 | 121 | 3.5 | 3.3 | 27.3 | 0.42 | 1.4 | 0.79 | 0.976 | 0.438 | | 5795 | 5735 | 96 | 89 | 119 | 130 | 3.5 | 3.3 | 32.9 | 0.41 | 1.5 | 0.81 | 1.79 | 0.887 | | 661 | 653 | 96 | 90 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.99 | 0.891 | | 750 | 742 | 96 | 90 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.42 | 1.07 | | ▲ JM 515649 | JM 515610 | 94 | 88 | 117 | 125 | 3 | 2.5 | 29.9 | 0.39 | 1.5 | 0.85 | 1.18 | 0.583 | | 496 | 493 | 95 | 89 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.13 | 0.55 | | 581 | 572 X | 96 | 90 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.44 | 0.774 | | 581 | 572 | 96 | 90 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.44 | 0.788 | | 27687 | 27620 | 96 | 89 | 115 | 120 | 3.5 | 1.5 | 25.7 | 0.42 | 1.4 | 0.79 | 0.747 | 0.348 | | 495 | 492 A | 97 | 90 | 120 | 128 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.08 | 0.434 | | 47686 | 47620 | 97 | 90 | 119 | 128 | 3.5 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.18 | 0.577 | | 47685 | 47620 | 90 | 90 | 119 | 128 | 0.8 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.18 | 0.577 | | 47687 | 47620 | 103 | 90 | 119 | 128 | 6.8 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.16 | 0.577 | | HM 516448 | HM 516410 | 105 | 92 | 118 | 128 | 6.8 | 3.3 | 32.4 | 0.40 | 1.5 | 0.82 | 1.35 | 0.767 | | 495 | 493 | 97 | 90 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.08 | 0.55 | | 580 | 572 X | 98 | 91 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.39 | 0.774 | | 580 | 572 | 98 | 91 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.39 | 0.788 | | 582 | 572 | 104 | 91 | 125 | 133 | 6.8 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.37 | 0.788 | | 663 | 653 | 99 | 92 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.85 | 0.891 | | 749 A | 743 | 99 | 93 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.26 | 1.04 | | 749 A | 742 | 98 | 93 | 135 | 143 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.26 | 1.07 | | 663 | 652 | 99 | 92 | 134 | 141 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.85 | 1.26 | | 757 | 752 | 100 | 94 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.79 | 1.61 | | 6559 | 6535 | 104 | 98 | 141 | 154 | 3.5 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.4 | 1.67 | | 757 | 753 | 100 | 94 | 147 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.79 | 2.1 | | 842 | 832 | 101 | 94 | 149 | 155 | 3.5 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 3.76 | 1.74 | | 27690
27689 | 27620
27620
erances are liste | 96
90 | 90
90 | 115
115 | 120
120 | 3.5
0.8 | 1.5
1.5 | 25.7
25.7 | 0.42
0.42 | 1.4
1.4 | 0.79
0.79 | 0.727
0.732 | 0.348
0.348 | ## Bore Diameter 84.138 - 90.488 mm | | | | Dimension | s | | | | Basic Loa | nd Ratings | | Limiting | Speeds | |--------|---------|--------------|-----------|--------|-----------------|-----|-------------|-------------------|------------|----------|----------|-------------------| | | | (mm) D T B C | | | | Cup | 1) | 1) | {k | gf} | (mir | n ⁻¹) | | d | D | T | В | С | γ
mir | • | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | C_{0r} | Grease | Oil | | 84.138 | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 171.450 | 49.212 | 46.038 | 31.750 | 3.5 | 3.3 | 257 000 | 310 000 | 26 200 | 32 000 | 2 000 | 2 800 | | 85.000 | 130.000 | 30.000 | 29.000 | 24.000 | 6.0 | 2.5 | 138 000 | 222 000 | 14 100 | 22 700 | 2 600 | 3 600 | | | 130.000 | 30.000 | 29.000 | 24.000 | 3.0 | 2.5 | 138 000 | 222 000 | 14 100 | 22 700 | 2 600 | 3 600 | | | 140.000 | 39.000 | 38.000 | 31.500 | 3.0 | 2.5 | 202 000 | 305 000 | 20 600 | 31 000 | 2 400 | 3 400 | | | 150.000 | 46.000 | 46.000 | 38.000 | 3.0 | 2.5 | 275 000 | 390 000 | 28 000 | 40 000 | 2 400 | 3 200 | | 85.026 | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | 150.089 | 44.450 | 46.672 | 36.512 | 5.0 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | 85.725 | 133.350 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 142.138 | 42.862 | 42.862 | 34.133 | 4.8 | 3.3 | 221 000 | 360 000 | 22 500 | 36 500 | 2 400 | 3 400 | | | 146.050 | 41.275 | 41.275 | 31.750 | 6.4 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | 87.312 | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | 88.900 | 149.225 | 31.750 | 28.971 | 24.608 | 3.0 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 152.400 | 39.688 | 39.688 | 30.162 | 6.4 | 3.3 | 253 000 | 365 000 | 25 800 | 37 500 | 2 200 | 3 200 | | | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | 161.925 | 47.625 | 48.260 | 38.100 | 7.0 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | 161.925 | 53.975 | 55.100 | 42.862 | 3.5 | 3.3 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | | | 168.275 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | 168.275 | 53.975 | 56.363 | 41.275 | 3.5 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | 90.000 | 145.000 | 35.000 | 34.000 | 27.000 | 3.0 | 2.5 | 190 000 | 285 000 | 19 400 | 29 000 | 2 400 | 3 200 | | | 147.000 | 40.000 | 40.000 | 32.500 | 7.0 | 3.5 | 229 000 | 345 000 | 23 400 | 35 000 | 2 400 | 3 200 | | | 155.000 | 44.000 | 44.000 | 35.500 | 3.0 | 2.5 | 274 000 | 395 000 | 28 000 | 40 000 | 2 200 | 3 000 | | 90.488 | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | ### Dynamic Equivalent Load ### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearii | ng Numbers | ŀ | Abutmen | t and Fil | let Dimer | nsions | | Eff. Load
Centers | Constant | | Load
tors | | ass
(q) | |--------------|--------------------------|------------|------------|------------|-----------|--------|------------------|----------------------|----------|-------|--------------|-------|--------------| | CONE | CUP | $d_{ m a}$ | $d_{ m b}$ | $D_{ m a}$ | , | 1 | Cup
Ya
ax. | (mm) | e | Y_1 | Y_0 | | orox.
CUP | | 498 | 493 | 98 | 91 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.04 | 0.55 | | 664 | 653 | 99 | 93 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.79 | 0.891 | | 9385 | 9321 | 111 | 98 | 147 | 164 | 3.5 | 3.3 | 54.1 | 0.76 | 0.79 | 0.43 | 3.11 | 1.51 | | ▲ JM 716648 | ▲ JM 716610 | 104 | 92 | 117 | 125 | 6 | 2.5 | 29.5 | 0.44 | 1.4 | 0.74 | 0.931 | 0.461 | | ▲ JM 716649 | ▲ JM 716610 | 98 | 92 | 117 | 125 | 3 | 2.5 | 29.5 | 0.44 | 1.4 | 0.74 | 0.943 | 0.461 | | ▲ JHM 516849 | ▲ JHM 516810 | 100 | 94 | 125 | 134 | 3 | 2.5 | 33.3 | 0.41 | 1.5 | 0.81 | 1.55 | 0.768 | | ▲ JH 217249 | ▲ JH 217210 | 101 | 95 | 134 | 142 | 3 | 2.5 | 33.9 | 0.33 | 1.8 | 0.99 | 2.29 | 1.09 | | 749 | 742 | 101 | 95 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.14 | 1.07 | | 749 | S 742 | 104 | 95 | 134 | 142 | 5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.14 | 1.07 | | 497 | 492 A | 99 | 93 | 120 | 128 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 0.987 | 0.434 | | 497 | 493 | 99 | 93 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 0.987 | 0.55 | | HM 617049 | HM 617010 | 106 | 95 | 125 | 137 | 4.8 | 3.3 | 35.4 | 0.43 | 1.4 | 0.76 | 1.77 | 0.911 | | 665 | A 653 | 107 | 95 | 131 | 139 | 6.4 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.71 | 0.891 | | 665 | 653 | 102 | 95 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.72 | 0.891 | | 596 | 592 A | 102 | 96 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.85 | 1.06 | | 758 | 752 | 103 | 97 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.63 | 1.61 | | 677 | 672 | 105 | 99 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.91 | 1.24 | | HH 221432 | HH 221410 | 118 | 103 | 171 | 179 | 8 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 5.51 | 2.24 | | 42350 | 42587 | 104 | 98 | 134 | 143 | 3 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.39 | 0.711 | | 593 | 592 A | 104 | 98 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.73 | 1.06 | | HM 518445 | HM 518410 | 107 | 96 | 137 | 148 | 6.4 | 3.3 | 33.1 | 0.40 | 1.5 | 0.82 | 2.11 | 0.776 | | 759 | 752 | 106 | 99 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.47 | 1.61 | | 766 | 752 | 113 | 99 | 144 | 150 | 7 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.45 | 1.61 | | 6580 | 6535 | 109 | 102 | 141 | 154 | 3.5 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.03 | 1.67 | | 759
 753 | 106 | 99 | 147 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.47 | 2.1 | | 850 | 832 | 106 | 100 | 149 | 155 | 3.5 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 3.39 | 1.74 | | 855 | 854 | 118 | 103 | 170 | 174 | 8 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.99 | 2.55 | | HH 221434 | HH 221410 | 120 | 105 | 171 | 179 | | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 5.41 | 2.24 | | ▲ JM 718149 | ▲ JM 718110 | 105 | 99 | 131 | 139 | 3 | 2.5 | 33.0 | 0.44 | 1.4 | 0.74 | 1.49 | 0.66 | | *HM 218248 | **HM 218210 | 111 | 98 | 133 | 141 | 7 | 3.5 | 30.8 | 0.33 | 1.8 | 0.99 | 1.77 | 0.796 | | ▲ JHM 318448 | ▲ JHM 318410 | 106 | 100 | 140 | 148 | 3 | 2.5 | 34.1 | 0.34 | 1.7 | 0.96 | 2.32 | 1.01 | | 760 | 752 The maximum hore dia | 107 | 101 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.38 | 1.61 | otes * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. ## Bore Diameter 92.075 - 100.012 mm | | Boundary Dimensions (mm) | | | | | | | | d Ratings | | Limiting | Speeds | |----------|--------------------------|--------|--------|--------|----------------|-----|-------------|-------------------|------------------|----------|----------|-------------------| | | | (1 | mm) | | Cone | Cup | 1) | V) | {k | gf} | (mir | n ^{−1}) | | <i>d</i> | D | T | В | С | <i>1</i>
mi | , | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | Grease | Oil | | 92.075 | 146.050 | 33.338 | 34.925 | 26.195 | 3.5 | 3.3 | 169 000 | 280 000 | 17 300 | 28 500 | 2 400 | 3 200 | | | 148.430 | 28.575 | 28.971 | 21.433 | 3.5 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 152.400 | 39.688 | 36.322 | 30.162 | 6.4 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | 93.662 | 148.430 | 28.575 | 28.971 | 21.433 | 3.0 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 149.225 | 31.750 | 28.971 | 24.608 | 3.0 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | 95.000 | 150.000 | 35.000 | 34.000 | 27.000 | 3.0 | 2.5 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | 95.250 | 146.050 | 33.338 | 34.925 | 26.195 | 3.5 | 3.3 | 169 000 | 280 000 | 17 300 | 28 500 | 2 400 | 3 200 | | | 148.430 | 28.575 | 28.971 | 21.433 | 3.0 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 149.225 | 31.750 | 28.971 | 24.608 | 3.5 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 152.400 | 39.688 | 36.322 | 33.338 | 3.5 | 3.3 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | 171.450 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 282 000 | 415 000 | 28 800 | 42 500 | 2 000 | 2 800 | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | 96.838 | 148.430 | 28.575 | 28.971 | 21.433 | 3.5 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 149.225 | 31.750 | 28.971 | 24.606 | 3.5 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | 98.425 | 161.925 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 190.500 | 57.150 | 57.531 | 44.450 | 3.5 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | 190.500 | 57.150 | 57.531 | 46.038 | 3.5 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | 99.982 | 190.500 | 57.150 | 57.531 | 46.038 | 6.4 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | 100.000 | 150.000 | 32.000 | 30.000 | 26.000 | 2.3 | 2.3 | 146 000 | 235 000 | 14 900 | 24 000 | 2 200 | 3 000 | | | 155.000 | 36.000 | 35.000 | 28.000 | 3.0 | 2.5 | 191 000 | 325 000 | 19 500 | 33 000 | 2 000 | 2 800 | | | 160.000 | 41.000 | 40.000 | 32.000 | 3.0 | 2.5 | 239 000 | 380 000 | 24 400 | 38 500 | 2 000 | 2 800 | | 100.012 | 157.162 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearir | ng Numbers | Д | butmen | | let Dimer | sions | | Eff. Load | Constant | | Load | | ass | |----------------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------|--------------------------|------------------------------|------------------------------|--------------------------|------------------------------|-----------------------------|------------------------------| | CONE | CUP | d_{a} | $d_{ ext{b}}$ | (mn $D_{ m a}$ | $D_{ m b}$ | 1 | Cup
r _a | (mm)
a | e | Y_1 | etors Y_0 | | kg)
prox.
CUP | | 47890 | 47820 | 107 | 101 | 131 | 140 | 3.5 | 3.3 | 32.3 | 0.45 | 1.3 | 0.74 | 1.46 | 0.664 | | 42362 | 42584 | 107 | 101 | 134 | 142 | 3.5 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.29 | 0.553 | | 598 | 592 A | 107 | 101 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.6 | 1.06 | | 598 / | A 592 A 672 854 | 113 | 101 | 135 | 144 | 6.4 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.59 | 1.06 | | 681 | | 110 | 104 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.62 | 1.24 | | 857 | | 121 | 106 | 170 | 174 | 8 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.78 | 2.55 | | 42368 | 42584 | 107 | 102 | 134 | 142 | 3 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.24 | 0.553 | | 42368 | 42587 | 107 | 102 | 134 | 143 | 3 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.24 | 0.711 | | 597 | 592 A | 109 | 102 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.54 | 1.06 | | ▲ JM 719149 | ▲ JM 719113 | 109 | 104 | 135 | 143 | 3 | 2.5 | 33.4 | 0.44 | 1.4 | 0.75 | 1.46 | 0.765 | | 47896 | 47820 | 110 | 103 | 131 | 140 | 3.5 | 3.3 | 32.3 | 0.45 | 1.3 | 0.74 | 1.33 | 0.664 | | 42375 | 42584 | 108 | 103 | 134 | 142 | 3 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.18 | 0.553 | | 42376 | 42587 | 109 | 103 | 134 | 143 | 3.5 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.18 | 0.711 | | 594 | 592 A | 110 | 104 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.47 | 1.06 | | 594 | 592 | 109 | 103 | 135 | 145 | 3.5 | 3.3 | 37.1 | 0.44 | 1.4 | 0.75 | 1.47 | 1.12 | | 683 | 672 | 113 | 106 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.47 | 1.24 | | 77375
776
864
HH 221440 | 77675
772
854
HH 221410 | 117
114
123
125 | 105
107
108
110 | 152
161
170
171 | 159
168
174
179 | 3.5
3.5
8 | 3.3
3.3
3.3
3.3 | 37.8
39.1
41.8
42.3 | 0.37
0.39
0.33
0.33 | 1.6
1.6
1.8
1.8 | 0.90
0.86
0.99
0.99 | 2.91
3.25
4.57
5.0 | 1.67
1.99
2.55
2.24 | | 42381 | 42584 | 110 | 104 | 134 | 142 | 3.5 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.13 | 0.553 | | 42381 | 42587 | 111 | 105 | 135 | 143 | 3.5 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.13 | 0.711 | | 52387 | 52637 | 114 | 108 | 144 | 154 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.89 | 0.942 | | 685 | 672 | 116 | 109 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.32 | 1.24 | | 779 | 772 | 116 | 110 | 161 | 168 | 3.5 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 3.06 | 1.99 | | 866 | 854 | 118 | 111 | 170 | 174 | 3.5 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.38 | 2.55 | | HH 221442 | HH 221410 | 119 | 113 | 171 | 179 | 3.5 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 4.81 | 2.24 | | HH 221447 | HH 221410 | 126 | 114 | 171 | 179 | 6.4 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 4.68 | 2.24 | | ▲ JLM 820048 | Å JLM 820012 | 111 | 107 | 135 | 144 | 2.3 | 2.3 | 36.8 | 0.50 | 1.2 | 0.66 | 1.27 | 0.616 | | ▲ JM 720249 | Å JM 720210 | 115 | 109 | 140 | 149 | 3 | 2.5 | 36.8 | 0.47 | 1.3 | 0.70 | 1.68 | 0.772 | | ▲ JHM 720249 | Å JHM 720210 | 117 | 109 | 143 | 154 | 3 | 2.5 | 38.2 | 0.47 | 1.3 | 0.70 | 2.09 | 0.974 | | 52393 | 52618 | 116 | 109 | 142 | 152 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.81 | 0.702 | | Note A | The tolerances are liste | d in Tabl | es 2. 3 | and 4 or | Pages E | 113 a | nd B1 1 | 4 | | | | | | # SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) ## Bore Diameter 101.600 - 117.475 mm | | Boundary Dimensions
(mm) | | | | | | | Basic Loa | d Ratings | | Limiting | Speeds | |---------|-----------------------------|--------|--------|--------|----------|-----|-------------|-------------------|------------------|----------|----------|-------------------| | | | (1 | mm) | | Cone | Сир | 1) | ۷) | {kg | gf} | (mir | ∩ ⁻¹) | | d | D | T | В | С | r
min | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | Grease | Oil | | 101.600 | 157.162 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310
000 | 19 500 | 31 500 | 2 000 | 2 800 | | | 161.925 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 212.725 | 66.675 | 66.675 | 53.975 | 7.0 | 3.3 | 570 000 | 810 000 | 58 000 | 82 500 | 1 700 | 2 200 | | 104.775 | 180.975 | 47.625 | 48.006 | 38.100 | 7.0 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | 106.362 | 165.100 | 36.512 | 36.512 | 26.988 | 3.5 | 3.3 | 195 000 | 320 000 | 19 800 | 33 000 | 2 000 | 2 600 | | 107.950 | 158.750 | 23.020 | 21.438 | 15.875 | 3.5 | 3.3 | 102 000 | 165 000 | 10 400 | 16 800 | 2 000 | 2 800 | | | 159.987 | 34.925 | 34.925 | 26.988 | 3.5 | 3.3 | 164 000 | 315 000 | 16 700 | 32 000 | 2 000 | 2 800 | | | 161.925 | 34.925 | 34.925 | 26.988 | 3.5 | 3.3 | 164 000 | 280 000 | 16 800 | 28 600 | 2 000 | 2 800 | | | 165.100 | 36.512 | 36.512 | 26.988 | 3.5 | 3.3 | 195 000 | 320 000 | 19 800 | 33 000 | 2 000 | 2 600 | | | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | | 212.725 | 66.675 | 66.675 | 53.975 | 8.0 | 3.3 | 570 000 | 810 000 | 58 000 | 82 500 | 1 700 | 2 200 | | 109.987 | 159.987 | 34.925 | 34.925 | 26.988 | 3.5 | 3.3 | 164 000 | 315 000 | 16 700 | 32 000 | 2 000 | 2 800 | | | 159.987 | 34.925 | 34.925 | 26.988 | 8.0 | 3.3 | 164 000 | 315 000 | 16 700 | 32 000 | 2 000 | 2 800 | | 109.992 | 177.800 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 232 000 | 375 000 | 23 700 | 38 000 | 1 800 | 2 600 | | 110.000 | 165.000 | 35.000 | 35.000 | 26.500 | 3.0 | 2.5 | 195 000 | 320 000 | 19 800 | 33 000 | 2 000 | 2 600 | | | 180.000 | 47.000 | 46.000 | 38.000 | 3.0 | 2.5 | 310 000 | 490 000 | 31 500 | 50 000 | 1 900 | 2 600 | | 111.125 | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | 114.300 | 152.400 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 89 500 | 178 000 | 9 100 | 18 100 | 2 000 | 2 800 | | | 177.800 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 232 000 | 375 000 | 23 700 | 38 000 | 1 800 | 2 600 | | | 180.000 | 34.925 | 31.750 | 25.400 | 3.5 | 0.8 | 174 000 | 254 000 | 17 800 | 25 900 | 1 800 | 2 400 | | | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | | 212.725 | 66.675 | 66.675 | 53.975 | 7.0 | 3.3 | 475 000 | 700 000 | 48 500 | 71 500 | 1 700 | 2 400 | | | 212.725 | 66.675 | 66.675 | 53.975 | 7.0 | 3.3 | 570 000 | 810 000 | 58 000 | 82 500 | 1 700 | 2 200 | | 115.087 | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | 117.475 | 180.975 | 34.925 | 31.750 | 25.400 | 3.5 | 3.3 | 174 000 | 254 000 | 17 800 | 25 900 | 1 800 | 2 400 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing | Numbers | Å | Abutmen | t and Fil
(mn | llet Dimer | | | Eff. Load Constant
Centers | | | Load | | l ass
kg) | |----------------------------|----------------|-------------------------------|------------|------------------|------------|------------|---------------------------------|-------------------------------|--------------|------------|--------------|--------------|---------------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{ m b}$ | D_{a} | $D_{ m b}$ | 1 | e Cup
r _a
nax. | (mm)
a | e | Y_1 | Y_0 | apı
CONE | prox.
CUP | | 52400 | 52618 | 117 | 111 | 142 | 152 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.75 | 0.702 | | 52400 | 52637 | 117 | 111 | 144 | 154 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.75 | 0.942 | | 687 | 672 | 118 | 112 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.15 | 1.24 | | 780 | 772 | 119 | 113 | 161 | 168 | 3.5 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 2.88 | 1.99 | | 861 | 854 | 129 | 114 | 170 | 174 | 8 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.13 | 2.55 | | HH 221449 | HH 221410 | 131 | 116 | 171 | 179 | 8 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 4.55 | 2.24 | | HH 224335 | HH 224310 | 132 | 121 | 192 | 202 | 7 | 3.3 | 47.3 | 0.33 | 1.8 | 1.0 | 8.14 | 3.06 | | 787 | 772 | 129 | 116 | 161 | 168 | 7 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 2.66 | 1.99 | | 782 | 772 | 122 | 116 | 161 | 168 | 3.5 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 2.68 | 1.99 | | 71412 | 71750 | 124 | 118 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 4.0 | 1.71 | | 56418 | 56650 | 122 | 116 | 149 | 159 | 3.5 | 3.3 | 38.6 | 0.50 | 1.2 | 0.66 | 1.87 | 0.861 | | 37425 | 37625 | 122 | 115 | 143 | 152 | 3.5 | 3.3 | 37.0 | 0.61 | 0.99 | 0.54 | 0.886 | 0.488 | | LM 522546 | LM 522510 | 122 | 116 | 146 | 154 | 3.5 | 3.3 | 33.7 | 0.40 | 1.5 | 0.82 | 1.65 | 0.784 | | 48190 | 48120 | 122 | 116 | 146 | 156 | 3.5 | 3.3 | 38.7 | 0.51 | 1.2 | 0.65 | 1.59 | 0.83 | | 56425 | 56650 | 123 | 117 | 149 | 159 | 3.5 | 3.3 | 38.6 | 0.50 | 1.2 | 0.66 | 1.8 | 0.861 | | 71425 | 71750 | 126 | 120 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 3.79 | 1.71 | | HH 224340 | HH 224310 | 139 | 126 | 192 | 202 | 8 | 3.3 | 47.3 | 0.33 | 1.8 | 1.0 | 7.58 | 3.06 | | LM 522549 | LM 522510 | 124 | 118 | 146 | 154 | 3.5 | 3.3 | 33.7 | 0.40 | 1.5 | 0.82 | 1.55 | 0.784 | | LM 522548 | LM 522510 | 133 | 118 | 146 | 154 | 8 | 3.3 | 33.7 | 0.40 | 1.5 | 0.82 | 1.53 | 0.784 | | 64433 | 64700 | 128 | 121 | 160 | 172 | 3.5 | 3.3 | 42.4 | 0.52 | 1.2 | 0.64 | 2.64 | 1.11 | | ▲ JM 822049 | ▲ JM 822010 | 124 | 119 | 149 | 159 | 3 | 2.5 | 38.3 | 0.50 | 1.2 | 0.66 | 1.64 | 0.842 | | ▲ JHM 522649 | ▲ JHM 522610 | 127 | 122 | 162 | 172 | | 2.5 | 40.9 | 0.41 | 1.5 | 0.81 | 3.12 | 1.51 | | 71437 | 71750 | 129 | 123 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 3.58 | 1.71 | | L 623149 | L 623110 | 123 | 121 | 143 | 148 | 1.5 | 1.5 | 27.4 | 0.41 | 1.5 | 0.80 | 0.725 | 0.344 | | 64450 | 64700 | 131 | 125 | 160 | 172 | 3.5 | 3.3 | 42.4 | 0.52 | 1.2 | 0.64 | 2.39 | 1.11 | | 68450 | ** 68709 | 130 | 123 | 165 | 172 | 3.5 | 0.8 | 40.0 | 0.50 | 1.2 | 0.66 | 1.95 | 1.0 | | 71450 | 71750 | 132 | 125 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 3.37 | 1.71 | | 938 | 932 | 141 | 128 | 187 | 193 | 7 | 3.3 | 46.9 | 0.33 | 1.8 | 1.0 | 6.01 | 4.11 | | HH 224346 | HH 224310 | 143 | 131 | 192 | 202 | 7 | 3.3 | 47.3 | 0.33 | 1.8 | 1.0 | 7.01 | 3.06 | | 71453
68462
Notes ** | 71750
68712 | 133
132 | 126
125 | 171
163 | 181
172 | 3.5
3.5 | 3.3
3.3 | 40.1
40.0 | 0.42
0.50 | 1.4
1.2 | 0.79
0.66 | 3.31
1.73 | 1.71
1.05 | ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. B 166 B 167 # SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) Bore Diameter 120.000 - 165.100 mm | | Boundary Dimensions
(mm) | | | | | | | Basic Loa | • | | Limiting Speeds | | | |----------|-----------------------------|--------|--------|--------|-----------------|-----|-------------|-----------|-------------|----------|-----------------|-------|--| | | | , | , | | Cone | Cup | , | ۷) | | gf} | (mii | , | | | <i>d</i> | D | T | В | С | γ
mir | | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | | | 120.000 | 170.000 | 25.400 | 25.400 | 19.050 | 3.3 | 3.3 | 130 000 | 219 000 | 13 200 | 22 300 | 1 900 | 2 600 | | | | 174.625 | 35.720 | 36.512 | 27.783 | 3.5 | 1.5 | 212 000 | 385 000 | 21 600 | 39 000 | 1 900 | 2 600 | | | 120.650 | 182.562 | 39.688 | 38.100 | 33.338 | 3.5 | 3.3 | 228 000 | 445 000 | 23 200 | 45 000 | 1 800 | 2 400 | | | | 206.375 | 47.625 | 47.625 | 34.925 | 3.3 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | | 123.825 | 182.562 | 39.688 | 38.100 | 33.338 | 3.5 | 3.3 | 228 000 | 445 000 | 23 200 | 45 000 | 1 800 | 2 400 | | | 125.000 | 175.000 | 25.400 | 25.400 | 18.288 | 3.3 | 3.3 | 134 000 | 232 000 | 13 700 | 23 600 | 1 800 | 2 400 | | | 127.000 | 165.895 | 18.258 | 17.462 | 13.495 | 1.5 | 1.5 | 84 500 | 149 000 | 8 650 | 15 200 | 1 900 | 2 600 | | | | 182.562 | 39.688 | 38.100 | 33.338 | 3.5 | 3.3 | 228 000 | 445 000 | 23 200 | 45 000 | 1 800 | 2 400 | | | | 196.850 | 46.038 | 46.038 | 38.100 | 3.5 | 3.3 | 315 000 | 560 000 | 32 000 | 57 500 | 1 700 | 2 200 | | | | 215.900 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | | 128.588 | 206.375 | 47.625 | 47.625 | 34.925 | 3.3 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | | 130.000 | 206.375 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | | 130.175 | 203.200 | 46.038 | 46.038 | 38.100 | 3.5 | 3.3 | 315 000 | 560 000 | 32 000 | 57 500 | 1 700 | 2 200 | | | | 206.375 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | | 133.350 | 177.008 | 25.400 | 26.195 | 20.638 | 1.5 | 1.5 | 124 000 | 258 000 | 12 700 | 26 300 | 1 800 | 2 400 | | | | 190.500 | 39.688 | 39.688 | 33.338 | 3.5 | 3.3 | 240 000 | 485 000 | 24 500 | 49 500 | 1 700 | 2 200 | | | | 196.850 | 46.038 | 46.038 | 38.100 | 3.5 | 3.3 | 315 000 | 560 000 | 32 000 | 57 500 | 1 700 | 2 200 | |
| | 215.900 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | | 136.525 | 190.500 | 39.688 | 39.688 | 33.338 | 3.5 | 3.3 | 216 000 | 440 000 | 22 000 | 45 000 | 1 700 | 2 200 | | | | 217.488 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | | 139.700 | 187.325 | 28.575 | 29.370 | 23.020 | 1.5 | 1.5 | 153 000 | 305 000 | 15 600 | 31 500 | 1 700 | 2 200 | | | | 215.900 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | | | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | | 142.875 | 200.025 | 41.275 | 39.688 | 34.130 | 3.5 | 3.3 | 227 000 | 460 000 | 23 100 | 46 500 | 1 600 | 2 200 | | | 146.050 | 193.675 | 28.575 | 28.575 | 23.020 | 1.5 | 1.5 | 170 000 | 355 000 | 17 300 | 36 500 | 1 600 | 2 200 | | | | 236.538 | 57.150 | 56.642 | 44.450 | 3.5 | 3.3 | 455 000 | 720 000 | 46 000 | 73 500 | 1 400 | 1 900 | | | | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | | 149.225 | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | | 152.400 | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | | 158.750 | 225.425 | 41.275 | 39.688 | 33.338 | 3.5 | 3.3 | 240 000 | 540 000 | 24 400 | 55 000 | 1 400 | 1 900 | | | 165.100 | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 35 500 | 71 500 | 1 300 | 1 700 | | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing | Numbers | ŀ | Abutmen | Abutment and Fillet Dimensions
(mm)
Cone Cup | | | | | | t Axial Load
Factors | | Mass
(kg) | | |-------------|-------------|------------------|------------|--|------------|-----|---------------------------------|-----------|------|-------------------------|-------|--------------|---------------| | CONE | CUP | d_{a} | $d_{ m b}$ | D_{a} | $D_{ m b}$ | 1 | e Cup
r _a
nax. | (mm)
a | e | Y_1 | Y_0 | ap
CONE | oprox.
CUP | | ▲ JL 724348 | ▲ JL 724314 | 132 | 127 | 156 | 163 | 3.3 | 3.3 | 32.9 | 0.46 | 1.3 | 0.72 | 1.08 | 0.591 | | * M 224748 | M 224710 | 135 | 129 | 163 | 168 | 3.5 | 1.5 | 32.2 | 0.33 | 1.8 | 0.99 | 1.9 | 0.866 | | 48282 | 48220 | 136 | 133 | 168 | 176 | 3.5 | 3.3 | 34.2 | 0.31 | 2.0 | 1.1 | 2.56 | 1.14 | | 795 | 792 | 139 | 134 | 186 | 198 | 3.3 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 4.44 | 1.9 | | 48286 | 48220 | 139 | 133 | 168 | 176 | 3.5 | 3.3 | 34.2 | 0.31 | 2.0 | 1.1 | 2.37 | 1.14 | | ▲ JL 725346 | ▲ JL 725316 | 138 | 133 | 161 | 168 | 3.3 | 3.3 | 34.3 | 0.48 | 1.3 | 0.69 | 1.19 | 0.573 | | LL 225749 | LL 225710 | 135 | 132 | 158 | 160 | 1.5 | 1.5 | 24.2 | 0.33 | 1.8 | 0.99 | 0.647 | 0.288 | | 48290 | 48220 | 141 | 135 | 168 | 176 | 3.5 | 3.3 | 34.2 | 0.31 | 2.0 | 1.1 | 2.19 | 1.14 | | 67388 | 67322 | 144 | 138 | 180 | 189 | 3.5 | 3.3 | 39.7 | 0.34 | 1.7 | 0.96 | 3.74 | 1.46 | | 74500 | 74850 | 148 | 141 | 196 | 208 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 4.92 | 1.99 | | 799 | 792 | 146 | 140 | 186 | 198 | 3.3 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 3.86 | 1.9 | | 797 | 792 | 148 | 141 | 186 | 198 | 3.5 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 3.76 | 1.9 | | 67389 | 67320 | 146 | 141 | 183 | 191 | 3.5 | 3.3 | 39.7 | 0.34 | 1.7 | 0.96 | 3.51 | 2.06 | | 799 A | 792 | 148 | 142 | 186 | 198 | 3.5 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 3.74 | 1.9 | | L 327249 | L 327210 | 143 | 141 | 167 | 171 | 1.5 | 1.5 | 29.5 | 0.35 | 1.7 | 0.95 | 1.18 | 0.55 | | 48385 | 48320 | 148 | 142 | 177 | 184 | 3.5 | 3.3 | 35.9 | 0.32 | 1.9 | 1.0 | 2.58 | 1.16 | | 67390 | 67322 | 149 | 143 | 180 | 189 | 3.5 | 3.3 | 39.7 | 0.34 | 1.7 | 0.96 | 3.27 | 1.46 | | 74525 | 74850 | 152 | 146 | 196 | 208 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 4.44 | 1.99 | | 48393 | 48320 | 151 | 144 | 177 | 184 | 3.5 | 3.3 | 35.9 | 0.32 | 1.9 | 1.0 | 2.31 | 1.16 | | 74537 | 74856 | 155 | 148 | 197 | 210 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 4.19 | 2.13 | | LM 328448 | LM 328410 | 149 | 147 | 176 | 182 | 1.5 | 1.5 | 31.7 | 0.36 | 1.7 | 0.93 | 1.59 | 0.67 | | 74550 | 74850 | 158 | 151 | 196 | 208 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 3.93 | 1.99 | | 99550 | 99100 | 170 | 156 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 9.99 | 3.83 | | 48685 | 48620 | 158 | 151 | 185 | 193 | 3.5 | 3.3 | 37.6 | 0.34 | 1.8 | 0.98 | 2.63 | 1.19 | | 36690 | 36620 | 155 | 154 | 182 | 188 | 1.5 | 1.5 | 33.5 | 0.37 | 1.6 | 0.90 | 1.64 | 0.725 | | HM 231140 | HM 231110 | 164 | 160 | 217 | 224 | 3.5 | 3.3 | 45.9 | 0.32 | 1.9 | 1.0 | 6.07 | 2.93 | | 99575 | 99100 | 175 | 162 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 9.24 | 3.83 | | 99587 | 99100 | 178 | 165 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 8.86 | 3.83 | | 99600 | 99100 | 181 | 167 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 8.46 | 3.83 | | 46780 | 46720 | 176 | 169 | 209 | 218 | 3.5 | 3.3 | 44.3 | 0.38 | 1.6 | 0.86 | 3.69 | 1.66 | | 67780 | 67720 | 185 | 179 | 229 | 240 | 3.5 | 3.3 | 52.4 | 0.44 | 1.4 | 0.75 | 5.83 | 2.33 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. Bore Diameter 170.000 - 206.375 mm | | | | Dimensio | ns | | | , | Basic Load | ~f) | Limiting Speeds
(min ⁻¹) | | | |---------|---------|--------|----------|--------|-----------------------|-----|-------------|-------------------|-------------|---|--------|-------| | d | D | T | В | С | Cone Cup
r
min. | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | gf} $C_{0\mathrm{r}}$ | Grease | Oil | | 170.000 | 230.000 | 39.000 | 38.000 | 31.000 | 3.0 | 2.5 | 278 000 | 520 000 | 28 300 | 53 000 | 1 300 | 1 800 | | | 240.000 | 46.000 | 44.500 | 37.000 | 3.0 | 2.5 | 380 000 | 720 000 | 39 000 | 73 000 | 1 300 | 1 800 | | 174.625 | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 35 500 | 71 500 | 1 300 | 1 700 | | 177.800 | 227.012 | 30.162 | 30.162 | 23.020 | 1.5 | 1.5 | 181 000 | 415 000 | 18 500 | 42 000 | 1 300 | 1 800 | | | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 35 500 | 71 500 | 1 300 | 1 700 | | | 260.350 | 53.975 | 53.975 | 41.275 | 3.5 | 3.3 | 455 000 | 835 000 | 46 500 | 85 000 | 1 200 | 1 700 | | 190.000 | 260.000 | 46.000 | 44.000 | 36.500 | 3.0 | 2.5 | 370 000 | 730 000 | 38 000 | 74 500 | 1 100 | 1 600 | | 190.500 | 266.700 | 47.625 | 46.833 | 38.100 | 3.5 | 3.3 | 345 000 | 720 000 | 35 000 | 73 000 | 1 100 | 1 500 | | 200.000 | 300.000 | 65.000 | 62.000 | 51.000 | 3.5 | 2.5 | 615 000 | 1 130 000 | 62 500 | 116 000 | 1 000 | 1 400 | | 203.200 | 282.575 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 365 000 | 800 000 | 37 500 | 81 500 | 1 000 | 1 400 | | 206.375 | 282.575 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 365 000 | 800 000 | 37 500 | 81 500 | 1 000 | 1 400 | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0=0.5F_r+Y_0F_a$ When $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing | Numbers | Α | Abutmen | t and Fil | let Dimer | sions | | Eff. Load
Centers | Constant | Axial Load
Factors | | Mass
(kg) | | |--------------|--------------|------------------|-------------------------------|------------|------------|-------|------------------------------|----------------------|----------|-----------------------|-------|--------------|--------------| | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | $D_{ m a}$ | $D_{ m b}$ | 1 | Cup
r _a
ax. | (mm)
a | e | Y_1 | Y_0 | | orox.
CUP | | ▲ JHM 534149 | ▲ JHM 534110 | 184 | 178 | 217 | 224 | 3 | 2.5 | 43.2 | 0.38 | 1.6 | 0.86 | 3.1 | 1.3 | | ▲ JM 734449 | ▲ JM 734410 | 185 | 180 | 222 | 232 | | 2.5 | 50.5 | 0.44 | 1.4 | 0.75 | 4.42 | 2.02 | | 67787 | 67720 | 192 | 185 | 229 | 240 | 3.5 | 3.3 | 52.4 | 0.44 | 1.4 | 0.75 | 4.88 | 2.33 | | 36990 | 36920 | 189 | 186 | 214 | 221 | 1.5 | 1.5 | 42.9 | 0.44 | 1.4 | 0.75 | 2.1 | 0.907 | | 67790 | 67720 | 194 | 188 | 229 | 240 | 3.5 | 3.3 | 52.4 | 0.44 | 1.4 | 0.75 | 4.56 | 2.33 | | M 236849 | M 236810 | 195 | 192 | 241 | 249 | 3.5 | 3.3 | 47.5 | 0.33 | 1.8 | 0.99 | 6.49 | 2.86 | | ▲ JM 738249 | ▲ JM 738210 | 206 | 200 | 242 | 252 | 3 | 2.5 | 56.4 | 0.48 | 1.3 | 0.69 | 4.73 | 2.2 | | 67885 | 67820 | 209 | 203 | 246 | 259 | 3.5 | 3.3 | 57.9 | 0.48 | 1.3 | 0.69 | 5.4 | 2.64 | | ▲ JHM 840449 | ▲ JHM 840410 | 223 | 215 | 273 | 289 | 3.5 | 2.5 | 73.1 | 0.52 | 1.2 | 0.63 | 10.3 | 5.19 | | 67983 | 67920 | 222 | 216 | 260 | 275 | 3.5 | 3.3 | 61.9 | 0.51 | 1.2 | 0.65 | 6.03 | 2.82 | | 67985 | 67920 | 224 | 219 | 260 | 275 | 3.5 | 3.3 | 61.9 | 0.51 | 1.2 | 0.65 | 5.66 | 2.82 | ## Bore Diameter 40 – 90 mm | | | | Dimensions | 3 | | Basic Loa | d Ratings | Limiting Spe | eds (min-1) | |----|-----|-------|------------|------------------|---------------------|-------------|-------------------|--------------|-------------| | | | (r | mm) | | | 1) | 1) | | | | d | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 40 | 80 | 45 | 37.5 | 1.5 | 0.6 | 109 000 | 140 000 | 3 700 | 5 100 | | 45 | 85 | 47 | 37.5 | 1.5 | 0.6 | 117 000 | 159 000 | 3 400 | 4 700 | | | 85 | 55 | 43.5 | 1.5 | 0.6
| 143 000 | 204 000 | 3 400 | 4 700 | | 50 | 90 | 48 | 38.5 | 1.5 | 0.6 | 131 000 | 183 000 | 3 200 | 4 400 | | | 90 | 49 | 39.5 | 1.5 | 0.6 | 131 000 | 183 000 | 3 200 | 4 400 | | | 90 | 55 | 43.5 | 1.5 | 0.6 | 150 000 | 218 000 | 3 200 | 4 400 | | | 110 | 64 | 51.5 | 2.5 | 0.6 | 224 000 | 297 000 | 2 700 | 3 700 | | 55 | 100 | 51 | 41.5 | 2 | 0.6 | 162 000 | 226 000 | 2 900 | 3 900 | | | 100 | 52 | 42.5 | 2 | 0.6 | 162 000 | 226 000 | 2 900 | 3 900 | | | 100 | 60 | 48.5 | 2 | 0.6 | 188 000 | 274 000 | 2 900 | 3 900 | | | 120 | 70 | 57 | 2.5 | 0.6 | 256 000 | 342 000 | 2 500 | 3 400 | | 60 | 110 | 53 | 43.5 | 2 | 0.6 | 178 000 | 246 000 | 2 700 | 3 600 | | | 110 | 66 | 54.5 | 2 | 0.6 | 225 000 | 335 000 | 2 700 | 3 600 | | | 130 | 74 | 59 | 3 | 1 | 298 000 | 405 000 | 2 300 | 3 200 | | 65 | 120 | 56 | 46.5 | 2 | 0.6 | 210 000 | 300 000 | 2 400 | 3 200 | | | 120 | 57 | 47.5 | 2 | 0.6 | 210 000 | 300 000 | 2 400 | 3 200 | | | 120 | 73 | 61.5 | 2 | 0.6 | 269 000 | 405 000 | 2 400 | 3 300 | | | 140 | 79 | 63 | 3 | 1 | 340 000 | 465 000 | 2 100 | 2 900 | | 70 | 125 | 57 | 46.5 | 2 | 0.6 | 227 000 | 325 000 | 2 300 | 3 100 | | | 125 | 59 | 48.5 | 2 | 0.6 | 227 000 | 325 000 | 2 300 | 3 100 | | | 125 | 74 | 61.5 | 2 | 0.6 | 270 000 | 410 000 | 2 300 | 3 100 | | | 150 | 83 | 67 | 3 | 1 | 390 000 | 535 000 | 2 000 | 2 700 | | 75 | 130 | 62 | 51.5 | 2 | 0.6 | 245 000 | 365 000 | 2 200 | 3 000 | | | 130 | 74 | 61.5 | 2 | 0.6 | 283 000 | 440 000 | 2 200 | 3 000 | | | 160 | 87 | 69 | 3 | 1 | 435 000 | 600 000 | 1 900 | 2 500 | | 80 | 140 | 61 | 49 | 2.5 | 0.6 | 269 000 | 390 000 | 2 000 | 2 800 | | | 140 | 64 | 51.5 | 2.5 | 0.6 | 269 000 | 390 000 | 2 000 | 2 800 | | | 140 | 78 | 63.5 | 2.5 | 0.6 | 330 000 | 505 000 | 2 000 | 2 800 | | | 170 | 92 | 73 | 3 | 1 | 475 000 | 655 000 | 1 700 | 2 400 | | 85 | 150 | 70 | 57 | 2.5 | 0.6 | 315 000 | 465 000 | 1 900 | 2 600 | | | 150 | 86 | 69 | 2.5 | 0.6 | 360 000 | 555 000 | 1 900 | 2 600 | | | 180 | 98 | 77 | 4 | 1 | 530 000 | 745 000 | 1 600 | 2 200 | | 90 | 160 | 71 | 58 | 2.5 | 0.6 | 345 000 | 510 000 | 1 800 | 2 400 | | | 160 | 74 | 61 | 2.5 | 0.6 | 345 000 | 510 000 | 1 800 | 2 400 | | | 160 | 94 | 77 | 2.5 | 0.6 | 440 000 | 700 000 | 1 800 | 2 400 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | |---------------|------------|---------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | D : N . | Abutme | ent and F
(m | | ensions | Constant | F | xial Load
Factors | t | Mass
(kg) | |------------------|-----------------|-----------------|-------------------------|----------------------|----------|-------|----------------------|-------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | ${\pmb{\gamma}}_a$ max. | $ m \emph{r}_b$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | HR 40 KBE 42+L | 51 | 75 | 1.5 | 0.6 | 0.37 | 2.7 | 1.8 | 1.8 | 0.97 | | HR 45 KBE 42+L | 56 | 81 | 1.5 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.08 | | HR 45 KBE 52X+L | 56 | 81 | 1.5 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.31 | | HR 50 KBE 042+L | 61 | 87 | 1.5 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 1.20 | | HR 50 KBE 42+L | 61 | 87 | 1.5 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 1.22 | | HR 50 KBE 52X+L | 61 | 87 | 1.5 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 1.39 | | HR 50 KBE 043+L | 65 | 104 | 2 | 0.6 | 0.35 | 2.9 | 2.0 | 1.9 | 2.77 | | HR 55 KBE 042+L | 67 | 96 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.59 | | HR 55 KBE 1003+L | 67 | 96 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.63 | | HR 55 KBE 52X+L | 67 | 97 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.88 | | HR 55 KBE 43+L | 70 | 113 | 2 | 0.6 | 0.35 | 2.9 | 2.0 | 1.9 | 3.52 | | HR 60 KBE 042+L | 72 | 105 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.03 | | HR 60 KBE 52X+L | 72 | 106 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.52 | | HR 60 KBE 43+L | 78 | 122 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 4.40 | | HR 65 KBE 42+L | 77 | 115 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.58 | | HR 65 KBE 1202+L | 77 | 115 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.61 | | HR 65 KBE 52X+L | 77 | 117 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 3.35 | | HR 65 KBE 43+L | 83 | 132 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 5.42 | | HR 70 KBE 042+L | 82 | 120 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 2.79 | | HR 70 KBE 42+L | 82 | 120 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 2.85 | | HR 70 KBE 52X+L | 82 | 121 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 3.58 | | HR 70 KBE 43+L | 88 | 142 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 6.45 | | HR 75 KBE 42+L | 87 | 126 | 2 | 0.6 | 0.44 | 2.3 | 1.6 | 1.5 | 3.15 | | HR 75 KBE 52X+L | 87 | 127 | 2 | 0.6 | 0.44 | 2.3 | 1.6 | 1.5 | 3.73 | | HR 75 KBE 043+L | 93 | 151 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 7.66 | | HR 80 KBE 042+L | 95 | 134 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 3.70 | | HR 80 KBE 42+L | 95 | 134 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 3.70 | | HR 80 KBE 52X+L | 95 | 136 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 4.59 | | HR 80 KBE 043+L | 98 | 161 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 9.02 | | HR 85 KBE 42+L | 100 | 143 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 4.69 | | HR 85 KBE 52X+L | 100 | 144 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 5.70 | | HR 85 KBE 043+L | 106 | 169 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 10.8 | | HR 90 KBE 042+L | 105 | 152 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 5.53 | | HR 90 KBE 42+L | 105 | 152 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 5.71 | | HR 90 KBE 52X+L | 105 | 154 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 7.26 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. ## Bore Diameter 90 – 120 mm | | | | y Dimension | 18 | | | oad Ratings | Limiting Spe | eds (min ⁻¹) | |-----|-----|-------|-------------|------------------|---------------------|-------------|-------------------|--------------|--------------------------| | d | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 90 | 190 | 102 | 81 | 4 | 1 | 595 000 | 845 000 | 1 600 | 2 100 | | | 190 | 144 | 115 | 4 | 1 | 770 000 | 1 180 000 | 1 600 | 2 200 | | 95 | 170 | 78 | 63 | 3 | 1 | 385 000 | 570 000 | 1 700 | 2 300 | | | 170 | 100 | 83 | 3 | 1 | 495 000 | 800 000 | 1 700 | 2 300 | | | 200 | 108 | 85 | 4 | 1 | 640 000 | 910 000 | 1 500 | 2 000 | | 100 | 165 | 52 | 46 | 2.5 | 0.6 | 222 000 | 340 000 | 1 700 | 2 300 | | | 180 | 81 | 64 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 81 | 65 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 82 | 66 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 83 | 67 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 105 | 85 | 3 | 1 | 555 000 | 905 000 | 1 600 | 2 200 | | | 180 | 107 | 87 | 3 | 1 | 555 000 | 905 000 | 1 600 | 2 200 | | | 180 | 110 | 90 | 3 | 1 | 555 000 | 905 000 | 1 600 | 2 200 | | | 215 | 112 | 87 | 4 | 1 | 725 000 | 1 050 000 | 1 400 | 1 900 | | 105 | 190 | 88 | 70 | 3 | 1 | 480 000 | 735 000 | 1 500 | 2 000 | | | 190 | 117 | 96 | 3 | 1 | 620 000 | 1 020 000 | 1 500 | 2 000 | | | 190 | 115 | 95 | 3 | 1 | 620 000 | 1 020 000 | 1 500 | 2 000 | | | 225 | 116 | 91 | 4 | 1 | 780 000 | 1 130 000 | 1 300 | 1 800 | | 110 | 180 | 56 | 50 | 2.5 | 0.6 | 264 000 | 400 000 | 1 500 | 2 000 | | | 180 | 70 | 56 | 2.5 | 0.6 | 340 000 | 555 000 | 1 500 | 2 000 | | | 180 | 125 | 100 | 2.5 | 0.6 | 550 000 | 1 060 000 | 1 500 | 2 100 | | | 200 | 90 | 72 | 3 | 1 | 540 000 | 840 000 | 1 400 | 1 900 | | | 200 | 92 | 74 | 3 | 1 | 540 000 | 840 000 | 1 400 | 1 900 | | | 200 | 120 | 100 | 3 | 1 | 685 000 | 1 130 000 | 1 400 | 1 900 | | | 200 | 121 | 101 | 3 | 1 | 685 000 | 1 130 000 | 1 400 | 1 900 | | | 240 | 118 | 93 | 4 | 1.5 | 830 000 | 1 190 000 | 1 200 | 1 700 | | 120 | 180 | 46 | 41 | 2.5 | 0.6 | 184 000 | 296 000 | 1 500 | 2 000 | | | 180 | 58 | 46 | 2.5 | 0.6 | 260 000 | 450 000 | 1 500 | 2 000 | | | 200 | 62 | 55 | 2.5 | 0.6 | 310 000 | 500 000 | 1 400 | 1 800 | | | 200 | 78 | 62 | 2.5 | 0.6 | 415 000 | 690 000 | 1 400 | 1 900 | | | 200 | 100 | 84 | 2.5 | 0.6 | 515 000 | 885 000 | 1 400 | 1 800 | | | 215 | 97 | 78 | 3 | 1 | 575 000 | 900 000 | 1 300 | 1 800 | | | 215 | 132 | 109 | 3 | 1 | 750 000 | 1 270 000 | 1 300 | 1 800 | | | 260 | 128 | 101 | 4 | 1 | 915 000 | 1 310 000 | 1 100 | 1 500 | | | 260 | 188 | 145 | 4 | 1 | 1 320 000 | 2 110 000 | 1 100 | 1 500 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | |---------------|------------|---------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | Y_2 | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Decide a Novelle and | Abutme | ent and F
(m | | ensions | Constant | F | xial Load
Factors | t | Mass
(kg) | |------------------------|-----------------|-----------------|-------------------------------|--------------------------|----------|-------|----------------------|-------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $m{\gamma}_{\mathrm{a}}$ max. | ${m \gamma}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | HR 90 KBE 043+L | 111 | 178 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 12.7 | | HR 90 KBE 1901+L | 111 | 179 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 17.9 | | HR 95 KBE 42+L | 113 | 161 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 6.75 | | HR 95 KBE 52+L | 113 | 163 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.60 | | HR 95 KBE 43+L | 116 | 187 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 14.7 | | 100 KBE 31+L | 115 | 156 | 2 | 0.6 | 0.33 | 3.0 | 2.0 | 2.0 | 4.04 | | HR100 KBE 1805+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.16 | | HR100 KBE 042+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.13 | | HR100 KBE 1801+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.22 | | HR100 KBE 42+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.7 | | HR100 KBE 1802+L | 118 | 173 |
2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 10.6 | | HR100 KBE 52X+L | 118 | 173 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 10.7 | | HR100 KBE 1804+L | 118 | 173 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 11 | | HR100 KBE 043+L | 121 | 200 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 18.1 | | HR105 KBE 42X+L | 123 | 179 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 9.76 | | HR105 KBE 1902+L | 123 | 182 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 13.4 | | HR105 KBE 52+L | 123 | 182 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 13.1 | | HR105 KBE 043+L | 126 | 209 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 20.4 | | 110 KBE 31+L | 125 | 172 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 5.11 | | 110 KBE 031+L | 125 | 172 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 6.33 | | 110 KBE 1802+L | 125 | 172 | 2 | 0.6 | 0.26 | 3.8 | 2.6 | 2.5 | 11.4 | | HR110 KBE 42+L | 128 | 190 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 11.2 | | HR110 KBE 42X+L | 128 | 190 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 11.5 | | HR110 KBE 2001+L | 128 | 193 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 15.4 | | HR110 KBE 52X+L | 128 | 193 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 15.2 | | HR110 KBE 043+L | 131 | 223 | 3 | 1.5 | 0.35 | 2.9 | 2.0 | 1.9 | 23.6 | | 120 KBE 30+L | 135 | 172 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 3.75 | | 120 KBE 030+L | 135 | 172 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 4.64 | | 120 KBE 31+L | 135 | 190 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 7.35 | | 120 KBE 031+L | 135 | 190 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 8.97 | | 120 KBE2001+L | 135 | 193 | 2 | 0.6 | 0.37 | 2.7 | 1.8 | 1.8 | 11.3 | | HR120 KBE 42X+L | 138 | 204 | 2.5 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 13.7 | | HR120 KBE 52X+L | 138 | 207 | 2.5 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 18.8 | | HR120 KBE 43+L | 141 | 240 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 29.4 | | HR120 KBE 2601+L | 141 | 242 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 44.6 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. ## Bore Diameter 125 - 150 mm | | | | y Dimensions
mm) | 3 | | | oad Ratings | Limiting Spe | eds (min ⁻¹) | |-----|-----|-------|---------------------|------------------|---------------------|-------------|-------------------|--------------|--------------------------| | d | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 125 | 210 | 110 | 88 | 4 | 1 | 560 000 | 1 030 000 | 1 300 | 1 800 | | 130 | 230 | 98 | 78.5 | 4 | 1 | 640 000 | 1 010 000 | 1 200 | 1 600 | | | 230 | 100 | 80.5 | 4 | 1 | 640 000 | 1 010 000 | 1 200 | 1 600 | | | 280 | 137 | 107.5 | 5 | 1.5 | 940 000 | 1 350 000 | 1 000 | 1 400 | | | 230 | 145 | 115 | 4 | 1 | 905 000 | 1 580 000 | 1 200 | 1 700 | | | 230 | 145 | 117.5 | 4 | 1 | 905 000 | 1 580 000 | 1 200 | 1 700 | | | 230 | 150 | 120 | 4 | 1 | 905 000 | 1 580 000 | 1 200 | 1 700 | | 140 | 210 | 53 | 47 | 2.5 | 0.6 | 280 000 | 495 000 | 1 200 | 1 700 | | | 210 | 66 | 53 | 2.5 | 1 | 305 000 | 530 000 | 1 200 | 1 700 | | | 210 | 106 | 94 | 2.5 | 0.6 | 555 000 | 1 200 000 | 1 300 | 1 700 | | | 225 | 68 | 61 | 3 | 1 | 400 000 | 630 000 | 1 200 | 1 600 | | | 225 | 84 | 68 | 3 | 1 | 490 000 | 850 000 | 1 200 | 1 600 | | | 225 | 85 | 68 | 3 | 1 | 490 000 | 850 000 | 1 200 | 1 600 | | | 230 | 120 | 94 | 3 | 1 | 685 000 | 1 270 000 | 1 200 | 1 600 | | | 230 | 140 | 110 | 3 | 1 | 820 000 | 1 550 000 | 1 200 | 1 600 | | | 240 | 132 | 106 | 4 | 1.5 | 685 000 | 1 360 000 | 1 100 | 1 500 | | | 250 | 102 | 82.5 | 4 | 1 | 670 000 | 1 030 000 | 1 100 | 1 500 | | | 250 | 153 | 125.5 | 4 | 1 | 1 040 000 | 1 830 000 | 1 100 | 1 500 | | | 300 | 145 | 115.5 | 5 | 1.5 | 1 030 000 | 1 480 000 | 1 000 | 1 300 | | 150 | 225 | 56 | 50 | 3 | 1 | 300 000 | 545 000 | 1 200 | 1 600 | | | 225 | 70 | 56 | 3 | 1 | 395 000 | 685 000 | 1 200 | 1 600 | | | 250 | 80 | 71 | 3 | 1 | 510 000 | 810 000 | 1 100 | 1 400 | | | 250 | 100 | 80 | 3 | 1 | 630 000 | 1 090 000 | 1 100 | 1 400 | | | 250 | 115 | 95 | 3 | 1 | 745 000 | 1 320 000 | 1 100 | 1 500 | | | 260 | 150 | 115 | 4 | 1 | 815 000 | 1 520 000 | 1 100 | 1 400 | | | 270 | 109 | 87 | 4 | 1 | 830 000 | 1 330 000 | 1 000 | 1 400 | | | 270 | 164 | 130 | 4 | 1 | 1 210 000 | 2 150 000 | 1 000 | 1 400 | | | 270 | 174 | 140 | 4 | 1 | 1 210 000 | 2 150 000 | 1 000 | 1 400 | | | 320 | 154 | 120 | 5 | 1.5 | 1 420 000 | 2 130 000 | 900 | 1 200 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | r≤e | $F_{\rm a}/F_{\rm r} > e$ | | | | |---------------|-------|---------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | Y_2 | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Desvine Numbers | Abutme | ent and Fi
(m | | ensions | Constant | Α | xial Load
Factors | t | Mass
(kg) | |---|--------------------------|--------------------------|-------------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $m{\gamma}_{\mathrm{a}}$ max. | ${m \gamma}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 125 KBE 2101+L | 146 | 201 | 3 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 14.5 | | HR130 KBE 42+L | 151 | 220 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 15.8 | | HR130 KBE 2301+L | 151 | 220 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 15.9 | | 130 KBE 43+L | 157 | 258 | 4 | 1.5 | 0.36 | 2.8 | 1.9 | 1.8 | 35 | | HR130 KBE 2302+L | 151 | 221 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 24.1 | | HR130 KBE 52+L | 151 | 222 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 23.8 | | HR130 KBE 2303+L | 151 | 221 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 24.2 | | 140 KBE 30+L | 155 | 202 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 6.02 | | 140 KBE 030+L | 155 | 202 | 2 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 7.02 | | 140 KBE2101+L | 155 | 202 | 2 | 0.6 | 0.33 | 3.0 | 2.0 | 2.0 | 12.3 | | 140 KBE 31+L | 158 | 216 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 9.31 | | 140 KBE 031+L | 158 | 215 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 11.6 | | 140 KBE 2201+L | 158 | 215 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 11.7 | | 140 KBE 2301+L | 158 | 220 | 2.5 | 1 | 0.33 | 3.0 | 2.0 | 2.0 | 17.6 | | 140 KBE 2302+L | 158 | 221 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 20.7 | | 140 KBE 2401+L | 161 | 227 | 3 | 1.5 | 0.44 | 2.3 | 1.5 | 1.5 | 22.7 | | HR140 KBE 42+L | 161 | 237 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 18.9 | | HR140 KBE 52X+L | 161 | 241 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 29.6 | | 140 KBE 43+L | 167 | 275 | 4 | 1.5 | 0.36 | 2.8 | 1.9 | 1.8 | 42.6 | | 150 KBE 30+L | 168 | 213 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 7.41 | | 150 KBE 030+L | 168 | 215 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 8.70 | | 150 KBE 31+L | 168 | 240 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 14.2 | | 150 KBE 031+L | 168 | 238 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 17.8 | | 150 KBE2502+L | 168 | 238 | 2.5 | 1 | 0.37 | 2.7 | 1.8 | 1.8 | 20.9 | | 150 KBE2601+L | 171 | 242 | 3 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 30.0 | | HR150 KBE 42+L
HR150 KBE 52X+L
HR150 KBE 2701+L
HR150 KBE 43+L | 171
171
171
177 | 253
257
257
295 | 3
3
4 | 1
1
1
1.5 | 0.44
0.44
0.44
0.35 | 2.3
2.3
2.3
2.9 | 1.6
1.6
1.6
2.0 | 1.5
1.5
1.5
1.9 | | ## Bore Diameter 160 - 200 mm | | | | y Dimensio | ns | | | ad Ratings | Limiting Spe | eds (min ⁻¹) | |----------|--------------------------|-------------------------|------------------------|-------------|-------------------------|--|--|----------------------------|----------------------------------| | <i>d</i> | D | B_2 | С | γ
min. | $m{\mathscr{V}}_1$ min. | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | | 160 | 240 | 60 | 53 | 3 | 1 | 355 000 | 580 000 | 1 100 | 1 500 | | | 240 | 75 | 60 | 3 | 1 | 395 000 | 710 000 | 1 100 | 1 500 | | | 240 | 110 | 90 | 3 | 1 | 650 000 | 1 290 000 | 1 100 | 1 500 | | | 270 | 86 | 76 | 3 | 1 | 540 000 | 885 000 | 1 000 | 1 300 | | | 270 | 108 | 86 | 3 | 1 | 775 000 | 1 380 000 | 1 000 | 1 300 | | | 270 | 140 | 120 | 3 | 1 | 990 000 | 1 880 000 | 1 000 | 1 300 | | | 280 | 150 | 125 | 4 | 1 | 1 100 000 | 2 020 000 | 1 000 | 1 300 | | | 290 | 115 | 91 | 4 | 1 | 800 000 | 1 220 000 | 900 | 1 300 | | | 290 | 178 | 144 | 4 | 1 | 1 360 000 | 2 440 000 | 1 000 | 1 300 | | | 340 | 160 | 126 | 5 | 1.5 | 1 310 000 | 1 920 000 | 800 | 1 100 | | 165 | 290 | 150 | 125 | 4 | 1 | 1 140 000 | 2 130 000 | 900 | 1 300 | | 170 | 250 | 85 | 65 | 3 | 1 | 435 000 | 845 000 | 1 000 | 1 400 | | | 260 | 67 | 60 | 3 | 1 | 400 000 | 700 000 | 1 000 | 1 300 | | | 260 | 84 | 67 | 3 | 1 | 575 000 | 1 030 000 | 1 000 | 1 300 | | | 280
280
280
310 | 88
110
150
192 | 78
88
130
152 | 3
3
5 | 1
1
1
1.5 | 630 000
820 000
1 110 000
1 590 000 | 1 040 000
1 450 000
2 160 000
2 910 000 | 900
900
1 000
900 | 1 300
1 300
1 300
1 200 | | 180 | 280 | 74 | 66 | 3 | 1 | 455 000 | 810 000 | 900 | 1 300 | | | 280 | 93 | 74 | 3 | 1 | 655 000 | 1 220 000 | 900 | 1 200 | | | 300 | 96 | 85 | 4 | 1.5 | 725 000 | 1 210 000 | 900 | 1 200 | | | 300 | 120 | 96 | 4 | 1.5 | 940 000 | 1 690 000 | 900 | 1 200 | | | 320 | 127 | 99 | 5 | 1.5 | 895 000 | 1 390 000 | 800 | 1 200 | | | 320 | 192 | 152 | 5 | 1.5 | 1 640 000 | 3 050 000 | 900 | 1 200 | | | 340 | 180 | 140 | 5 | 1.5 | 1 410 000 | 2 510 000 | 800 | 1 100 | | 190 | 290 | 75 | 67 | 3 | 1 | 490 000 | 845 000 | 900 | 1 200 | | | 290 | 94 | 75 | 3 | 1 | 670 000 | 1 230 000 | 900 | 1 200 | | | 320 | 104 | 92 | 4 | 1.5 | 800 000 | 1 380 000 | 800 | 1 100 | | | 320 | 130 | 104 | 4 | 1.5 | 1 070 000 | 1 960 000 | 800 | 1 100 | | | 340 | 133 | 105 | 5 | 1.5 | 990 000 | 1 580 000 | 800 | 1 100 | | | 340 | 204 | 160 | 5 | 1.5 | 1 910 000 | 3 550 000 | 800 | 1 100 | | 200 | 310 | 152 | 123
| 3 | 1 | 1 300 000 | 2 740 000 | 800 | 1 100 | | | 320 | 146 | 110 | 5 | 1.5 | 990 000 | 2 120 000 | 800 | 1 100 | | | 330 | 180 | 140 | 5 | 1.5 | 1 390 000 | 2 730 000 | 800 | 1 100 | | | 340 | 112 | 100 | 4 | 1.5 | 940 000 | 1 670 000 | 800 | 1 000 | | | 340 | 140 | 112 | 4 | 1.5 | 1 260 000 | 2 250 000 | 800 | 1 000 | | | 360 | 142 | 110 | 5 | 1.5 | 1 100 000 | 1 780 000 | 700 | 1 000 | | | 360 | 218 | 174 | 5 | 1.5 | 2 070 000 | 3 850 000 | 800 | 1 000 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | |---------------|------------|---------------------------|-------|--|--| | X | Y | X Y | | | | | 1 | Y_3 | 0.67 | Y_2 | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Bearing Numbers | Abutme | ent and F
(m | illet Dime
m) | ensions | Constant | F | Axial Load
Factors | d | Mass
(kg) | |---|--------------------------|--------------------------|----------------------|-------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $m{\gamma}_{a}$ max. | $m{\gamma}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 160 KBE 30+L | 178 | 231 | 2.5 | 1 | 0.37 | 2.7 | 1.8 | 1.8 | 8.56 | | 160 KBE 030+L | 178 | 230 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 10.5 | | 160 KBE2401+L | 178 | 232 | 2.5 | 1 | 0.38 | 2.6 | 1.8 | 1.7 | 16.2 | | 160 KBE 31+L | 178 | 255 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 18.6 | | 160 KBE 031+L | 178 | 256 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 23.1 | | 160 KBE2701+L | 178 | 261 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 30.6 | | 160 KBE 2801+L
160 KBE 42+L
HR160 KBE 52X+L
160 KBE 43+L | 181
181
181
187 | 266
275
277
314 | 3
3
4 | 1
1
1
1.5 | 0.32
0.43
0.44
0.36 | 3.2
2.3
2.3
2.8 | 2.1
1.6
1.6
1.9 | 2.1
1.5
1.5
1.8 | 35.9
28.2
47.3
60.4 | | 165 KBE 2901+L | 186 | 272 | 3 | 1 | 0.33 | 3.1 | 2.1 | 2.0 | 39.5 | | 170 KBE 2501+L | 188 | 241 | 2.5 | 1 | 0.44 | 2.3 | 1.5 | 1.5 | 12.3 | | 170 KBE 30+L | 188 | 248 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 11.8 | | 170 KBE 030+L | 188 | 249 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 14.4 | | 170 KBE 31+L | 188 | 266 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 19.7 | | 170 KBE 031+L | 188 | 268 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 24.2 | | 170 KBE 2802+L | 188 | 269 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 34.6 | | HR170 KBE 52X+L | 197 | 297 | 4 | 1.5 | 0.44 | 2.3 | 1.6 | 1.5 | 57.3 | | 180 KBE 30+L | 198 | 265 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 15.4 | | 180 KBE 030+L | 198 | 265 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 14.4 | | 180 KBE 31+L | 201 | 284 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 24.8 | | 180 KBE 031+L | 201 | 287 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 31.1 | | 180 KBE 42+L | 207 | 300 | 4 | 1.5 | 0.44 | 2.3 | 1.5 | 1.5 | 36.5 | | HR180 KBE 52X+L | 207 | 308 | 4 | 1.5 | 0.45 | 2.2 | 1.5 | 1.5 | 59.2 | | 180 KBE 3401+L | 207 | 305 | 4 | 1.5 | 0.43 | 2.3 | 1.6 | 1.5 | 68.1 | | 190 KBE 30+L | 208 | 279 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 16.2 | | 190 KBE 030+L | 208 | 279 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 20.1 | | 190 KBE 31+L | 211 | 301 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 30.9 | | 190 KBE 031+L | 211 | 302 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 39.0 | | 190 KBE 42+L | 217 | 320 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 43.9 | | HR190 KBE 52X+L | 217 | 327 | 4 | 1.5 | 0.44 | 2.3 | 1.6 | 1.5 | 70.8 | | HR200 KBE 3101+L | 218 | 301 | 2.5 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 40.1 | | 200 KBE 3201+L | 227 | 301 | 4 | 1.5 | 0.52 | 1.9 | 1.3 | 1.3 | 41.6 | | 200 KBE 3301+L | 227 | 316 | 4 | 1.5 | 0.42 | 2.4 | 1.6 | 1.6 | 54.4 | | 200 KBE 31+L | 221 | 321 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 38.8 | | 200 KBE 031+L | 221 | 324 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 47.0 | | 200 KBE 42+L | 227 | 338 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 52.6 | | HR200 KBE 52+L | 227 | 344 | 4 | 1.5 | 0.41 | 2.5 | 1.7 | 1.6 | 88.3 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. ## Bore Diameter 206 - 260 mm | | | | y Dimensior
mm) | 18 | | | oad Ratings | Limiting Spe | eds (min ⁻¹) | |-----|-----|-------|--------------------|------------------|---------------------|-------------|-------------------|--------------|--------------------------| | d | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 206 | 283 | 102 | 83 | 4 | 1.5 | 580 000 | 1 430 000 | 900 | 1 200 | | 210 | 355 | 116 | 103 | 4 | 1.5 | 905 000 | 1 520 000 | 700 | 1 000 | | 220 | 300 | 110 | 88 | 3 | 1 | 730 000 | 1 710 000 | 800 | 1 100 | | | 340 | 90 | 80 | 4 | 1.5 | 695 000 | 1 280 000 | 700 | 1 000 | | | 340 | 113 | 90 | 4 | 1.5 | 920 000 | 1 830 000 | 700 | 1 000 | | | 370 | 120 | 107 | 5 | 1.5 | 1 110 000 | 1 940 000 | 700 | 1 000 | | | 370 | 150 | 120 | 5 | 1.5 | 1 460 000 | 2 760 000 | 700 | 1 000 | | | 400 | 158 | 122 | 5 | 1.5 | 1 390 000 | 2 300 000 | 600 | 900 | | 240 | 360 | 92 | 82 | 4 | 1.5 | 780 000 | 1 490 000 | 700 | 900 | | | 360 | 115 | 92 | 4 | 1.5 | 1 020 000 | 2 040 000 | 700 | 900 | | | 400 | 128 | 114 | 5 | 1.5 | 1 180 000 | 2 190 000 | 600 | 900 | | | 400 | 160 | 128 | 5 | 1.5 | 1 620 000 | 3 050 000 | 600 | 900 | | | 400 | 209 | 168 | 5 | 1.5 | 2 220 000 | 4 450 000 | 600 | 900 | | 250 | 380 | 98 | 87 | 4 | 1 | 795 000 | 1 460 000 | 600 | 900 | | 260 | 400 | 104 | 92 | 5 | 1.5 | 895 000 | 1 670 000 | 600 | 800 | | | 400 | 130 | 104 | 5 | 1.5 | 1 210 000 | 2 460 000 | 600 | 800 | | | 440 | 144 | 128 | 5 | 1.5 | 1 540 000 | 2 760 000 | 600 | 800 | | | 440 | 172 | 145 | 5 | 1.5 | 1 870 000 | 3 500 000 | 600 | 800 | | | 440 | 180 | 144 | 5 | 1.5 | 2 110 000 | 4 150 000 | 600 | 800 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | r≤e | $F_{\rm a}/F_{\rm r} > e$ | | | | |---------------|-------|---------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | Y_2 | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Decring Mumbers | Abutm | ent and F | | ensions | Constant | | xial Load
Factors | d | Mass
(kg) | |-----------------|-----------------|-----------------|-------------------------------|--------------------------|----------|-------|----------------------|-------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $m{\gamma}_{\mathrm{a}}$ max. | ${m \gamma}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 206 KBE 2801+L | 227 | 275 | 3 | 1.5 | 0.51 | 2.0 | 1.3 | 1.3 | 18.1 | | 210 KBE 31+L | 231 | 338 | 3 | 1.5 | 0.46 | 2.2 | 1.5 | 1.4 | 41.7 | | 220 KBE 3001+L | 238 | 292 | 2.5 | 1 | 0.37 | 2.7 | 1.8 | 1.8 | 21.2 | | 220 KBE 30+L | 241 | 324 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 27.9 | | 220 KBE 030+L | 241 | 327 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 34.7 | | 220 KBE 31+L | 247 | 345 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 48.3 | | 220 KBE 031+L | 247 | 349 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 60.2 | | 220 KBE 42+L | 247 | 371 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 74.2 | | 240 KBE 30+L | 261 | 344 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 30.1 | | 240 KBE 030+L | 261 | 344 | 3 | 1.5 | 0.35 | 2.9 | 2.0 | 1.9 | 37.3 | | 240 KBE 31+L | 267 | 380 | 4 | 1.5 | 0.43 | 2.3 | 1.6 | 1.5 | 60.0 | | 240 KBE 031+L | 267 | 378 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 73.6 | | 240 KBE 4003+L | 267 | 384 | 4 | 1.5 | 0.33 | 3.0 | 2.0 | 2.0 | 96.4 | | 250 KBE 3801+L | 271 | 365 | 3 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 35.5 | | 260 KBE 30+L | 287 | 379 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 43.4 | | 260 KBE 030+L | 287 | 382 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 54.1 | | 260 KBE 31+L | 287 | 416 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 82.5 | | 260 KBE 4401+L | 287 | 414 | 4 | 1.5 | 0.38 | 2.6 | 1.8 | 1.7 | 98.1 | | 260 KBE 031+L | 287 | 416 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 104.0 | # SPHERICAL ROLLER BEARINGS ## SPHERICAL ROLLER BEARINGS Cylindrical Bores, Tapered Bores Bore Diameter 20 – 150mm B184 Bore Diameter 160 - 560mm B192 Bore Diameter 600 - 1400mm B202 ### **DESIGN, TYPES, AND FEATURES** Shown in the figures, types EA, C, CD, CA, which are designed for high load capacity, are available. Types EA, C and CD have pressed steel cages, and type CA has machined brass cages. The EA type bearings listed here are classified as NSKHPS bearings, which offer particularly high load-carrying capacity, high limiting speeds, and are highly functional under high-temperature operating conditions of up to 200°C. An oil groove and holes are provided in the outer ring to supply lubricant and the bearing numbers are suffixed with E4. To use bearings with oil grooves and holes, it is recommended to provide an oil groove in the housing bore, since the depth of the groove in the bearing is limited. The number and dimensions of the oil groove and holes are shown in Tables 1 and 2. When bearings with a hole for a locking pin to prevent outer ring rotation are required, please inform NSK. Table 2 Number of Oil Holes ### PERMISSIBLE MISALIGNMENT The permissible misalignment of spherical roller bearings varies depending on the size and load, but it is approximately 0.018 to 0.045 radian (1° to 2.5°) with normal loads. The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. C and CD | | allu nules | • | Units : mm | | | | |-----------------------|---------------------|-----------------------|--------------------------------
--------------|---------------------------------|-------------| | lominal Outer
over | Ring Width <i>C</i> | Oil Groove
Width W | Hole Diameter $d_{ extsf{OH}}$ | | er Ring Dia D \mathbf{nm}) | Number | | 18 | 30 | 5 | 2.5 | over | incl. | of Holes | | 30
40 | 40
50 | 6
7 | 3 4 | 180 | 180
250 | 4
6
6 | | 50
65 | 65
80 | 8
10 | 5 | 250 | 315 | | | 80 | 100 | 12 | 6
8 | 315
400 | 400
500 | 6
6
8 | | 100
120 | 120
160 | 15
20 | 10
12 | 500 | 630 | | | 160 | 200 | 25 | 15 | 630
800 | 800
1000 | 8
8 | | 200
250 | 250
315 | 30
35 | 20
20 | 1000 | 1250 | 8 | | 315
400 | 400
— | 40
40 | 25
25 | 1250
1600 | 1600
2000 | 8 | And if the load on spherical roller bearings becomes too small during operation or if the ratio of axial and radial loads is larger than the value of 'e'(listed in the bearing tables), slippage occurs between the rollers and raceways, which may result in smearing. The higher the weight of the rollers and cage, the higher this tendency becomes, especially for large spherical roller bearings. If very small bearing loads are expected, please contact NSK for selection of an appropriate bearing B 182 B 183 ### Bore Diameter 20 - 55 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | Вс | oundary (m | Dimensi | ons | | Basic Load | Ratings
{kg | afl | Limiting
(mir | | Bearing | |----|------------|---------|------------------|-------------|------------|----------------|-------------------|------------------|-------|------------------| | d | D | В | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 20 | 52 | 15 | 1.1 | 29 300 | 26 900 | 2 980 | 2 740 | 6 300 | 8 200 | 21304CDE4 | | 25 | 52 | 18 | 1 | 37 500 | 37 000 | 3 850 | 3 800 | 7 100 | 9 000 | 22205CE4 | | | 62 | 17 | 1.1 | 43 000 | 40 500 | 4 350 | 4 150 | 5 300 | 6 700 | 21305CDE4 | | 30 | 62 | 20 | 1 | 50 000 | 50 000 | 5 100 | 5 100 | 6 000 | 7 500 | 22206CE4 | | | 72 | 19 | 1.1 | 55 000 | 54 000 | 5 600 | 5 500 | 4 500 | 6 000 | 21306CDE4 | | 35 | 72 | 23 | 1.1 | 69 000 | 71 000 | 7 050 | 7 200 | 5 300 | 6 700 | 22207CE4 | | | 80 | 21 | 1.5 | 71 500 | 76 000 | 7 250 | 7 750 | 4 000 | 5 300 | 21307CDE4 | | 40 | 80 | 23 | 1.1 | 113 000 | 99 500 | 11 500 | 10 100 | 6 700 | 8 500 | *22208EAE4 | | | 90 | 23 | 1.5 | 118 000 | 111 000 | 12 000 | 11 300 | 6 000 | 7 500 | *21308EAE4 | | | 90 | 33 | 1.5 | 170 000 | 153 000 | 17 300 | 15 600 | 5 300 | 6 700 | *22308EAE4 | | 45 | 85 | 23 | 1.1 | 118 000 | 111 000 | 12 000 | 11 300 | 6 000 | 7 500 | *22209EAE4 | | | 100 | 25 | 1.5 | 149 000 | 144 000 | 15 200 | 14 600 | 5 000 | 6 300 | *21309EAE4 | | | 100 | 36 | 1.5 | 207 000 | 195 000 | 21 100 | 19 900 | 4 500 | 5 600 | *22309EAE4 | | 50 | 90 | 23 | 1.1 | 124 000 | 119 000 | 12 600 | 12 100 | 5 600 | 7 100 | *22210EAE4 | | | 110 | 27 | 2 | 178 000 | 174 000 | 18 100 | 17 800 | 4 500 | 5 600 | *21310EAE4 | | | 110 | 40 | 2 | 246 000 | 234 000 | 25 100 | 23 900 | 4 300 | 5 300 | *22310EAE4 | | 55 | 100 | 25 | 1.5 | 149 000 | 144 000 | 15 200 | 14 600 | 5 300 | 6 700 | *22211EAE4 | | | 120 | 29 | 2 | 178 000 | 174 000 | 18 100 | 17 800 | 4 500 | 5 600 | *21311EAE4 | | | 120 | 43 | 2 | 292 000 | 292 000 | 29 800 | 29 800 | 3 800 | 4 800 | *22311EAE4 | Note (1) The suffix K represents bearings with tapered bores (taper 1 : 12). ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | | |---------------|------------|---------------|----------------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | Y ₂ | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | Д | butment | and Fillet Dir
(mm) | nensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|-------------------------------------|---------|------------------------|----------|-------------------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{\scriptscriptstyle ext{min.}}$ | max. | $D_{ m a}$ | min. | ${\pmb{\gamma}}_a$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 21304CDKE4 | 27 | 28 | 45 | 42 | 1 | 0.31 | 3.2 | 2.1 | 2.1 | 0.17 | | 22205CKE4 | 31 | 31 | 46 | 45 | 1 | 0.35 | 2.9 | 1.9 | 1.9 | 0.17 | | 21305CDKE4 | 32 | 34 | 55 | 51 | | 0.29 | 3.4 | 2.3 | 2.3 | 0.26 | | 22206CKE4 | 36 | 37 | 56 | 54 | 1 | 0.33 | 3.1 | 2.1 | 2.0 | 0.27 | | 21306CDKE4 | 37 | 40 | 65 | 59 | | 0.28 | 3.6 | 2.4 | 2.3 | 0.39 | | 22207CKE4 | 42 | 43 | 65 | 63 | 1 | 0.32 | 3.1 | 2.1 | 2.0 | 0.42 | | 21307CDKE4 | 44 | 47 | 71 | 67 | 1.5 | 0.28 | 3.6 | 2.4 | 2.4 | 0.53 | | *22208EAKE4 | 47 | 49 | 73 | 70 | 1 | 0.28 | 3.6 | 2.4 | 2.4 | 0.50 | | *21308EAKE4 | 49 | 54 | 81 | 75 | 1.5 | 0.25 | 3.9 | 2.7 | 2.6 | 0.73 | | *22308EAKE4 | 49 | 52 | 81 | 77 | 1.5 | 0.35 | 2.8 | 1.9 | 1.9 | 0.98 | | *22209EAKE4 | 52 | 54 | 78 | 75 | 1 | 0.25 | 3.9 | 2.7 | 2.6 | 0.55 | | *21309EAKE4 | 54 | 65 | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 0.96 | | *22309EAKE4 | 54 | 59 | 91 | 86 | 1.5 | 0.34 | 2.9 | 2.0 | 1.9 | 1.34 | | *22210EAKE4 | 57 | 60 | 83 | 81 | 1 | 0.24 | 4.3 | 2.9 | 2.8 | 0.61 | | *21310EAKE4 | 60 | 72 | 100 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 1.21 | | *22310EAKE4 | 60 | 64 | 100 | 93 | 2 | 0.35 | 2.8 | 1.9 | 1.9 | 1.78 | | *22211EAKE4 | 64 | 65 | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 0.81 | | *21311EAKE4 | 65 | 72 | 110 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 1.58 | | *22311EAKE4 | 65 | 73 | 110 | 103 | 2 | 0.34 | 2.9 | 2.0 | 1.9 | 2.3 | - The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. - The segmentations are: Light Loads (\leq 0.05 C_r); Normal Loads (0.05 to 0.10 C_r); and Heavy Loads (>0.10 C_r). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages B358 B359, and B366. ### Bore Diameter 60 - 85 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | Вс | oundary (
m | Dimensi
nm) | ons | (1 | Basic Load | • | gf} | Limiting
(mir | • | Bearing | | |----|----------------|----------------|------------------|------------|------------|------------------|----------|------------------|-------|------------------|--| | d | D | В | γ
min. | $C_{ m r}$ | C_{0r} | C_{r} | C_{0r} | Grease | Oil | Cylindrical Bore | | | 60 | 95 | 26 | 1.1 | 98 500 | 141 000 | 10 000 | 14 400 | 3 600 | 4 500 | 23012CE4 | | | | 110 | 28 | 1.5 | 178 000 | 174 000 | 18 100 | 17 800 | 4 800 | 6 000 | *22212EAE4 | | | | 130 | 31 | 2.1 | 238 000 | 244 000 | 24 200 | 24 900 | 3 800 | 4 800 | *21312EAE4 | | | | 130 | 46 | 2.1 | 340 000 | 340 000 | 34 500 | 35 000 | 3 600 | 4 500 | *22312EAE4 | | | 65 | 120 | 31 | 1.5 | 221 000 | 230 000 | 22 500 | 23 500 | 4 300 | 5 300 | *22213EAE4 | | | | 140 | 33 | 2.1 | 264 000 | 275 000 | 27 000 | 28 000 | 3 600 | 4 500 | *21313EAE4 | | | | 140 | 48 | 2.1 | 375 000 | 380 000 | 38 000 | 38 500 | 3 200 | 4 000 | *22313EAE4 | | | 70 | 125 | 31 | 1.5 | 225 000 | 232 000 | 22 900 | 23 600 | 4 000 | 5 300 | *22214EAE4 | | | | 150 | 35 | 2.1 | 310 000 | 325 000 | 32 000 | 33 500 | 3 200 | 4 000 | *21314EAE4 | | | | 150 | 51 | 2.1 | 425 000 | 435 000 | 43 500 | 44 000 | 3 000 | 3 800 | *22314EAE4 | | | 75 | 130 | 31 | 1.5 | 238 000 | 244 000 | 24 200 | 24 900 | 4 000 | 5 000 | *22215EAE4 | | | | 160 | 37 | 2.1 | 310 000 | 325 000 | 32 000 | 33 500 | 3 200 | 4 000 | *21315EAE4 | | | | 160 | 55 | 2.1 | 485 000 | 505 000 | 49 500 | 51 500 | 2 800 | 3 600 | *22315EAE4 | | | 80 | 140 | 33 | 2 | 264 000 | 275 000 | 27 000 | 28 000 | 3 600 | 4 500 | *22216EAE4 | | | | 170 | 39 | 2.1 | 355 000 | 375 000 | 36 000 | 38 000 | 3 000 | 3 800 | *21316EAE4 | | | | 170 | 58 | 2.1 | 540 000 | 565 000 | 55 000 | 58 000 | 2 600 | 3 400 | *22316EAE4 | | | 85 | 150 | 36 | 2 | 310 000 | 325 000 | 32 000 | 33 500 | 3 400 | 4 300 | *22217EAE4 | | | | 180 | 41 | 3 | 360 000 | 395 000 | 37 000 | 40 000 | 3 000 | 4 000 | *21317EAE4 | | | | 180 | 60 | 3 | 600 000 | 630 000 | 61 000 | 64 000 | 2 400 | 3 200 | *22317EAE4 | | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | <i>Y</i> ₂ | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | ı | Abutment | and Fillet Dia | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|----|-----------|------------------|-----------|-------------------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | d | a
max. | $_{ m max.}$ D | a
min. | ${\pmb{\gamma}}_a$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23012CKE4 | 67 | 68 | 88 | 85 | 1 | 0.26 | 3.9 | 2.6 | 2.5 | 0.68 | | *22212EAKE4 | 69 | 72 | 101 | 98 | 1.5 | 0.23 | 4.4 | 3.0 | 2.9 | 1.1 | | *21312EAKE4 | 72 | 87 | 118 | 117 | 2 | 0.22 | 4.5 | 3.0 | 3.0 | 1.98 | | *22312EAKE4 | 72 | 79 | 118 | 111 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 2.89 | | *22213EAKE4 | 74 | 80 | 111 | 107 | 1.5 | 0.24 | 4.2 | 2.8 | 2.7 | 1.51 | | *21313EAKE4 | 77 | 94 | 128 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.45 | | *22313EAKE4 | 77 | 84 | 128 | 119 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 3.52 | | *22214EAKE4 | 79 | 84 | 116 | 111 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 1.58 | | *21314EAKE4 | 82 | 101 | 138 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 3.0 | | *22314EAKE4 | 82 | 91 | 138 | 129 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 4.28 | | *22215EAKE4 | 84 | 87 | 121 | 117 | 1.5 | 0.22 | 4.5 | 3.0 | 3.0 | 1.64 | | *21315EAKE4 | 87 | 101 | 148 | 134 | 2 | 0.22 |
4.6 | 3.1 | 3.0 | 3.64 | | *22315EAKE4 | 87 | 97 | 148 | 137 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 5.26 | | *22216EAKE4 | 90 | 94 | 130 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.01 | | *21316EAKE4 | 92 | 109 | 158 | 146 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 4.32 | | *22316EAKE4 | 92 | 103 | 158 | 145 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 6.23 | | *22217EAKE4 | 95 | 101 | 140 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.54 | | *21317EAKE4 | 99 | 108 | 166 | 142 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | 5.2 | | *22317EAKE4 | 99 | 110 | 166 | 155 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 7.23 | - The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. - The segmentations are: Light Loads (\leq 0.05 C_r); Normal Loads (0.05 to 0.10 C_r); and Heavy Loads (>0.10 C_r). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages **B359 B361**, and **B366**. ### Bore Diameter 90 – 110 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | Вс | | Dimensio
nm) | ins | (| Basic Load I | v | gf} | Limiting
(mir | | Bearing | |-----|------------|-----------------|------------------|--------------------|--------------------|------------------|-------------------|------------------|----------------|------------------------| | d | D | B | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 90 | 160 | 40 | 2 | 360 000 | 395 000 | 37 000 | 40 000 | 3 200 | 4 000 | *22218EAE4 | | | 160 | 52.4 | 2 | 340 000 | 490 000 | 34 500 | 50 000 | 1 800 | 2 400 | 23218CE4 | | | 190 | 43 | 3 | 415 000 | 450 000 | 42 000 | 46 000 | 2 800 | 3 600 | *21318EAE4 | | | 190 | 64 | 3 | 665 000 | 705 000 | 68 000 | 72 000 | 2 400 | 3 000 | *22318EAE4 | | 95 | 170 | 43 | 2.1 | 415 000 | 450 000 | 42 000 | 46 000 | 3 000 | 3 800 | *22219EAE4 | | | 170 | 55.6 | 2.1 | 370 000 | 525 000 | 37 500 | 53 500 | 1 700 | 2 200 | 23219CAE4 | | | 200 | 45 | 3 | 345 000 | 435 000 | 35 000 | 44 500 | 1 500 | 2 000 | 21319CE4 | | | 200 | 67 | 3 | 735 000 | 780 000 | 75 000 | 79 500 | 2 200 | 2 800 | *22319EAE4 | | 100 | 150 | 37 | 1.5 | 212 000 | 335 000 | 21 600 | 34 500 | 2 200 | 2 800 | 23020CDE4 | | | 150 | 50 | 1.5 | 276 000 | 470 000 | 28 100 | 48 000 | 1 800 | 2 400 | 24020CE4 | | | 165 | 52 | 2 | 345 000 | 530 000 | 35 500 | 54 000 | 1 700 | 2 200 | 23120CE4 | | | 165 | 65 | 2 | 345 000 | 535 000 | 35 000 | 55 000 | 1 700 | 2 200 | 24120CAE4 | | | 180 | 46 | 2.1 | 455 000 | 490 000 | 46 500 | 50 000 | 2 800 | 3 600 | *22220EAE4 | | | 180 | 60.3 | 2.1 | 420 000 | 605 000 | 42 500 | 61 500 | 1 600 | 2 200 | 23220CE4 | | | 215
215 | 47
73 | 3 | 395 000
860 000 | 485 000
930 000 | 40 500
88 000 | 49 500
94 500 | 1 400
2 000 | 1 900
2 600 | 21320CE4
*22320EAE4 | | 110 | 170 | 45 | 2 | 293 000 | 465 000 | 29 900 | 47 500 | 2 000 | 2 400 | 23022CDE4 | | | 170 | 60 | 2 | 380 000 | 645 000 | 38 500 | 66 000 | 1 600 | 2 200 | 24022CE4 | | | 180 | 56 | 2 | 385 000 | 630 000 | 39 500 | 64 000 | 1 600 | 2 000 | 23122CE4 | | | 180 | 69 | 2 | 460 000 | 750 000 | 47 000 | 76 500 | 1 600 | 2 000 | 24122CE4 | | | 200 | 53 | 2.1 | 605 000 | 645 000 | 61 500 | 66 000 | 2 600 | 3 200 | *22222EAE4 | | | 200 | 69.8 | 2.1 | 515 000 | 760 000 | 52 500 | 77 500 | 1 500 | 1 900 | 23222CE4 | | | 240 | 50 | 3 | 450 000 | 545 000 | 46 000 | 55 500 | 1 300 | 1 700 | 21322CAE4 | | | 240 | 80 | 3 | 1030 000 | 1 120 000 | 105 000 | 115 000 | 1 900 | 2 400 | *22322EAE4 | **Note** (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | Å | Abutment a | | Constant | | xial Loa
Factors | | Mass
(kg) | | | |-----------------|--------------|------------|--------------|-----------|-------------------------|---------------------|-------|--------------|-------|---------| | Tapered Bore(1) | d_{i} min. | a
max. | $D_{ m max}$ | a
min. | ${\pmb{\gamma}}_a$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | *22218EAKE4 | 100 | 108 | 150 | 142 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 3.3 | | 23218CKE4 | 100 | 105 | 150 | 138 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 4.51 | | *21318EAKE4 | 104 | 115 | 176 | 152 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | 6.1 | | *22318EAKE4 | 104 | 115 | 176 | 163 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 8.56 | | *22219EAKE4 | 107 | 115 | 158 | 152 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 4.04 | | 23219CAKE4 | 107 | — | 158 | 146 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | 5.33 | | 21319CKE4 | 109 | 127 | 186 | 172 | 2.5 | 0.22 | 4.6 | 3.1 | 3.0 | 6.92 | | *22319EAKE4 | 109 | 121 | 186 | 172 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 9.91 | | 23020CDKE4 | 109 | 112 | 141 | 136 | 1.5 | 0.22 | 4.6 | 3.1 | 3.0 | 2.31 | | 24020CK30E4 | 109 | 110 | 141 | 132 | 1.5 | 0.30 | 3.4 | 2.3 | 2.2 | 3.08 | | 23120CKE4 | 110 | 113 | 155 | 144 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 4.38 | | 24120CAK30E4 | 110 | — | 155 | 143 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 5.42 | | *22220EAKE4 | 112 | 119 | 168 | 160 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 4.84 | | 23220CKE4 | 112 | 118 | 168 | 155 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 6.6 | | 21320CKE4 | 114 | 133 | 201 | 184 | 2.5 | 0.21 | 4.7 | 3.2 | 3.1 | 8.46 | | *22320EAKE4 | 114 | 130 | 201 | 184 | 2.5 | 0.33 | 3.0 | 2.0 | 2.0 | 12.7 | | 23022CDKE4 | 120 | 124 | 160 | 153 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 3.76 | | 24022CK30E4 | 120 | 121 | 160 | 148 | 2 | 0.32 | 3.1 | 2.1 | 2.1 | 4.96 | | 23122CKE4 | 120 | 127 | 170 | 158 | 2 | 0.28 | 3.5 | 2.4 | 2.3 | 5.7 | | 24122CK30E4 | 120 | 123 | 170 | 154 | 2 | 0.36 | 2.8 | 1.9 | 1.8 | 6.84 | | *22222EAKE4 | 122 | 129 | 188 | 178 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | 6.99 | | 23222CKE4 | 122 | 130 | 188 | 170 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 9.54 | | 21322CAKE4 | 124 | — | 226 | 206 | 2.5 | 0.22 | 4.6 | 3.1 | 3.0 | 11.2 | | *22322EAKE4 | 124 | 145 | 226 | 206 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 17.6 | - The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. - The segmentations are: Light Loads (\leq 0.05 C_r); Normal Loads (0.05 to 0.10 C_r); and Heavy Loads (>0.10 C_r). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages **B360 B361**, and **B366 B367**. ### Bore Diameter 120 - 150 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | В | | Dimensi | ons | | Basic Load | 0 | :gf} | Limiting
(mir | | Bearing | |-----|-----|---------|------------------|-------------|------------|-------------|-------------------|------------------|-------|------------------| | d | D | В | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 120 | 180 | 46 | 2 | 315 000 | 525 000 | 32 000 | 53 500 | 1 800 | 2 200 | 23024CDE4 | | | 180 | 60 | 2 | 395 000 | 705 000 | 40 500 | 72 000 | 1 500 | 2 000 | 24024CE4 | | | 200 | 62 | 2 | 465 000 | 720 000 | 47 500 | 73 500 | 1 400 | 1 800 | 23124CE4 | | | 200 | 80 | 2 | 575 000 | 950 000 | 58 500 | 96 500 | 1 400 | 1 800 | 24124CE4 | | | 215 | 58 | 2.1 | 685 000 | 765 000 | 70 000 | 78 000 | 2 400 | 3 000 | *22224EAE4 | | | 215 | 76 | 2.1 | 630 000 | 970 000 | 64 500 | 99 000 | 1 300 | 1 700 | 23224CE4 | | | 260 | 86 | 3 | 1190 000 | 1 320 000 | 122 000 | 134 000 | 1 700 | 2 200 | *22324EAE4 | | 130 | 200 | 52 | 2 | 400 000 | 655 000 | 40 500 | 67 000 | 1 700 | 2 000 | 23026CDE4 | | | 200 | 69 | 2 | 495 000 | 865 000 | 50 500 | 88 000 | 1 400 | 1 800 | 24026CE4 | | | 210 | 64 | 2 | 505 000 | 825 000 | 51 500 | 84 500 | 1 300 | 1 700 | 23126CE4 | | | 210 | 80 | 2 | 590 000 | 1 010 000 | 60 000 | 103 000 | 1 300 | 1 700 | 24126CE4 | | | 230 | 64 | 3 | 820 000 | 940 000 | 83 500 | 96 000 | 2 200 | 2 600 | *22226EAE4 | | | 230 | 80 | 3 | 700 000 | 1 080 000 | 71 500 | 110 000 | 1 200 | 1 600 | 23226CE4 | | | 280 | 93 | 4 | 995 000 | 1 350 000 | 101 000 | 137 000 | 1 300 | 1 600 | 22326CE4 | | 140 | 210 | 53 | 2 | 420 000 | 715 000 | 43 000 | 73 000 | 1 600 | 1 900 | 23028CDE4 | | | 210 | 69 | 2 | 525 000 | 945 000 | 53 500 | 96 500 | 1 300 | 1 700 | 24028CE4 | | | 225 | 68 | 2.1 | 580 000 | 945 000 | 59 000 | 96 500 | 1 200 | 1 600 | 23128CE4 | | | 225 | 85 | 2.1 | 670 000 | 1 160 000 | 68 500 | 118 000 | 1 200 | 1 600 | 24128CE4 | | | 250 | 68 | 3 | 645 000 | 930 000 | 65 500 | 95 000 | 1 400 | 1 700 | 22228CDE4 | | | 250 | 88 | 3 | 835 000 | 1 300 000 | 85 000 | 133 000 | 1 100 | 1 500 | 23228CE4 | | | 300 | 102 | 4 | 1 160 000 | 1 590 000 | 118 000 | 162 000 | 1 200 | 1 500 | 22328CE4 | | 150 | 225 | 56 | 2.1 | 470 000 | 815 000 | 48 000 | 83 000 | 1 400 | 1 800 | 23030CDE4 | | | 225 | 75 | 2.1 | 590 000 | 1 090 000 | 60 500 | 111 000 | 1 200 | 1 500 | 24030CE4 | | | 250 | 80 | 2.1 | 725 000 | 1 180 000 | 74 000 | 121 000 | 1 100 | 1 400 | 23130CE4 | | | 250 | 100 | 2.1 | 890 000 | 1 530 000 | 91 000 | 156 000 | 1 100 | 1 400 | 24130CE4 | | | 270 | 73 | 3 | 765 000 | 1 120 000 | 78 000 | 114 000 | 1 300 | 1 600 | 22230CDE4 | | | 270 | 96 | 3 | 975 000 | 1 560 000 | 99 500 | 159 000 | 1 100 | 1 400 | 23230CE4 | | | 320 | 108 | 4 | 1 220 000 | 1 690 000 | 125 000 | 172 000 | 1 100 | 1 400 | 22330CAE4 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | <i>Y</i> ₂ | ### Static Equivalent Load
$P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | , | Abutment | and Fillet Dir | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|--------|-----------|----------------|-----------|--------------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | d min. | a
max. | $D_{ m a}$ | a
min. | r a
max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23024CDKE4 | 130 | 134 | 170 | 163 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 4.11 | | 24024CK30E4 | 130 | 131 | 170 | 158 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 5.33 | | 23124CKE4 | 130 | 138 | 190 | 175 | 2 | 0.29 | 3.5 | 2.4 | 2.3 | 7.85 | | 24124CK30E4 | 130 | 136 | 190 | 171 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 10 | | *22224EAKE4 | 132 | 142 | 203 | 190 | 2 | 0.25 | 3.9 | 2.7 | 2.6 | 8.8 | | 23224CKE4 | 132 | 140 | 203 | 182 | 2 | 0.34 | 2.9 | 2.0 | 1.9 | 12.1 | | *22324EAKE4 | 134 | 157 | 246 | 222 | 2.5 | 0.32 | 3.1 | 2.1 | 2.0 | 22.2 | | 23026CDKE4 | 140 | 147 | 190 | 180 | 2 | 0.23 | 4.3 | 2.9 | 2.8 | 5.98 | | 24026CK30E4 | 140 | 143 | 190 | 175 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 7.84 | | 23126CKE4 | 140 | 149 | 200 | 184 | 2 | 0.28 | 3.6 | 2.4 | 2.4 | 8.69 | | 24126CK30E4 | 140 | 146 | 200 | 180 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 10.7 | | *22226EAKE4 | 144 | 152 | 216 | 204 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 11 | | 23226CKE4 | 144 | 150 | 216 | 196 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 14.3 | | 22326CKE4 | 148 | 166 | 262 | 236 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 28.1 | | 23028CDKE4 | 150 | 157 | 200 | 190 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 6.49 | | 24028CK30E4 | 150 | 154 | 200 | 186 | 2 | 0.29 | 3.4 | 2.3 | 2.2 | 8.37 | | 23128CKE4 | 152 | 158 | 213 | 198 | 2 | 0.28 | 3.6 | 2.4 | 2.3 | 10.5 | | 24128CK30E4 | 152 | 156 | 213 | 193 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 13 | | 22228CDKE4 | 154 | 167 | 236 | 219 | 2.5 | 0.25 | 4.0 | 2.7 | 2.6 | 14.5 | | 23228CKE4 | 154 | 163 | 236 | 213 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | 18.8 | | 22328CKE4 | 158 | 177 | 282 | 253 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 35.4 | | 23030CDKE4 | 162 | 168 | 213 | 203 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 7.9 | | 24030CK30E4 | 162 | 165 | 213 | 198 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 10.5 | | 23130CKE4 | 162 | 174 | 238 | 218 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 15.8 | | 24130CK30E4 | 162 | 169 | 238 | 212 | 2 | 0.38 | 2.6 | 1.8 | 1.7 | 19.8 | | 22230CDKE4 | 164 | 179 | 256 | 236 | 2.5 | 0.26 | 3.9 | 2.6 | 2.5 | 18.4 | | 23230CKE4 | 164 | 176 | 256 | 230 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | 24.2 | | 22330CAKE4 | 168 | — | 302 | 270 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 41.5 | - The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. - The segmentations are: Light Loads (\leq 0.05 C_r); Normal Loads (0.05 to 0.10 C_r); and Heavy Loads (>0.10 C_r). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages B361 B362, and B367 B368. ### Bore Diameter 160 - 190 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | В | | Dimensi | ions | , | Basic Load | • | | Limiting | | Bearing | |-----|----------|---------|------------------|-------------|------------|-------------|-----------------------|----------------|-------|------------------| | d | $D^{''}$ | В | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | gf} $C_{0\mathrm{r}}$ | (mii
Grease | Oil | Cylindrical Bore | | 160 | 220 | 45 | 2 | 360 000 | 675 000 | 37 000 | 69 000 | 1 400 | 1 800 | 23932CAE4 | | | 240 | 60 | 2.1 | 540 000 | 955 000 | 55 000 | 97 500 | 1 300 | 1 700 | 23032CDE4 | | | 240 | 80 | 2.1 | 680 000 | 1 260 000 | 69 000 | 128 000 | 1 100 | 1 400 | 24032CE4 | | | 270 | 86 | 2.1 | 855 000 | 1 400 000 | 87 000 | 143 000 | 1 000 | 1 300 | 23132CE4 | | | 270 | 109 | 2.1 | 1 040 000 | 1 760 000 | 106 000 | 179 000 | 1 000 | 1 300 | 24132CE4 | | | 290 | 80 | 3 | 910 000 | 1 320 000 | 93 000 | 135 000 | 1 200 | 1 500 | 22232CDE4 | | | 290 | 104 | 3 | 1 100 000 | 1 770 000 | 112 000 | 180 000 | 1 000 | 1 300 | 23232CE4 | | | 340 | 114 | 4 | 1 360 000 | 1 900 000 | 139 000 | 193 000 | 1 100 | 1 300 | 22332CAE4 | | 170 | 230 | 45 | 2 | 350 000 | 660 000 | 35 500 | 67 500 | 1 400 | 1 800 | 23934BCAE4 | | | 260 | 67 | 2.1 | 640 000 | 1 090 000 | 65 000 | 112 000 | 1 200 | 1 600 | 23034CDE4 | | | 260 | 90 | 2.1 | 825 000 | 1 520 000 | 84 000 | 155 000 | 1 000 | 1 300 | 24034CE4 | | | 280 | 88 | 2.1 | 940 000 | 1 570 000 | 96 000 | 160 000 | 1 000 | 1 300 | 23134CE4 | | | 280 | 109 | 2.1 | 1 080 000 | 1 860 000 | 110 000 | 190 000 | 1 000 | 1 300 | 24134CE4 | | | 310 | 86 | 4 | 990 000 | 1 500 000 | 101 000 | 153 000 | 1 100 | 1 400 | 22234CDE4 | | | 310 | 110 | 4 | 1 200 000 | 1 910 000 | 122 000 | 195 000 | 900 | 1 200 | 23234CE4 | | | 360 | 120 | 4 | 1 580 000 | 2 110 000 | 161 000 | 215 000 | 1 000 | 1 200 | 22334CAE4 | | 180 | 250 | 52 | 2 | 470 000 | 890 000 | 48 000 | 90 500 | 1 200 | 1 600 | 23936CAE4 | | | 280 | 74 | 2.1 | 750 000 | 1 270 000 | 76 000 | 129 000 | 1 200 | 1 400 | 23036CDE4 | | | 280 | 100 | 2.1 | 965 000 | 1 750 000 | 98 500 | 178 000 | 950 | 1 200 | 24036CE4 | | | 300 | 96 | 3 | 1 050 000 | 1 760 000 | 108 000 | 180 000 | 900 | 1 200 | 23136CE4 | | | 300 | 118 | 3 | 1 190 000 | 2 040 000 | 121 000 | 208 000 | 900 | 1 200 | 24136CE4 | | | 320 | 86 | 4 | 1 020 000 | 1 540 000 | 104 000 | 157 000 | 1 100 | 1 300 | 22236CDE4 | | | 320 | 112 | 4 | 1 300 000 | 2 110 000 | 133 000 | 215 000 | 850 | 1 100 | 23236CE4 | | | 380 | 126 | 4 | 1 740 000 | 2 340 000 | 177 000 | 238 000 | 950 | 1 200 | 22336CAE4 | | 190 | 260 | 52 | 2 | 460 000 | 875 000 | 47 000 | 89 500 | 1 200 | 1 500 | 23938CAE4 | | | 290 | 75 | 2.1 | 775 000 | 1 350 000 | 79 000 | 138 000 | 1 100 | 1 400 | 23038CAE4 | | | 290 | 100 | 2.1 | 975 000 | 1 840 000 | 99 500 | 188 000 | 900 | 1 200 | 24038CE4 | | | 320 | 104 | 3 | 1 190 000 | 2 020 000 | 121 000 | 206 000 | 850 | 1 100 | 23138CE4 | | | 320 | 128 | 3 | 1 370 000 | 2 330 000 | 140 000 | 238 000 | 850 | 1 100 | 24138CE4 | | | 340 | 92 | 4 | 1 140 000 | 1 730 000 | 116 000 | 176 000 | 1 000 | 1 200 | 22238CAE4 | | | 340 | 120 | 4 | 1 440 000 | 2 350 000 | 147 000 | 240 000 | 800 | 1 100 | 23238CE4 | | | 400 | 132 | 5 | 1 890 000 | 2 590 000 | 193 000 | 264 000 | 900 | 1 100 | 22338CAE4 | ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | ı | Abutment | and Fillet Dir | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |---|-------------------|------------|-------------------|-------------------|-------------------------------|----------------------|-------------------|---------------------|-------------------|----------------------| | Tapered Bore(1) | d min. | a
max. | $D_{ m max}$ | a
min. | γ _a
max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23932CAKE4 | 170 | — | 210 | 203 | 2 | 0.18 | 5.6 | 3.8 | 3.7 | 4.97 | | 23032CDKE4 | 172 | 179 | 228 | 216 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 9.66 | | 24032CK30E4 | 172 | 177 | 228 | 212 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 12.7 | | 23132CKE4 | 172 | 185 | 258 | 234 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 20.3 | | 24132CK30E4 | 172 | 179 | 258 | 229 | 2 | 0.39 | 2.6 | 1.7 | 1.7 | 25.4 | | 22232CDKE4 | 174 | 190 | 276 | 255 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 23.1 | | 23232CKE4 | 174 | 189 | 276 | 245 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 30.5 | | 22332CAKE4 | 178 | — | 322 | 287 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 49.3 | | 23934BCAKE4 | 180 | — | 220 | 213 | 2 | 0.17 | 5.8 | 3.9 | 3.8 | 5.38 | | 23034CDKE4 | 182 | 191 | 248 | 233 | 2 | 0.23 | 4.3 | 2.9 | 2.8 | 13 | | 24034CK30E4 | 182 | 188 | 248 | 228 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 17.3 | | 23134CKE4 | 182 | 194 | 268 | 245 | 2 | 0.29 | 3.5 | 2.3 | 2.3 | 21.8 | | 24134CK30E4 | 182 | 190 | 268 | 239 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 26.6 | | 22234CDKE4 | 188 | 206 | 292 | 270 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 28.8 | | 23234CKE4 | 188 | 201 | 292 | 261 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 36.4 | | 22334CAKE4 | 188 | | 342 | 304 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 57.9 | | 23936CAKE4
23036CDKE4
24036CK30E4 | 190
192
192 | 202
200 | 240
268
268 | 230
249
245 | 2
2
2 | 0.18
0.24
0.32 | 5.5
4.2
3.1 | 3.7
2.8
2.1 | 3.6
2.8
2.0 | 7.64
17.1
22.7 | | 23136CKE4 | 194 | 206 | 286 | 260 | 2.5 | 0.30 | 3.4 | 2.3 | 2.2 | 27.5 | | 24136CK30E4 | 194 | 202 | 286 | 255 | 2.5 | 0.37 | 2.7 | 1.8 | 1.8 | 33.1 | | 22236CDKE4 | 198 | 212 | 302 | 278 | 3 | 0.26 | 3.9 | 2.6 | 2.6 | 30.2 | | 23236CKE4 | 198 | 211 | 302 | 274 | 3 | 0.33 | 3.0 | 2.0 | 2.0 | 38.9 | | 22336CAKE4 | 198 | | 362 | 322 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 67 | | 23938CAKE4
23038CAKE4
24038CK30E4 | 200
202
202 |
210 | 250
278
278 | 240
261
253 | 2
2
2 | 0.18
0.24
0.31 | 5.7
4.2
3.2 | 3.8
2.8
2.2 | 3.7
2.8
2.1 | 8.03
17.6
24 | | 23138CKE4 | 204 | 219 | 306 | 276 | 2.5 | 0.31 | 3.3 | 2.2 | 2.2 | 34.5 | | 24138CK30E4 | 204 | 211 | 306 | 269 | 2.5 | 0.40 | 2.5 | 1.7 | 1.6 | 41.5 | | 22238CAKE4 | 208 | — | 322 | 296 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 35.5 | | 23238CKE4 | 208 | 222 | 322 | 288 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 47.6 | | 22338CAKE4 | 212 | — | 378 | 338 | 4 | 0.34 | 2.9 | 2.0 | 1.9 | 77.6 | **Remarks** For the dimensions of adapters and withdrawal sleeves, refer to Pages **B362** and **B368**. ### Bore Diameter 200 - 260 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | Во | | Dimensi
nm) | ons | (1 | Basic Load | • | gf} |
Limiting
(mir | | Bearing | |-----|-----|----------------|------------------|-------------|-------------------|-------------|----------|------------------|-------|------------------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | Grease | Oil | Cylindrical Bore | | 200 | 280 | 60 | 2.1 | 570 000 | 1 060 000 | 58 000 | 108 000 | 1 100 | 1 400 | 23940CAE4 | | | 310 | 82 | 2.1 | 940 000 | 1 700 000 | 96 000 | 174 000 | 1 000 | 1 300 | 23040CAE4 | | | 310 | 109 | 2.1 | 1 140 000 | 2 120 000 | 116 000 | 216 000 | 850 | 1 100 | 24040CE4 | | | 340 | 112 | 3 | 1 360 000 | 2 330 000 | 139 000 | 238 000 | 800 | 1 000 | 23140CE4 | | | 340 | 140 | 3 | 1 570 000 | 2 670 000 | 160 000 | 272 000 | 800 | 1 000 | 24140CE4 | | | 360 | 98 | 4 | 1 300 000 | 2 010 000 | 133 000 | 204 000 | 950 | 1 200 | 22240CAE4 | | | 360 | 128 | 4 | 1 660 000 | 2 750 000 | 169 000 | 281 000 | 750 | 1 000 | 23240CE4 | | | 420 | 138 | 5 | 2 000 000 | 2 990 000 | 204 000 | 305 000 | 850 | 1 000 | 22340CAE4 | | 220 | 300 | 60 | 2.1 | 625 000 | 1 240 000 | 64 000 | 126 000 | 1 000 | 1 300 | 23944CAE4 | | | 340 | 90 | 3 | 1 090 000 | 1 980 000 | 111 000 | 202 000 | 950 | 1 200 | 23044CAE4 | | | 340 | 118 | 3 | 1 360 000 | 2 600 000 | 138 000 | 265 000 | 750 | 1 000 | 24044CE4 | | | 370 | 120 | 4 | 1 570 000 | 2 710 000 | 160 000 | 276 000 | 710 | 950 | 23144CE4 | | | 370 | 150 | 4 | 1 800 000 | 3 200 000 | 183 000 | 325 000 | 710 | 950 | 24144CE4 | | | 400 | 108 | 4 | 1 570 000 | 2 430 000 | 160 000 | 247 000 | 850 | 1 000 | 22244CAE4 | | | 400 | 144 | 4 | 2 020 000 | 3 400 000 | 206 000 | 350 000 | 670 | 900 | 23244CE4 | | | 460 | 145 | 5 | 2 350 000 | 3 400 000 | 240 000 | 345 000 | 750 | 950 | 22344CAE4 | | 240 | 320 | 60 | 2.1 | 635 000 | 1 300 000 | 65 000 | 133 000 | 950 | 1 200 | 23948CAE4 | | | 360 | 92 | 3 | 1 160 000 | 2 140 000 | 118 000 | 218 000 | 850 | 1 100 | 23048CAE4 | | | 360 | 118 | 3 | 1 390 000 | 2 730 000 | 141 000 | 278 000 | 710 | 950 | 24048CE4 | | | 400 | 128 | 4 | 1 790 000 | 3 100 000 | 182 000 | 320 000 | 670 | 850 | 23148CE4 | | | 400 | 160 | 4 | 2 130 000 | 3 800 000 | 217 000 | 385 000 | 670 | 850 | 24148CE4 | | | 440 | 120 | 4 | 1 870 000 | 2 890 000 | 191 000 | 294 000 | 750 | 950 | 22248CAE4 | | | 440 | 160 | 4 | 2 440 000 | 4 050 000 | 249 000 | 415 000 | 630 | 800 | 23248CAE4 | | | 500 | 155 | 5 | 2 600 000 | 3 800 000 | 265 000 | 385 000 | 670 | 850 | 22348CAE4 | | 260 | 360 | 75 | 2.1 | 930 000 | 1 870 000 | 95 000 | 191 000 | 850 | 1 000 | 23952CAE4 | | | 400 | 104 | 4 | 1 430 000 | 2 580 000 | 145 000 | 263 000 | 800 | 950 | 23052CAE4 | | | 400 | 140 | 4 | 1 810 000 | 3 500 000 | 185 000 | 360 000 | 630 | 850 | 24052CAE4 | | | 440 | 144 | 4 | 2 160 000 | 3 750 000 | 221 000 | 385 000 | 600 | 800 | 23152CAE4 | | | 440 | 180 | 4 | 2 560 000 | 4 700 000 | 261 000 | 480 000 | 600 | 800 | 24152CAE4 | | | 480 | 130 | 5 | 2 180 000 | 3 400 000 | 222 000 | 345 000 | 670 | 850 | 22252CAE4 | | | 480 | 174 | 5 | 2 740 000 | 4 550 000 | 279 000 | 460 000 | 560 | 750 | 23252CAE4 | | | 540 | 165 | 6 | 3 100 000 | 4 600 000 | 320 000 | 470 000 | 630 | 800 | 22352CAE4 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | |---------------|------------|---------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Numbers | , | Abutment | and Fillet Dir
(mm) | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |---|-------------------|-----------|------------------------|-------------------|---------------------------|----------------------|-------------------|---------------------|-------------------|----------------------| | Tapered Bore(1) | d min. | a
max. | \mathcal{D} max. | a
min. | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23940CAKE4 | 212 | | 268 | 258 | 2 | 0.20 | 5.1 | 3.4 | 3.3 | 11 | | 23040CAKE4 | 212 | | 298 | 279 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | 22.6 | | 24040CK30E4 | 212 | 223 | 298 | 271 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | 30.4 | | 23140CKE4 | 214 | 232 | 326 | 293 | 2.5 | 0.31 | 3.2 | 2.2 | 2.1 | 42.7 | | 24140CK30E4 | 214 | 226 | 326 | 290 | 2.5 | 0.39 | 2.6 | 1.8 | 1.7 | 51.3 | | 22240CAKE4 | 218 | — | 342 | 315 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 42.6 | | 23240CKE4 | 218 | 237 | 342 | 307 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 57.1 | | 22340CAKE4 | 222 | | 398 | 352 | 4 | 0.34 | 2.9 | 2.0 | 1.9 | 92.6 | | 23944CAKE4
23044CAKE4
24044CK30E4 | 232
234
234 |
244 | 288
326
326 | 278
302
296 | 2
2.5
2.5 | 0.18
0.24
0.31 | 5.7
4.1
3.2 | 3.8
2.8
2.1 | 3.7
2.7
2.1 | 12.2
29.7
40.5 | | 23144CKE4 | 238 | 254 | 352 | 320 | 3 | 0.30 | 3.3 | 2.2 | 2.2 | 53 | | 24144CK30E4 | 238 | 248 | 352 | 313 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | 66.7 | | 22244CAKE4 | 238 | — | 382 | 348 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | 59 | | 23244CKE4 | 238 | 260 | 382 | 337 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 80.4 | | 22344CAKE4 | 242 | — | 438 | 391 | 4 | 0.33 | 3.0 | 2.0 | 2.0 | 116 | | 23948CAKE4
23048CAKE4
24048CK30E4 | 252
254
254 |
265 | 308
346
346 | 298
324
317 | 2
2.5
2.5 | 0.17
0.24
0.29 | 6.0
4.2
3.4 | 4.0
2.8
2.3 | 3.9
2.7
2.2 | 13.3
32.6
43.4 | | 23148CKE4 | 258 | 275 | 382 | 347 | 3 | 0.30 | 3.3 | 2.2 | 2.2 | 66.9 | | 24148CK30E4 | 258 | 268 | 382 | 341 | 3 | 0.38 | 2.7 | 1.8 | 1.8 | 79.5 | | 22248CAKE4 | 258 | — | 422 | 383 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | 80.2 | | 23248CAKE4 | 258 | _ | 422 | 372 | 3 | 0.37 | 2.7 | 1.8 | 1.8 | 106 | | 22348CAKE4 | 262 | | 478 | 423 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 147 | | 23952CAKE4 | 272 | _ | 348 | 333 | 2 | 0.19 | 5.4 | 3.6 | 3.5 | 23 | | 23052CAKE4 | 278 | | 382 | 356 | 3 | 0.25 | 4.1 | 2.7 | 2.7 | 46.6 | | 24052CAK30E4 | 278 | | 382 | 348 | 3 | 0.32 | 3.1 | 2.1 | 2.1 | 62.6 | | 23152CAKE4 | 278 | _ | 422 | 380 | 3 | 0.32 | 3.2 | 2.1 | 2.1 | 88.2 | | 24152CAK30E4 | 278 | | 422 | 371 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | 109 | | 22252CAKE4 | 282 | | 458 | 418 | 4 | 0.27 | 3.7 | 2.5 | 2.5 | 104 | | 23252CAKE4 | 282 | _ | 458 | 406 | 4 | 0.37 | 2.7 | 1.8 | 1.8 | 137 | | 22352CAKE4 | 288 | | 512 | 462 | 5 | 0.32 | 3.2 | 2.1 | 2.1 | 180 | **Remarks** For the dimensions of adapters and withdrawal sleeves, refer to Pages **B363** and **B369**. B 194 B 195 ### Bore Diameter 280 - 340 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | Во | oundary
(r | Dimensi
nm) | ions | (1 | Basic Load | • | gf} | Limiting (| | Bearing | |-----|---------------|----------------|------------------|------------------|-------------------|------------|----------|------------|-----|------------------| | d | D | В | γ
min. | C_{r} | $C_{0\mathrm{r}}$ | $C_{ m r}$ | C_{0r} | Grease | Oil | Cylindrical Bore | | 280 | 380 | 75 | 2.1 | 925 000 | 1 950 000 | 94 500 | 199 000 | 800 | 950 | 23956CAE4 | | | 420 | 106 | 4 | 1 540 000 | 2 950 000 | 157 000 | 300 000 | 710 | 900 | 23056CAE4 | | | 420 | 140 | 4 | 1 880 000 | 3 800 000 | 191 000 | 385 000 | 600 | 800 | 24056CAE4 | | | 460 | 146 | 5 | 2 230 000 | 4 000 000 | 228 000 | 410 000 | 560 | 750 | 23156CAE4 | | | 460 | 180 | 5 | 2 640 000 | 5 000 000 | 269 000 | 505 000 | 560 | 750 | 24156CAE4 | | | 500 | 130 | 5 | 2 280 000 | 3 650 000 | 233 000 | 370 000 | 630 | 800 | 22256CAE4 | | | 500 | 176 | 5 | 2 880 000 | 4 900 000 | 294 000 | 500 000 | 530 | 670 | 23256CAE4 | | | 580 | 175 | 6 | 3 500 000 | 5 150 000 | 355 000 | 525 000 | 560 | 710 | 22356CAE4 | | 300 | 420 | 90 | 3 | 1 230 000 | 2 490 000 | 125 000 | 254 000 | 710 | 900 | 23960CAE4 | | | 460 | 118 | 4 | 1 920 000 | 3 700 000 | 196 000 | 375 000 | 670 | 850 | 23060CAE4 | | | 460 | 160 | 4 | 2 310 000 | 4 600 000 | 235 000 | 470 000 | 530 | 710 | 24060CAE4 | | | 500 | 160 | 5 | 2 670 000 | 4 800 000 | 273 000 | 490 000 | 500 | 670 | 23160CAE4 | | | 500 | 200 | 5 | 3 100 000 | 5 800 000 | 315 000 | 595 000 | 500 | 670 | 24160CAE4 | | | 540 | 140 | 5 | 2 610 000 | 4 250 000 | 266 000 | 430 000 | 600 | 750 | 22260CAE4 | | | 540 | 192 | 5 | 3 400 000 | 5 900 000 | 350 000 | 600 000 | 480 | 630 | 23260CAE4 | | 320 | 440 | 90 | 3 | 1 300 000 | 2 750 000 | 132 000 | 281 000 | 670 | 850 | 23964CAE4 | | | 480 | 121 | 4 | 1 960 000 | 3 850 000 | 200 000 | 395 000 | 630 | 800 | 23064CAE4 | | | 480 | 160 | 4 | 2 440 000 | 5 050 000 | 249 000 | 515 000 | 500 | 670 | 24064CAE4 | | | 540 | 176 | 5 | 3 050 000 | 5 500 000 | 315 000 | 560 000 | 480 | 600 | 23164CAE4 | | | 540 | 218 | 5 | 3 550 000 | 6 650 000 | 360 000 | 675 000 | 480 | 600 | 24164CAE4 | | | 580 | 150 | 5 | 2 990 000 | 4 850 000 | 305 000 | 495 000 | 530 | 670 | 22264CAE4 | | | 580 | 208 | 5 | 3 900 000 | 6 900 000 | 395 000 | 700 000 | 450 | 600 | 23264CAE4 | | 340 | 460 | 90 | 3 | 1 330 000 | 2 840 000 | 136 000 | 289 000 | 630 | 800 | 23968CAE4 | | | 520 | 133 | 5 | 2 280 000 | 4 400 000 | 232 000 | 445 000 | 560 | 710 | 23068CAE4 | | | 520 | 180 | 5 | 2 920 000 | 6 050 000 | 298 000 | 615 000 | 480 | 600 | 24068CAE4 | | | 580 | 190 | 5 | 3 600 000 | 6 600 000 | 370 000 | 670 000 | 430 | 560 | 23168CAE4 | | | 580 | 243 | 5 | 4 250 000 | 7 900 000 | 430 000 | 810 000 | 430 | 560 | 24168CAE4 | | | 620 | 224 | 6 | 4 400 000 | 7 800 000 | 450 000 | 795 000 | 400 | 530 | 23268CAE4 | **Note** (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | |---------------|------------|---------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$,
Y_3 , and Y_0 are given in the table below. | Numbers | Abutme | nt and Fille
(mm | | ons | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|-----------------|---------------------|------------------------|--------------------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ min. | \mathcal{D} max. |) _a
min. | ${m \gamma}_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23956CAKE4 | 292 | 368 | 351 | 2 | 0.18 | 5.7 | 3.9 | 3.8 | 24.5 | | 23056CAKE4 | 298 | 402 | 377 | 3 | 0.24 | 4.2 | 2.8 | 2.7 | 50.5 | | 24056CAK30E4 | 298 | 402 | 369 | 3 | 0.31 | 3.3 | 2.2 | 2.2 | 66.4 | | 23156CAKE4 | 302 | 438 | 400 | 4 | 0.30 | 3.3 | 2.2 | 2.2 | 94.3 | | 24156CAK30E4 | 302 | 438 | 392 | 4 | 0.37 | 2.7 | 1.8 | 1.8 | 115 | | 22256CAKE4 | 302 | 478 | 439 | 4 | 0.25 | 4.0 | 2.7 | 2.6 | 110 | | 23256CAKE4 | 302 | 478 | 425 | 4 | 0.35 | 2.9 | 1.9 | 1.9 | 147 | | 22356CAKE4 | 308 | 552 | 496 | 5 | 0.31 | 3.2 | 2.1 | 2.1 | 221 | | 23960CAKE4 | 314 | 406 | 386 | 2.5 | 0.19 | 5.2 | 3.5 | 3.4 | 38.2 | | 23060CAKE4 | 318 | 442 | 413 | 3 | 0.24 | 4.2 | 2.8 | 2.7 | 70.5 | | 24060CAK30E4 | 318 | 442 | 400 | 3 | 0.32 | 3.1 | 2.1 | 2.0 | 93.6 | | 23160CAKE4 | 322 | 478 | 433 | 4 | 0.31 | 3.3 | 2.2 | 2.2 | 125 | | 24160CAK30E4 | 322 | 478 | 423 | | 0.38 | 2.6 | 1.8 | 1.7 | 152 | | 22260CAKE4 | 322 | 518 | 473 | 4 | 0.25 | 4.0 | 2.7 | 2.6 | 139 | | 23260CAKE4 | 322 | 518 | 458 | | 0.35 | 2.9 | 1.9 | 1.9 | 189 | | 23964CAKE4 | 334 | 426 | 406 | 2.5 | 0.18 | 5.5 | 3.7 | 3.6 | 40.6 | | 23064CAKE4 | 338 | 462 | 432 | 3 | 0.24 | 4.2 | 2.8 | 2.8 | 75.6 | | 24064CAK30E4 | 338 | 462 | 422 | 3 | 0.31 | 3.3 | 2.2 | 2.2 | 99.7 | | 23164CAKE4 | 342 | 518 | 466 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 162 | | 24164CAK30E4 | 342 | 518 | 456 | | 0.39 | 2.6 | 1.7 | 1.7 | 196 | | 22264CAKE4 | 342 | 558 | 508 | 4 4 | 0.26 | 3.9 | 2.6 | 2.6 | 174 | | 23264CAKE4 | 342 | 558 | 488 | | 0.36 | 2.8 | 1.9 | 1.8 | 239 | | 23968CAKE4 | 354 | 446 | 427 | 2.5 | 0.18 | 5.7 | 3.8 | 3.7 | 42.4 | | 23068CAKE4 | 362 | 498 | 465 | 4 | 0.24 | 4.2 | 2.8 | 2.8 | 101 | | 24068CAK30E4 | 362 | 498 | 454 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 135 | | 23168CAKE4 | 362 | 558 | 499 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 206 | | 24168CAK30E4 | 362 | 558 | 489 | 4 | 0.40 | 2.5 | 1.7 | 1.7 | 257 | | 23268CAKE4 | 368 | 592 | 521 | 5 | 0.36 | 2.8 | 1.9 | 1.8 | 295 | **Remarks** For the dimensions of adapters and withdrawal sleeves, refer to Pages **B363** – **B364**, and **B369** – **B370**. B 196 B 197 ### Bore Diameter 360 - 440 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | Во | | Dimensi | ons | (1 | Basic Load | Ü | gf} | Limiting S | | Bearing | |-----|-------------------|-------------------|------------------|------------|--|-----------------------------------|-----------|-------------------|-------------------|-------------------------------------| | d | D | В | γ
min. | $C_{ m r}$ | C_{0r} | $C_{ m r}$ | C_{0r} | Grease | Oil | Cylindrical Bore | | 360 | 480 | 90 | 3 | 1 390 000 | 3 050 000 | 142 000 | 315 000 | 600 | 750 | 23972CAE4 | | | 540 | 134 | 5 | 2 390 000 | 4 700 000 | 244 000 | 480 000 | 530 | 670 | 23072CAE4 | | | 540 | 180 | 5 | 2 930 000 | 6 100 000 | 299 000 | 625 000 | 450 | 600 | 24072CAE4 | | | 600 | 192 | 5 | 3 800 000 | 7 100 000 | 390 000 | 725 000 | 400 | 530 | 23172CAE4 | | | 600 | 243 | 5 | 4 200 000 | 8 000 000 | 430 000 | 815 000 | 400 | 530 | 24172CAE4 | | | 650 | 232 | 6 | 4 800 000 | 8 550 000 | 490 000 | 870 000 | 380 | 500 | 23272CAE4 | | 380 | 520 | 106 | 4 | 1 870 000 | 4 100 000 | 190 000 | 420 000 | 530 | 670 | 23976CAE4 | | | 560 | 135 | 5 | 2 500 000 | 5 100 000 | 255 000 | 520 000 | 530 | 630 | 23076CAE4 | | | 560 | 180 | 5 | 3 050 000 | 6 600 000 | 315 000 | 670 000 | 430 | 560 | 24076CAE4 | | | 620 | 194 | 5 | 4 000 000 | 7 600 000 | 405 000 | 775 000 | 400 | 500 | 23176CAE4 | | | 620 | 243 | 5 | 4 350 000 | 8 450 000 | 440 000 | 865 000 | 400 | 500 | 24176CAE4 | | | 680 | 240 | 6 | 5 150 000 | 9 200 000 | 525 000 | 940 000 | 360 | 480 | 23276CAE4 | | 400 | 540 | 106 | 4 | 1 890 000 | 4 250 000 | 193 000 | 435 000 | 530 | 630 | 23980CAE4 | | | 600 | 148 | 5 | 2 970 000 | 5 900 000 | 305 000 | 605 000 | 480 | 600 | 23080CAE4 | | | 600 | 200 | 5 | 3 600 000 | 7 600 000 | 370 000 | 775 000 | 400 | 500 | 24080CAE4 | | | 650
650
720 | 200
250
256 | 6
6 | | 7 900 000
10 100 000
10 400 000 | 420 000
505 000
590 000 | | 380
380
340 | 480
480
450 | 23180CAE4
24180CAE4
23280CAE4 | | 420 | 560 | 106 | 4 | 1 870 000 | 4 250 000 | 191 000 | 430 000 | 500 | 600 | 23984CAE4 | | | 620 | 150 | 5 | 2 910 000 | 5 850 000 | 297 000 | 595 000 | 450 | 560 | 23084CAE4 | | | 620 | 200 | 5 | 3 750 000 | 8 100 000 | 380 000 | 825 000 | 380 | 480 | 24084CAE4 | | | 700
700
760 | 224
280
272 | 6
6
7.5 | | 9 400 000
12 000 000
11 700 000 | 510 000
610 000
660 000 | | 340
340
320 | 450
450
430 | 23184CAE4
24184CAE4
23284CAE4 | | 440 | 600 | 118 | 4 | 2 190 000 | 4 800 000 | 223 000 | 490 000 | 450 | 560 | 23988CAE4 | | | 650 | 157 | 6 | 3 150 000 | 6 350 000 | 320 000 | 645 000 | 430 | 530 | 23088CAE4 | | | 650 | 212 | 6 | 4 150 000 | 9 100 000 | 425 000 | 930 000 | 360 | 450 | 24088CAE4 | | | 720
720
790 | 226
280
280 | 6
6
7.5 | 6 000 000 | 10 300 000
12 100 000
12 800 000 | 540 000 7
610 000 7
705 000 | 1 230 000 | 320
320
300 | 430
430
400 | 23188CAE4
24188CAE4
23288CAE4 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | | | |---------------|------------|---------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | Y_2 | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Numbers | Abutment and Fillet Dimensions (mm) | | | | | | xial Loa
Factors | | Mass
(kg) | |-----------------|-------------------------------------|--------|------------------------|--------------------|------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ min. | L max. |) _a
min. | r a
max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23972CAKE4 | 374 | 466 | 447 | 2.5 | 0.17 | 6.0 | 4.1 | 4.0 | 44.7 | | 23072CAKE4 | 382 | 518 | 485 | 4 | 0.24 | 4.2 | 2.8 | 2.8 | 106 | | 24072CAK30E4 | 382 | 518 | 476 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 139 | | 23172CAKE4 | 382 | 578 | 520 | 4 | 0.31 | 3.2 | 2.2 | 2.1 | 217 | | 24172CAK30E4 | 382 | 578 | 507 | 4 | 0.40 | 2.5 | 1.7 | 1.7 | 264 | | 23272CAKE4 | 388 | 622 | 549 | 5 | 0.36 | 2.8 | 1.9 | 1.8 | 342 | | 23976CAKE4 | 398 | 502 | 482 | 3 | 0.18 | 5.5 | 3.7 | 3.6 | 65.4 | | 23076CAKE4 | 402 | 538 | 506 | 4 | 0.22 | 4.5 | 3.0 | 3.0 | 113 | | 24076CAK30E4 | 402 | 538 | 496 | 4 | 0.29 | 3.4 | 2.3 | 2.3 | 148 | | 23176CAKE4 | 402 | 598 | 540 | 4 | 0.30 | 3.3 | 2.2 | 2.2 | 229 | | 24176CAK30E4 | 402 | 598 | 529 | 4 | 0.38 | 2.6 | 1.8 | 1.7 | 275 | | 23276CAKE4 | 408 | 652 | 578 | 5 | 0.35 | 2.9 | 1.9 | 1.9 | 372 | | 23980CAKE4 | 418 | 522 | 501 | 3 | 0.18 | 5.7 | 3.9 | 3.8 | 69.1 | | 23080CAKE4 | 422 | 578 | 540 | 4 | 0.23 | 4.4 | 3.0 | 2.9 | 146 | | 24080CAK30E4 | 422 | 578 | 527 | 4 | 0.31 | 3.3 | 2.2 | 2.2 | 193 | | 23180CAKE4 | 428 | 622 | 569 | 5 | 0.29 | 3.4 | 2.3 | 2.3 | 257 | | 24180CAK30E4 | 428 | 622 | 551 | 5 | 0.37 | 2.7 | 1.8 | 1.8 | 316 | | 23280CAKE4 | 428 | 692 | 610 | 5 | 0.36 | 2.8 | 1.9 | 1.9 | 449 | | 23984CAKE4 | 438 | 542 | 521 | 3 | 0.17 | 6.0 | 4.0 | 3.9 | 71.6 | | 23084CAKE4 | 442 | 598 | 562 | 4 | 0.23 | 4.3 | 2.9 | 2.8 | 151 | | 24084CAK30E4 | 442 | 598 | 549 | 4 | 0.31 | 3.2 | 2.2 | 2.1 | 199 | | 23184CAKE4 | 448 | 672 | 607 | 5 | 0.31 | 3.3 | 2.2 | 2.2 | 341 | | 24184CAK30E4 | 448 | 672 | 598 | 5 | 0.38 | 2.6 | 1.8 | 1.7 | 421 | | 23284CAKE4 | 456 | 724 | 644 | 6 | 0.35 | 2.9 | 1.9 | 1.9 | 534 | | 23988CAKE4 | 458 | 582 | 555 | 3 | 0.18 | 5.7 | 3.9 | 3.8 | 96.3 | | 23088CAKE4 | 468 | 622 | 587 | 5 | 0.23 | 4.3 | 2.9 | 2.8 | 173 | | 24088CAK30E4 | 468 | 622 | 576 | 5 | 0.31 | 3.2 | 2.1 | 2.1 | 237 | | 23188CAKE4 | 468 | 692 | 627 | 5 | 0.3 | 3.3 | 2.2 | 2.2 | 360 | | 24188CAK30E4 | 468 | 692 | 617 | 5 | 0.37 | 2.7 | 1.8 | 1.8 | 433 | | 23288CAKE4 | 476 | 754 | 669 | 6 | 0.35 | 2.9 | 1.9 | 1.9 | 594 | Remarks For the dimensions of adapters and withdrawal sleeves, refer to Pages B364, and B370 – B371. ### Bore Diameter 460 - 560 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | E | Boundary
(r | Dimens
nm) | ions | (| Basic Load | • | kgf} | Limiting S | • | Bearing | |-----|----------------|---------------|------------------|-------------|-------------------|------------------|-----------|------------|-----|------------------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | Grease | Oil | Cylindrical Bore | | 460 | 620 | 118 | 4 | 2 220 000 | 4 950 000 | 227 000 | 505 000 | 430 | 530 | 23992CAE4 | | | 680 | 163 | 6 | 3 450 000 | 7 100 000 | 355 000 | 725 000 | 400 | 500 | 23092CAE4 | | | 680 | 218 | 6 | 4 500 000 | 9 950 000 | 460 000 | 1 010 000 | 340 | 430 | 24092CAE4 | | | 760 | 240 | 7.5 | 5 700 000 | 10 900 000 | 580 000 | 1 110 000 | 300 | 400 | 23192CAE4 | | | 760 | 300 | 7.5 | 6 300 000 | 12 400 000 | 640 000 | 1 270 000 | 300 | 400 | 24192CAE4 | | | 830 | 296 | 7.5 | 7 350 000 | 13 700 000 | 750 000 | 1 400 000 | 280 | 380 | 23292CAE4 | | 480 | 650 | 128 | 5 | 2 580 000 | 5 850 000 | 263 000 | 595 000 | 400 | 500 | 23996CAE4 | | | 700 | 165 | 6 | 3 800 000 | 7 950 000 | 385 000 | 810 000 | 400 | 480 | 23096CAE4 | | | 700 | 218 | 6 | 4 600 000 | 10 200 000 | 470 000 | 1 040 000 | 320 | 430 | 24096CAE4 | | | 790 | 248 | 7.5 | 6 050 000 | 11 700 000 | 620 000 | 1 200 000 | 300 | 380 | 23196CAE4 | | |
790 | 308 | 7.5 | 7 150 000 | 14 600 000 | 730 000 | 1 490 000 | 300 | 380 | 24196CAE4 | | | 870 | 310 | 7.5 | 7 850 000 | 14 400 000 | 805 000 | 1 470 000 | 260 | 360 | 23296CAE4 | | 500 | 670 | 128 | 5 | 2 460 000 | 5 550 000 | 250 000 | 565 000 | 400 | 500 | 239/500CAE4 | | | 720 | 167 | 6 | 3 750 000 | 8 100 000 | 385 000 | 825 000 | 380 | 480 | 230/500CAE4 | | | 720 | 218 | 6 | 4 450 000 | 9 900 000 | 450 000 | 1 010 000 | 300 | 400 | 240/500CAE4 | | | 830 | 264 | 7.5 | 6 850 000 | 13 400 000 | 700 000 | 1 360 000 | 280 | 360 | 231/500CAE4 | | | 830 | 325 | 7.5 | 8 000 000 | 16 000 000 | 815 000 | 1 630 000 | 280 | 360 | 241/500CAE4 | | | 920 | 336 | 7.5 | 9 000 000 | 16 600 000 | 915 000 | 1 690 000 | 260 | 320 | 232/500CAE4 | | 530 | 710 | 136 | 5 | 2 930 000 | 6 800 000 | 299 000 | 695 000 | 360 | 450 | 239/530CAE4 | | | 780 | 185 | 6 | 4 400 000 | 9 200 000 | 450 000 | 940 000 | 340 | 430 | 230/530CAE4 | | | 780 | 250 | 6 | 5 400 000 | 11 800 000 | 550 000 | 1 210 000 | 280 | 360 | 240/530CAE4 | | | 870 | 272 | 7.5 | 7 150 000 | 14 100 000 | 730 000 | 1 440 000 | 260 | 340 | 231/530CAE4 | | | 870 | 335 | 7.5 | 8 500 000 | 17 500 000 | 870 000 | 1 790 000 | 260 | 340 | 241/530CAE4 | | | 980 | 355 | 9.5 | 10 100 000 | 18 800 000 | 1 030 000 | 1 920 000 | 240 | 300 | 232/530CAE4 | | 560 | 750 | 140 | 5 | 3 100 000 | 7 250 000 | 320 000 | 740 000 | 340 | 430 | 239/560CAE4 | | | 820 | 195 | 6 | 5 000 000 | 10 700 000 | 510 000 | 1 090 000 | 320 | 400 | 230/560CAE4 | | | 820 | 258 | 6 | 5 950 000 | 13 300 000 | 605 000 | 1 360 000 | 260 | 340 | 240/560CAE4 | | | 920 | 280 | 7.5 | 7 850 000 | 15 500 000 | 800 000 | 1 580 000 | 240 | 320 | 231/560CAE4 | | | 920 | 355 | 7.5 | 9 400 000 | 19 600 000 | 960 000 | 2 000 000 | 240 | 320 | 241/560CAE4 | | | 1 030 | 365 | 9.5 | 10 900 000 | 20 500 000 | 1 110 000 | 2 090 000 | 220 | 280 | 232/560CAE4 | **Note** (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | |---------------|------------|---------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | Y_2 | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Numbers | Abutme | ent and Fille
(mm | et Dimensi | ons | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|-----------------|----------------------|------------------------|-------------------------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ min. | L max. |) _a
min. | ${\pmb{\gamma}}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23992CAKE4 | 478 | 602 | 575 | 3 | 0.17 | 5.9 | 4.0 | 3.9 | 100 | | 23092CAKE4 | 488 | 652 | 615 | 5 | 0.22 | 4.6 | 3.1 | 3.0 | 201 | | 24092CAK30E4 | 488 | 652 | 604 | 5 | 0.29 | 3.4 | 2.3 | 2.3 | 266 | | 23192CAKE4 | 496 | 724 | 661 | 6 | 0.31 | 3.3 | 2.2 | 2.2 | 423 | | 24192CAK30E4 | 496 | 724 | 646 | 6 | 0.39 | 2.6 | 1.7 | 1.7 | 512 | | 23292CAKE4 | 496 | 794 | 702 | 6 | 0.36 | 2.8 | 1.9 | 1.8 | 691 | | 23996CAKE4 | 502 | 628 | 602 | 4 | 0.18 | 5.7 | 3.8 | 3.7 | 121 | | 23096CAKE4 | 508 | 672 | 633 | 5 | 0.22 | 4.6 | 3.1 | 3.0 | 211 | | 24096CAK30E4 | 508 | 672 | 625 | 5 | 0.30 | 3.4 | 2.3 | 2.2 | 270 | | 23196CAKE4 | 516 | 754 | 688 | 6 | 0.31 | 3.3 | 2.2 | 2.2 | 475 | | 24196CAK30E4 | 516 | 754 | 670 | 6 | 0.39 | 2.6 | 1.7 | 1.7 | 567 | | 23296CAKE4 | 516 | 834 | 733 | 6 | 0.36 | 2.8 | 1.9 | 1.8 | 795 | | 239/500CAKE4 | 522 | 648 | 622 | 4 | 0.17 | 6.0 | 4.0 | 3.9 | 124 | | 230/500CAKE4 | 528 | 692 | 655 | 5 | 0.21 | 4.8 | 3.2 | 3.1 | 220 | | 240/500CAK30E4 | 528 | 692 | 643 | 5 | 0.30 | 3.4 | 2.3 | 2.2 | 276 | | 231/500CAKE4 | 536 | 794 | 720 | 6 | 0.31 | 3.2 | 2.2 | 2.1 | 567 | | 241/500CAK30E4 | 536 | 794 | 703 | 6 | 0.39 | 2.6 | 1.7 | 1.7 | 666 | | 232/500CAKE4 | 536 | 884 | 773 | 6 | 0.38 | 2.7 | 1.8 | 1.8 | 969 | | 239/530CAKE4 | 552 | 688 | 659 | 4 | 0.17 | 6.0 | 4.0 | 3.9 | 149 | | 230/530CAKE4 | 558 | 752 | 706 | 5 | 0.22 | 4.6 | 3.1 | 3.0 | 298 | | 240/530CAK30E4 | 558 | 752 | 690 | 5 | 0.31 | 3.3 | 2.2 | 2.2 | 390 | | 231/530CAKE4 | 566 | 834 | 758 | 6 | 0.30 | 3.3 | 2.2 | 2.2 | 628 | | 241/530CAK30E4 | 566 | 834 | 740 | 6 | 0.38 | 2.6 | 1.8 | 1.7 | 773 | | 232/530CAKE4 | 574 | 936 | 824 | 8 | 0.38 | 2.7 | 1.8 | 1.7 | 1 170 | | 239/560CAKE4 | 582 | 728 | 697 | 4 | 0.16 | 6.1 | 4.1 | 4.0 | 172 | | 230/560CAKE4 | 588 | 792 | 742 | 5 | 0.22 | 4.5 | 3.0 | 2.9 | 344 | | 240/560CAK30E4 | 588 | 792 | 729 | 5 | 0.30 | 3.3 | 2.2 | 2.2 | 440 | | 231/560CAKE4 | 596 | 884 | 804 | 6 | 0.30 | 3.4 | 2.3 | 2.2 | 727 | | 241/560CAK30E4 | 596 | 884 | 782 | 6 | 0.39 | 2.6 | 1.8 | 1.7 | 886 | | 232/560CAKE4 | 604 | 986 | 870 | 8 | 0.36 | 2.8 | 1.9 | 1.8 | 1 320 | Remarks For the dimensions of adapters and withdrawal sleeves, refer to Pages B365 and B371. ## Bore Diameter 600 - 800 mm Cylindrical Bore Tapered Bore | E | Boundary | | ions | | Basic Load | • | | Limiting S | • | Bearing | |-----|----------|-----|------------------|-------------|-------------------|------------|-------------------|-------------------|-----|------------------| | | | nm) | | (1) | | | gf} | (min ⁻ | | | | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 600 | 800 | 150 | 5 | 3 450 000 | 8 100 000 | 350 000 | 830 000 | 320 | 400 | 239/600CAE4 | | | 870 | 200 | 6 | 5 450 000 | 12 200 000 | 555 000 | 1 240 000 | 300 | 360 | 230/600CAE4 | | | 870 | 272 | 6 | 6 600 000 | 15 100 000 | 675 000 | 1 540 000 | 240 | 320 | 240/600CAE4 | | | 980 | 300 | 7.5 | 8 750 000 | 17 500 000 | 895 000 | 1 790 000 | 220 | 280 | 231/600CAE4 | | | 980 | 375 | 7.5 | 10 400 000 | 21 900 000 | 1 060 000 | 2 230 000 | 220 | 280 | 241/600CAE4 | | | 1 090 | 388 | 9.5 | 12 700 000 | 24 900 000 | 1 300 000 | 2 540 000 | 200 | 260 | 232/600CAE4 | | 630 | 850 | 165 | 6 | 4 000 000 | 9 350 000 | 405 000 | 950 000 | 300 | 360 | 239/630CAE4 | | | 920 | 212 | 7.5 | 5 900 000 | 12 700 000 | 600 000 | 1 300 000 | 280 | 340 | 230/630CAE4 | | | 920 | 290 | 7.5 | 7 550 000 | 17 700 000 | 770 000 | 1 810 000 | 220 | 300 | 240/630CAE4 | | | 1 030 | 315 | 7.5 | 9 600 000 | 19 400 000 | 980 000 | 1 970 000 | 200 | 260 | 231/630CAE4 | | | 1 030 | 400 | 7.5 | 11 300 000 | 23 900 000 | 1 160 000 | 2 440 000 | 200 | 260 | 241/630CAE4 | | | 1 150 | 412 | 12 | 13 400 000 | 25 600 000 | 1 370 000 | 2 610 000 | 180 | 240 | 232/630CAE4 | | 670 | 900 | 170 | 6 | 4 350 000 | 10 300 000 | 445 000 | 1 050 000 | 260 | 340 | 239/670CAE4 | | | 980 | 230 | 7.5 | 6 850 000 | 15 000 000 | 700 000 | 1 530 000 | 240 | 320 | 230/670CAE4 | | | 980 | 308 | 7.5 | 8 450 000 | 19 500 000 | 860 000 | 1 990 000 | 200 | 260 | 240/670CAE4 | | | 1 090 | 336 | 7.5 | 10 600 000 | 21 600 000 | 1 080 000 | 2 200 000 | 190 | 240 | 231/670CAE4 | | | 1 090 | 412 | 7.5 | 12 400 000 | 26 500 000 | 1 270 000 | 2 700 000 | 190 | 240 | 241/670CAE4 | | | 1 220 | 438 | 12 | 14 900 000 | 28 700 000 | 1 520 000 | 2 920 000 | 170 | 220 | 232/670CAE4 | | 710 | 950 | 180 | 6 | 4 800 000 | 11 700 000 | 490 000 | 1 200 000 | 240 | 300 | 239/710CAE4 | | | 1 030 | 236 | 7.5 | 7 100 000 | 15 800 000 | 725 000 | 1 610 000 | 240 | 280 | 230/710CAE4 | | | 1 030 | 315 | 7.5 | 8 850 000 | 20 700 000 | 905 000 | 2 110 000 | 190 | 240 | 240/710CAE4 | | | 1 150 | 438 | 9.5 | 13 900 000 | 30 500 000 | 1 410 000 | 3 100 000 | 170 | 220 | 241/710CAE4 | | | 1 280 | 450 | 12 | 15 700 000 | 30 500 000 | 1 600 000 | 3 100 000 | 160 | 200 | 232/710CAE4 | | 750 | 1 000 | 185 | 6 | 5 250 000 | 12 800 000 | 535 000 | 1 310 000 | 220 | 280 | 239/750CAE4 | | | 1 090 | 250 | 7.5 | 7 750 000 | 17 200 000 | 790 000 | 1 750 000 | 220 | 260 | 230/750CAE4 | | | 1 090 | 335 | 7.5 | 10 100 000 | 24 000 000 | 1 030 000 | 2 450 000 | 180 | 220 | 240/750CAE4 | | | 1 360 | 475 | 15 | 17 700 000 | 35 500 000 | 1 800 000 | 3 600 000 | 140 | 190 | 232/750CAE4 | | 800 | 1 060 | 195 | 6 | 5 600 000 | 13 700 000 | 570 000 | 1 400 000 | 220 | 260 | 239/800CAE4 | | | 1 150 | 258 | 7.5 | 8 350 000 | 19 100 000 | 850 000 | 1 950 000 | 200 | 240 | 230/800CAE4 | | | 1 150 | 345 | 7.5 | 10 900 000 | 26 300 000 | 1 110 000 | 2 680 000 | 160 | 200 | 240/800CAE4 | | | 1 280 | 375 | 9.5 | 13 800 000 | 29 200 000 | 1 410 000 | 2 970 000 | 150 | 190 | 231/800CAE4 | | | 1 420 | 488 | 15 | 20 300 000 | 41 000 000 | 2 070 000 | 4 150 000 | 130 | 170 | 232/800CAE4 | ### Dynamic Equivalent Load | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | |---------------|------------|---------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | Numbers | Abutm | ent and Fil
(mr | l et Dimens
n) | ions | Constant | | xial Loa
Factors | | Mass
(kg) | |--|--------------------------|----------------------------|--------------------------|---------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------------| | Tapered Bore(1) | $d_{ m a}$ min. | max. | $D_{ m a}$ min. | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 239/600CAKE4 | 622 | 778 | 745 | 4 | 0.17 | 5.9 | 3.9 | 3.9 | 205 | | 230/600CAKE4 | 628 | 842 | 794 | 5 | 0.21 | 4.8 | 3.3 | 3.2 | 389 | | 240/600CAK30E4 | 628 | 842 | 772 | 5 | 0.30 | 3.3 | 2.2 | 2.2 | 529 | | 231/600CAKE4 | 636 | 944 | 856 | 6 | 0.30 | 3.4 | 2.3 | 2.2 | 898 | | 241/600CAK30E4 | 636 | 944 | 836 | 6 | 0.39 | 2.6 | 1.8 | 1.7 | 1 050 | | 232/600CAKE4 | 644 | 1 046 | 923 | 8 | 0.36 | 2.8 | 1.9 | 1.8 | 1 590 | | 239/630CAKE4 | 658 | 822 | 786 | 5 | 0.18 | 5.6 | 3.8 | 3.7 | 259 | | 230/630CAKE4 | 666 | 884 |
835 | 6 | 0.22 | 4.7 | 3.1 | 3.1 | 468 | | 240/630CAK30E4 | 666 | 884 | 815 | 6 | 0.30 | 3.3 | 2.2 | 2.2 | 637 | | 231/630CAKE4 | 666 | 994 | 900 | 6 | 0.30 | 3.4 | 2.3 | 2.2 | 1 040 | | 241/630CAK30E4 | 666 | 994 | 876 | 6 | 0.38 | 2.7 | 1.8 | 1.7 | 1 250 | | 232/630CAKE4 | 684 | 1 096 | 970 | 10 | 0.36 | 2.8 | 1.9 | 1.8 | 1 850 | | 239/670CAKE4
230/670CAKE4
240/670CAK30E4
231/670CAKE4 | 698
706
706
706 | 872
944
944
1 054 | 836
891
868
952 | 5
6
6 | 0.17
0.22
0.30
0.30 | 5.8
4.7
3.3
3.3 | 3.9
3.1
2.2
2.2 | 3.8
3.1
2.2
2.2 | 300
571
773
1 230 | | 241/670CAK30E4 | 706 | 1 054 | 934 | 6 | 0.37 | 2.7 | 1.8 | 1.8 | 1 440 | | 232/670CAKE4 | 724 | 1 166 | 1 024 | 10 | 0.37 | 2.7 | 1.8 | 1.8 | 2 210 | | 239/710CAKE4 | 738 | 922 | 883 | 5 | 0.17 | 5.8 | 3.9 | 3.8 | 352 | | 230/710CAKE4 | 746 | 994 | 936 | 6 | 0.22 | 4.6 | 3.1 | 3.0 | 647 | | 240/710CAK30E4 | 746 | 994 | 916 | 6 | 0.29 | 3.4 | 2.3 | 2.2 | 861 | | 241/710CAK30E4 | 754 | 1 106 | 981 | 8 | 0.38 | 2.6 | 1.8 | 1.7 | 1 730 | | 232/710CAKE4 | 764 | 1 226 | 1 080 | 10 | 0.36 | 2.8 | 1.9 | 1.8 | 2 470 | | 239/750CAKE4 | 778 | 972 | 931 | 5 | 0.17 | 6.0 | 4.1 | 4.0 | 398 | | 230/750CAKE4 | 786 | 1 054 | 990 | 6 | 0.22 | 4.6 | 3.1 | 3.0 | 768 | | 240/750CAK30E4 | 786 | 1 054 | 969 | 6 | 0.29 | 3.4 | 2.3 | 2.2 | 1 030 | | 232/750CAKE4 | 814 | 1 296 | 1 148 | 12 | 0.36 | 2.8 | 1.9 | 1.8 | 2 980 | | 239/800CAKE4 | 828 | 1 032 | 987 | 5 | 0.17 | 6.0 | 4.0 | 3.9 | 462 | | 230/800CAKE4 | 836 | 1 114 | 1 045 | 6 | 0.21 | 4.7 | 3.2 | 3.1 | 870 | | 240/800CAK30E4 | 836 | 1 114 | 1 029 | 6 | 0.27 | 3.7 | 2.5 | 2.5 | 1 130 | | 231/800CAKE4 | 844 | 1 236 | 1 127 | 8 | 0.28 | 3.6 | 2.4 | 2.3 | 1870 | | 232/800CAKE4 | 864 | 1 356 | 1 208 | 12 | 0.35 | 2.8 | 1.9 | 1.9 | 3 250 | ## Bore Diameter 850 - 1400 mm Cylindrical Bore Tapered Bore | Е | Boundary | Dimens | ions | (1) | Basic Load | • | f) | Limiting S | • | Bearing | |-------|-------------------------|-------------------|-------------------|---------------------------------------|--|-----------------------------------|-------------------------------------|-----------------------------|-------------------|---| | d | $D^{(i)}$ | В | r | $C_{\rm r}$ | C_{0r} | $C_{ m r}$ | gf} $C_{0\mathrm{r}}$ | (min ⁻
Grease | Oil | Cylindrical Bore | | | | | min. | | | | | | | | | 850 | 1 120 | 200 | 6 | 6 100 000 | 15 200 000 | 620 000 | 1 550 000 | 190 | 240 | 239/850CAE4 | | | 1 220 | 272 | 7.5 | 9 300 000 | 21 400 000 | 945 000 | 2 190 000 | 180 | 220 | 230/850CAE4 | | | 1 220 | 365 | 7.5 | 11 600 000 | 28 300 000 | 1 180 000 | 2 890 000 | 150 | 190 | 240/850CAE4 | | | 1 500 | 515 | 15 | 22 300 000 | 45 500 000 | 2 270 000 | 4 650 000 | 120 | 160 | 232/850CAE4 | | 900 | 1 180 | 206 | 6 | 6 600 000 | 16 700 000 | 670 000 | 1 700 000 | 180 | 220 | 239/900CAE4 | | | 1 280 | 280 | 7.5 | 9 850 000 | 22 800 000 | 1 000 000 | 2 330 000 | 160 | 200 | 230/900CAE4 | | | 1 280 | 375 | 7.5 | 12 800 000 | 31 500 000 | 1 300 000 | 3 250 000 | 140 | 180 | 240/900CAE4 | | | 1 580 | 515 | 15 | 23 400 000 | 47 500 000 | 2 380 000 | 4 850 000 | 110 | 140 | 232/900CAE4 | | 950 | 1 250 | 224 | 7.5 | 7 600 000 | 19 900 000 | 775 000 | 2 030 000 | 160 | 200 | 239/950CAE4 | | | 1 360 | 300 | 7.5 | 11 300 000 | 26 500 000 | 1 160 000 | 2 710 000 | 150 | 190 | 230/950CAE4 | | | 1 360 | 412 | 7.5 | 14 500 000 | 36 500 000 | 1 480 000 | 3 700 000 | 120 | 160 | 240/950CAE4 | | | 1 660 | 530 | 15 | 24 700 000 | 50 500 000 | 2 520 000 | 5 150 000 | 100 | 130 | 232/950CAE4 | | 1 000 | 1 320 | 236 | 7.5 | 8 200 000 | 21 700 000 | 835 000 | 2 210 000 | 150 | 190 | 239/1000CAE4 | | | 1 420 | 308 | 7.5 | 11 900 000 | 28 100 000 | 1 210 000 | 2 860 000 | 140 | 170 | 230/1000CAE4 | | | 1 420 | 412 | 7.5 | 15 300 000 | 38 500 000 | 1 560 000 | 3 950 000 | 110 | 150 | 240/1000CAE4 | | 1 060 | 1 400
1 500
1 500 | 250
325
438 | 7.5
9.5
9.5 | 9 300 000
13 000 000
16 800 000 | 24 400 000
31 500 000
43 000 000 | 950 000
1 330 000
1 720 000 | 2 490 000
3 200 000
4 350 000 | 130
120
100 | 170
160
130 | 239/1060CAE4 230/1060CAE4 240/1060CAE4 | | 1 120 | 1 580 | 345 | 9.5 | 15 400 000 | 38 000 000 | 1 570 000 | 3 850 000 | 110 | 140 | 230/1120CAE4 | | | 1 580 | 462 | 9.5 | 18 700 000 | 49 500 000 | 1 910 000 | 5 050 000 | 95 | 120 | 240/1120CAE4 | | 1 180 | 1 660 | 475 | 9.5 | 20 200 000 | 52 500 000 | 2 060 000 | 5 350 000 | 85 | 110 | 240/1180CAE4 | | 1 250 | 1 750 | 500 | 9.5 | 21 000 000 | 59 500 000 | 2 140 000 | 6 050 000 | 75 | 100 | 240/1250CAE4 | | 1 320 | 1 850 | 530 | 12 | 22 600 000 | 63 500 000 | 2 310 000 | 6 500 000 | 67 | 85 | 240/1320CAE4 | | 1 400 | 1 950 | 545 | 12 | 24 500 000 | 65 000 000 | 2 500 000 | 6 650 000 | 60 | 75 | 240/1400CAE4 | ## Dynamic Equivalent Load | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | |---------------|------------|---------------------------|-------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of $e,\,Y_2$, Y_3 , and Y_0 are given in the table below. | N | lumbers | Abutm | ent and Fil
(mr | let Dimens
n) | ions | Constant | | xial Loa
Factors | | Mass
(kg) | |---|----------------------------------|-----------------|--------------------|------------------|-------------------------|--------------|------------|---------------------|------------|----------------| | | Tapered Bore(1) | $d_{ m a}$ min. | max. | $D_{ m a}$ min. | ${\pmb{\gamma}}_a$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | | 239/850CAKE4 | 878 | 1 092 | 1 046 | 5 | 0.16 | 6.2 | 4.2 | 4.1 | 523 | | | 230/850CAKE4 | 886 | 1 184 | 1 109 | 6 | 0.21 | 4.8 | 3.2 | 3.1 | 1 020 | | | 240/850CAK30E4 | 886 | 1 184 | 1 093 | 6 | 0.28 | 3.6 | 2.4 | 2.4 | 1 350 | | | 232/850CAKE4 | 914 | 1 436 | 1 274 | 12 | 0.35 | 2.8 | 1.9 | 1.9 | 3 890 | | | 239/900CAKE4 | 928 | 1 152 | 1 103 | 5 | 0.16 | 6.4 | 4.3 | 4.2 | 591 | | | 230/900CAKE4 | 936 | 1 244 | 1 169 | 6 | 0.20 | 4.9 | 3.3 | 3.2 | 1 160 | | | 240/900CAK30E4 | 936 | 1 244 | 1 147 | 6 | 0.28 | 3.6 | 2.4 | 2.4 | 1 520 | | | 232/900CAKE4 | 964 | 1 516 | 1 354 | 12 | 0.33 | 3.0 | 2.0 | 2.0 | 4 300 | | | 239/950CAKE4 | 986 | 1 214 | 1 169 | 6 | 0.16 | 6.3 | 4.2 | 4.1 | 732 | | | 230/950CAKE4 | 986 | 1 324 | 1 241 | 6 | 0.21 | 4.8 | 3.2 | 3.2 | 1 400 | | | 240/950CAK30E4 | 986 | 1 324 | 1 219 | 6 | 0.28 | 3.6 | 2.4 | 2.3 | 1 880 | | | 232/950CAKE4 | 1 014 | 1 596 | 1 428 | 12 | 0.32 | 3.1 | 2.1 | 2.1 | 4 800 | | 2 | 239/1000CAKE4 | 1 036 | 1 284 | 1 229 | 6 | 0.16 | 6.4 | 4.3 | 4.2 | 881 | | | 230/1000CAKE4 | 1 036 | 1 384 | 1 298 | 6 | 0.20 | 4.9 | 3.3 | 3.2 | 1 560 | | | 240/1000CAK30E4 | 1 036 | 1 384 | 1 275 | 6 | 0.27 | 3.7 | 2.5 | 2.4 | 2 010 | | 2 | 239/1060CAKE4 | 1 096 | 1 364 | 1 302 | 6 | 0.16 | 6.1 | 4.1 | 4.0 | 1 030 | | | 230/1060CAKE4 | 1 104 | 1 456 | 1 368 | 8 | 0.21 | 4.9 | 3.3 | 3.2 | 1 790 | | | 240/1060CAK30E4 | 1 104 | 1 456 | 1 346 | 8 | 0.28 | 3.6 | 2.4 | 2.4 | 2 410 | | | 230/1120CAKE4
240/1120CAK30E4 | 1 164
1 164 | 1 536
1 536 | 1 444
1 421 | 8 | 0.20
0.27 | 5.0
3.7 | 3.4
2.5 | 3.3
2.5 | 2 120
2 790 | | 2 | 240/1180CAK30E4 | 1 224 | 1 616 | 1 494 | 8 | 0.27 | 3.7 | 2.5 | 2.4 | 3 180 | | 2 | 240/1250CAK30E4 | 1 294 | 1 706 | 1 579 | 8 | 0.25 | 4.0 | 2.7 | 2.6 | 3 700 | | 2 | 240/1320CAK30E4 | 1 374 | 1 796 | 1 656 | 10 | 0.26 | 3.9 | 2.6 | 2.6 | 4 400 | | 2 | 240/1400CAK30E4 | 1 454 | 1 896 | 1 767 | 10 | 0.25 | 4.0 | 2.7 | 2.6 | 4 900 | # THRUST BEARINGS ### SINGLE-DIRECTION THRUST BALL BEARINGS | With Flat Seat, Aligning Seat, or Aligning Seat Washer | Bore Diameter | 10 – 100mm ····· | B210 | |--|---------------|-------------------|------| | | Bore Diameter | 110 – 360mm ····· | B214 | | DOUBLE-DIRECTION THRUST BALL BEARINGS | | | | | With Flat Seat, Aligning Seat, or Aligning Seat Washer | Bore Diameter | 10 – 190mm ····· | B218 | | THRUST CYLINDRICAL ROLLER BEARINGS | Bore Diameter | 35 – 320mm ····· | B224 | | TUDIET COUEDICAL DOLLED DEADINGS | Para Diameter | 60 500mm | פסס | Angular Contact Thrust Ball Bearings are described on pages B234 to B243. ### **THRUST BALL BEARINGS** Thrust ball bearings are classified into those with flat seats or aligning seats depending on the shape of the outer ring seat (housing washer). They can sustain axial loads but no radial loads. sustain axial loads but no radial loads. The series of thrust ball bearings available are shown in Table 1. For Single-Direction Thrust Ball Bearings, pressed steel cages and machined brass cages are usually used as shown in Table 2. The cages in Double-Direction Thrust Ball Bearings are the same as those in Single-Direction Thrust Ball Bearings of the same diameter series. The basic load ratings listed in the bearing tables are based on the standard cage type shown in Table 2. If the type of cage is different for bearings with the same number, the number of balls may vary, in such a case, the load rating will differ from the one listed in the bearing tables. Table1 Series of Thrust Ball Bearings | | W/Flat
Seat | W/Aligning
Seat | W/Aligning
Seat
Washer | | | | | |----------------------|----------------|--------------------|------------------------------|--|--|--|--| | | 511 | _ | _ | | | | | | Single-
Direction | 512 | 532 | 532U | | | | | | | 513 | 533 | 533U | | | | | | | 514 | 534 | 534U | | | | | | Double-
Direction | 522 | 542 | 542U | | | | | | | 523 | 543 | 543U | | | | | | | 524 | 544 | 544U | | | | | | _ | | | | | | | | Table 2 Standard Cages for Thrust Ball Bearings | Pressed Steel | Machined Brass | | | | | | | |----------------|-----------------|--|--|--|--|--|--| | 51100 - 51152X | 51156X - 51172X | | | | | | | | 51200 - 51236X | 51238X - 51272X | | | | |
| | | 51305 - 51336X | 51338X - 51340X | | | | | | | | 51405 - 51418X | 51420X - 51436X | | | | | | | | 53200 - 53236X | 53238X - 53272X | | | | | | | | 53305 - 53336X | 53338X - 53340X | | | | | | | | 53405 - 53418X | 53420X - 53436X | | | | | | | B 206 B 207 ### THRUST CYLINDRICAL ROLLER BEARINGS These are thrust bearings containing cylindrical rollers. They can sustain only axial loads, but they are suitable for heavy loads and have high axial rigidity. The cages are machined brass. ### THRUST SPHERICAL ROLLER BEARINGS These are thrust bearings containing convex rollers. They have a selfaligning capability and are free of any influence of mounting error or shaft deflection. Besides the original type, the E type with pressed cages for high load capacity is also available. Their bearing numbers are suffixed by E. For horizontal shaft or high speed application, machined brass cages are recommended. For details, contact NSK. Since there are several places where lubrication is difficult, such as the area between the roller heads and inner ring rib, the sliding surfaces between cage and guide sleeve, etc., oil lubrication should be used even at low speed. The cages in the original type are machined brass. ### TOLERANCES AND RUNNING ACCURACY | THRUST BALL BEARINGS | ···Table 8.6 (Pages A72 to A74) | |------------------------------------|---------------------------------| | THRUST CYLINDRICAL ROLLER BEARINGS | T.I. 0.0 (D | | According t | ` = ' | | THRUST SPHERICAL ROLLER BEARINGS | Table 8.7 (Pages A75) | ### RECOMMENDED FITS | THRUST BALL BEARINGS | · Table 9.3 (Pages A84) | |------------------------------------|-------------------------| | | Table 9.5 (Pages A85) | | THRUST CYLINDRICAL ROLLER BEARINGS | ·Table 9.3 (Pages A84) | | | Table 9.5 (Pages A85) | | THRUST SPHERICAL ROLLER BEARINGS | · Table 9.3 (Pages A84) | | | Table 9.5 (Pages A85) | ### **DIMENSIONS RELATED TO MOUNTING** The dimensions related to mounting of thrust spherical roller bearings are listed in the Bearing Table. If the bearing load is heavy, it is necessary to design the shaft shoulder with ample strength in order to provide sufficient support for the shaft washer. ### PERMISSIBLE MISALIGNMENT The permissible misalignment of thrust spherical roller bearings varies depending on the size, but it is approximately 0.018 to 0.036 radian (1° to 2°) with average loads. ### MINIMUM AXIAL LOAD It is necessary to apply some axial load to thrust bearings to prevent slippage between the rolling elements and raceways. For more details, please refer to Page A99. B 208 B 209 Bore Diameter 10 - 50 mm With Flat Seat With Aligning Seat With Aligning Seat Washer | Bearing N | umbers | Dimensions
(mm) | | | | | | | | nent and | | Mass(kg)
approx. | | | |--------------------------|---------------------------------|-----------------------|----------------------|---------------------|---------------------|------------------------|-----------------------|--------------------|----------------------|----------------------|-------------------------------|----------------------------------|----------------------------|---------------------------------| | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | γ _a
max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 53200 | 53200 U | 24
26 | 11
12 | —
18 |
28 |
3.5 | —
8.5 |
22 | 18
20 | 16
16 | 0.3
0.6 | 0.019
0.028 |
0.029 | 0.036 | | 53201 | 53201 U | 26
28 | 13
14 |
20 | 30 | 3.5 | —
11.5 |
25 | 20
22 | 18
18 | 0.3
0.6 | 0.021
0.031 | 0.031 | 0.039 | | 53202 | 53202 U | 28
32 | 16
17 |
24 | —
35 | 4 |
12 |
28 | 23
25 | 20
22 | 0.3
0.6 | 0.023
0.043 |
0.048 | 0.059 | | 53203 | 53203 U | 30
35 | 18
19 |
26 |
38 | 4 |
16 |
32 | 25
28 | 22
24 | 0.3
0.6 | 0.025
0.050 |
0.055 | 0.069 | |
53204 | 53204 U | 35
40 | 21
22 | 30 | <u>-</u> | - 5 |
18 | —
36 | 29
32 | 26
28 | 0.3
0.6 | 0.037
0.077 | 0.080 | 0.096 | | 53205
53305
53405 | 53205 U
53305 U
53405 U | 42
47
52
60 | 26
27
27
27 | —
36
38
42 | 50
55
62 | 5.5
6
8 | —
19
21
19 | 40
45
50 | 35
38
41
46 | 32
34
36
39 | 0.6
0.6
1 | 0.056
0.111
0.169
0.334 | 0.123
0.182
0.353 | —
0.151
0.224
0.426 | | 53206
53306
53406 | 53206 U
53306 U
53406 U | 47
52
60
70 | 32
32
32
32 | 42
45
50 | 55
62
75 |
5.5
7
9 | | 45
50
56 | 40
43
48
54 | 37
39
42
46 | 0.6
0.6
1 | 0.064
0.137
0.267
0.519 |
0.154
0.28
0.535 |
0.183
0.336
0.666 | | 53207
53307
53407 | 53207 U
53307 U
53407 U | 52
62
68
80 | 37
37
37
37 | —
48
52
58 | —
65
72
85 | | 24
24
23 | 50
56
64 | 45
51
55
62 | 42
46
48
53 | 0.6
1
1
1 | 0.081
0.21
0.386
0.769 | 0.231
0.403
0.785 |
0.292
0.488
0.967 | | 53208
53308
53408 | 53208 U
53308 U
53408 U | 60
68
78
90 | 42
42
42
42 | 55
60
65 | 72
82
95 | —
7
8.5
12 | —
28.5
28
26 | 56
64
72 | 52
57
63
70 | 48
51
55
60 | 0.6
1
1
1 | 0.12
0.27
0.536
1.1 |
0.289
0.581
1.12 | | | 53209
53309
53409 | 53209 U
53309 U
53409 U | 65
73
85
100 | 47
47
47
47 | 60
65
72 | 78
90
105 | —
7.5
10
12.5 | —
26
25
29 | 56
64
80 | 57
62
69
78 | 53
56
61
67 | 0.6
1
1
1 | 0.143
0.31
0.672
1.46 | 0.333
0.702
1.53 | | | 53210
53310
53410 | 53210 U
53310 U
53410 U | 70
78
95
110 | 52
52
52
52 | 62
72
80 | 82
100
115 | —
7.5
11
14 | —
32.5
28
35 |
64
72
90 | 62
67
77
86 | 58
61
68
74 | 0.6
1
1
1.5 | 0.153
0.378
0.931
1.94 |
0.404
1.01
1.98 | 0.504
1.27
2.41 | B 210 B 211 With Flat Seat With Aligning Seat With Aligning Seat Washer | Bearing N | umbers(1) | Dimensions
(mm) | | | | | | Abutment and Fillet Dimensions (mm) | | | Mass(kg)
approx. | | | | |---------------------------|---------------------------------|--------------------------|--------------------------|----------------------|------------------------|-------------------------|-----------------------|-------------------------------------|--------------------------|--------------------------|-------------------------------|--------------------------------|--------------------------|---------------------------------| | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | γ _a
max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 53211
53311
53411 | 53211 U
53311 U
53411 U | 78
90
105
120 | 57
57
57
57 | —
72
80
88 | 95
110
125 | —
9
11.5
15.5 | 35
30
28 | 72
80
90 | 69
76
85
94 | 64
69
75
81 | 0.6
1
1
1.5 | 0.227
0.599
1.31
2.58 | 0.656
1.45
2.59 | | | 53212
53312
53412 | 53212 U
53312 U
53412 U | 85
95
110
130 | 62
62
62
62 | 78
85
95 | 100
115
135 | —
9
11.5
16 | —
32.5
41
34 | 72
90
100 | 75
81
90
102 | 70
74
80
88 | 1
1
1
1.5 | 0.281
0.673
1.4
3.16 |
0.731
1.51
3.2 | 0.897
1.83
3.91 | | 53213
53313
53413 | 53213 U
53313 U
53413 U | 90
100
115
140 | 67
67
67
68 | 82
90
100 | 105
120
145 | —
9
12.5
17.5 |
40
38.5
40 | 80
90
112 | 80
86
95
110 | 75
79
85
95 | 1
1
1
2 | 0.324
0.756
1.54
4.1 | 0.812
1.67
4.22 | 0.989
2.04
5.13 | | 53214
53314
53414 | 53214 U
53314 U
53414 U | 95
105
125
150 | 72
72
72
73 | —
88
98
110 | 110
130
155 | —
9
13
19.5 | —
38
43
34 | 80
100
112 | 85
91
103
118 | 80
84
92
102 | 1
1
1
2 | 0.346
0.793
2.0
5.05 | 0.866
2.2
5.12 | 1.05
2.64
6.21 | | 53215
53315
53415 | 53215 U
53315 U
53415 U | 100
110
135
160 | 77
77
77
78 | 92
105
115 | —
115
140
165 | —
9.5
15
21 | 49
37
42 | 90
100
125 | 90
96
111
125 | 85
89
99
110 | 1
1
1.5
2 | 0.389
0.845
2.6
6.15 | 1.27
2.8
6.23 | 1.11
3.42
7.58 | | 53216
53316
53416 | 53216 U
53316 U
53416 U | 105
115
140
170 | 82
82
82
83 | 98
110
125 | 120
145
175 | |
46
50
36 | 90
112
125 | 95
101
116
133 | 90
94
104
117 | 1
1
1.5
2 | 0.417
0.931
2.74
7.21 | 1.01
2.94
7.33 | 1.23
3.55
8.9 | | 53217
53317
53417 X | 53217 U
53317 U
53417 XU | 110
125
150
177 | 87
88
88
88 | 105
115
130 | 130
155
185 | —
11
17.5
23 | 52
43
47 | 100
112
140 | 100
109
124
141 | 95
101
111
124 | 1
1
1.5
2 | 0.44
1.22
3.57
8.51 | 1.35
3.78
8.72 | 1.63
4.67
10.4 | | 53218
53318
53418 X | 53218 U
53318 U
53418 XU | 120
135
155
187 | 92
93
93
93 | 110
120
140 | 140
160
195 | —
13.5
18
25.5 | 45
40
40 | 100
112
140 | 108
117
129
149 | 102
108
116
131 | 1
1
1.5
2 | 0.646
1.69
3.83
10.2 | 1.89
4.11
10.3 | 2.38
5.09
12.4 | |
53220
53320
53420 X | 53220 U
53320 U
53420 XU | 135
150
170
205 | 102
103
103
103 | 125
135
155 | 155
175
220 |
14
18
27 | 52
46
50 | 112
125
160 | 121
130
142
165 | 114
120
128
145 | 1
1
1.5
2.5 | 0.96
2.25
4.98
14.8 | 2.49
5.31
15 | 3.03
6.37
18.1 | With Flat Seat With Aligning Seat With Aligning Seat Washer | Bearing Numbers ⁽¹⁾ | | | | Dimens
(mm | | | | | nent and | | | Mass(kg)
approx. | | |--|--------------------------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|--------------------------|--------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------| | With With
Aligning Aligning
Seat Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | D_{a} max. | γ _a
max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 53222 53222 U
53322 X 53322 XU
53422 X 53422 XU | 145
160
187
225 | 112
113
113
113 | —
135
150
170 | —
165
195
240 | —
14
20.5
29 | —
65
51
59 | —
125
140
180 | 131
140
158
181 | 124
130
142
159 | 1
1
2
2.5 | 1.04
2.42
7.19
20 |
2.65
7.55
20.5 |
3.2
9.1
24.3 | | 53224 53224 U
53324 X 53324 XU
53424 X 53424 XU | 155
170
205
245 | 122
123
123
123 | —
145
165
185 | —
175
220
260 | —
15
22
32 |
61
63
70 | 125
160
200 | 141
150
173
196 | 134
140
157
174 | 1
1
2
3 | 1.12
2.7
9.7
26.2 | | —
3.58
12.4
31.3 | | 53226 X 53226 XU
53326 X 53326 XU
53426 X 53426 XU | 170
187
220
265 | 132
133
134
134 | 160
177
200 | 195
235
280 |
17
26
38 | —
67
53
58 | 140
160
200 | 154
166
186
212 | 146
154
169
188 | 1
1.5
2
3 | 1.68
3.95
12.1
32.3 |
4.35
12.7
32.4 | 5.33
15.8
38.8 | | 53228 X 53228 XU
53328 X 53328 XU
53428 X 53428 XU | 178
197
235
275 | 142
143
144
144 | —
170
190
206 | 210
250
290 |
17
26
38 | —
87
68
83 | 160
180
225 | 164
176
199
222 | 156
164
181
198 | 1
1.5
2
3 | 1.83
4.3
14.2
34.7 |
4.74
16.3
34.8 |
5.89
19.5
41.4 | | 53230 X 53230 XU
53330 X 53330 XU
53430 X 53430 XU | 188
212
245
295 | 152
153
154
154 | 180
200
225 | 225
260
310 | | —
79
89.5
69 | 160
200
225 | 174
189
209
238 | 166
176
191
212 | 1
1.5
2
3 | 1.95
5.52
15
43.5 |
6.09
17.3
43.8 |
7.82
20.5
51.9 | | 53232 X 53232 XU
53332 X 53332 XU
53432 X 53432 XU | 198
222
265
315 | 162
163
164
164 | 190
215
240 | 235
280
330 | —
21
29
41.5 | —
74
77
84 | 160
200
250 | 184
199
225
254 | 176
186
205
226 | 1
1.5
2.5
4 | 2.07
6.04
19.6
52.7 |
6.78
22.3
52.9 | —
8.7
26.7
62 | | 53234 X 53234 XU
53334 X 53334 XU
53434 X 53434 XU | 213
237
275
335 | 172
173
174
174 | 200
220
255 | 250
290
350 | —
21.5
29
46 | 91
105
74 | 180
225
250 | 197
212
235
269 | 188
198
215
241 | 1
1.5
2.5
4 | 2.72
7.41
20.3
61.2 |
8.21
23.2
61.3 | | | 53236 X 53236 XU
53336 X 53336 XU
53436 X 53436 XU | 222
247
295
355 | 183
183
184
184 | 210
240
270 | 260
310
370 | —
21.5
32
46.5 | 112
91
97 | 200
225
280 | 207
222
251
285 | 198
208
229
255 | 1
1.5
2.5
4 | 2.79
7.94
25.9
70.5 | —
8.57
29.2
72.1 | —
10.8
34.9
84.9 | | 53238 X 53238 XU
53338 X 53338 XU | 237
267
315 | 193
194
195 | 230
255 | 280
330 |
23
33 | 98
104 | 200
250 | 220
238
266 | 210
222
244 | 1
2
3 | 3.6
11.8
36.5 | —
12.9
38.1 | —
15.7
44.7 | B 214 B 215 Bore Diameter 200 - 360 mm With Flat Seat With Aligning Seat With Aligning Seat Washer | | | | y Dimensio | ons | | | Basic Load R | - | | | Speeds | | |-----|-------------------|-----------------|--------------------|----------------|------------------|-------------------------------|-----------------------------------|----------------------|------------------------------|---------------------|---------------------------|-------------------------------| | d | D | T | T_3 | T_4 | γ
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | $C_{ m a}$ | C_{0a} | Grease | in ⁻¹)
Oil | With
Flat
Seat | | 200 | 250
280
340 | 37
62
110 | —
65.3
118.4 | —
74
130 | 1.1
2
4 | 173 000
315 000
600 000 | 675 000
1 110 000
2 220 000 | 32 500 1 | 69 000
113 000
227 000 | 1 000
710
480 | 1 500
1 100
710 | 51140 X
51240 X
51340 X | | 220 | 270
300 | 37
63 | <u> </u> | —
75 | 1.1
2 | 179 000
325 000 | 740 000
1 210 000 | | 75 500
123 000 | 950
670 | 1 500
1 000 | 51144 X
51244 X | | 240 | 300
340 | 45
78 | —
81.6 | <u> </u> | 1.5
2.1 | 229 000
420 000 | 935 000
1 650 000 | | 95 000
168 000 | 850
560 | 1 200
850 | 51148 X
51248 X | | 260 | 320
360 | 45
79 | —
82.8 | 93 | 1.5
2.1 | 233 000
435 000 | 990 000
1 800 000 | | 101 000
184 000 | 800
560 | 1 200
850 | 51152 X
51252 X | | 280 | 350
380 | 53
80 | —
85 | <u> </u> | 1.5
2.1 | 315 000
450 000 | 1 310 000
1 950 000 | | 134 000
199 000 | 710
530 | 1 000
800 | 51156 X
51256 X | | 300 | 380
420 | 62
95 |
100.5 | <u> </u> | 2 | 360 000
540 000 | 1 560 000
2 410 000 | | 159 000
246 000 | 600
450 | 900
670 | 51160 X
51260 X | | 320 | 400
440 | 63
95 |
100.5 |
112 | 2 | 365 000
585 000 | 1 660 000
2 680 000 | 37 500 1
59 500 2 | 169 000
273 000 | 600
450 | 900
670 | 51164 X
51264 X | | 340 | 420
460 | 64
96 |
100.3 |
113 | 2 | 375 000
595 000 | 1 760 000
2 800 000 | | 179 000
285 000 | 560
430 | 850
630 | 51168 X
51268 X | | 360 | 440
500 | 65
110 |
116.7 |
130 | 2
4 | 385 000
705 000 | 1 860 000
3 500 000 | | 190 000
355 000 | 560
380 | 800
560 | 51172 X
51272 X | Note (1) The outside diameter d_1 of the shaft washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | Bearing Numbers ⁽¹⁾ | | | | | Dimensi
(mm | | | | | nent and
nsions (| | | Mass(kg)
approx. | | |--|-------------------|-------|-------------------|----------------|-----------------|--------------|----------------|-----------------|-------------------|----------------------|-------------------------------|----------------------|--------------------------|---------------------------------| | With With
Aligning Aligning
Seat Seat Wash | | l_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 53240 X 53240 X
53340 X 53340 X | | 77 | 203
204
205 |
240
270 | —
290
350 |
23
38 | —
125
92 | —
225
250 | 230
248
282 | 220
232
258 | 1
2
3 | 3.75
12.3
43.6 | —
13.4
46.2 | —
16.1
54.8 | | 53244 X 53244 X | U 29 | | 223
224 |
260 | 310 |
25 |
118 |
225 | 250
268 | 240
252 | 1 2 | 4.09
13.6 |
14.9 |
18 | |
53248 X 53248 X | 29
U 33 | | 243
244 |
290 | —
350 | 30 |
122 |
250 | 276
299 | 264
281 | 1.5
2 | 6.55
23.7 |
25.6 |
30.7 | | 53252 X 53252 X | 31
U 35 | | 263
264 | 305 |
370 | 30 |
152 |
280 | 296
319 | 284
301 | 1.5
2 | 7.01
25.1 |
27.3 |
33.2 | | 53256 X 53256 X | U 34 | | 283
284 |
325 | 390 |
31 |
143 |
280 | 322
339 | 308
321 | 1.5
2 | 12
27.1 | 30.3 |
37 | | 53260 X 53260 X | 37
U 41 | | 304
304 | 360 | —
430 |
34 |
164 |
320 | 348
371 | 332
349 | 2
2.5 | 17.2
43.5 |
47.7 | —
56.1 | | 53264 X 53264 X | 39
U 43 | | 324
325 | 380 | —
450 |
36 |
157 |
320 | 368
391 | 352
369 | 2
2.5 | 18.6
45 | —
49.9 | —
59.4 | | 53268 X 53268 X | 41
U 45 | | 344
345 |
400 | —
470 | —
36 | —
199 | —
360 | 388
411 | 372
389 | 2
2.5 | 19.9
47.9 |
52.7 | <u> </u> | | 53272 X 53272 X | U 43 | | 364
365 | —
430 |
510 | —
43 |
172 |
360 | 408
442 | 392
418 | 2
3 | 21.5
68.8 | —
76.3 | 90.9 | B 216 B 217 #### Bore Diameter 10 – 55 mm | | | | | | Di | mensio
(mm) | ns | | | | | | nent an
nsions | d Fillet
(mm) | I | Mass(kg
approx. | | |--|-------------------------|----------------------|----------|--------------------------|------------------------|--------------------------|------------------------|----------------------|-------------------------|--------------------------|------------------------|-----------------------|---------------------------------|------------------------|------------------------------|------------------------------|---------------------------------| | With
Aligning
Seat Washer | d_3 | D_1 | D_2 | D_3 | T_2 |
T_6 | T_8 | В | b | A_1 | R | $D_{ m a}$ max. | ∤ ′ _a
max. | $ m \emph{r}_{b}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 54202 U | 32 | 17 | 24 | 35 | 13.5 | 14.8 | 16.5 | 5 | 4 | 10.5 | 28 | 24 | 0.6 | 0.3 | 0.081 | 0.090 | 0.113 | | 54204 U | 40 | 22 | 30 | 42 | 16 | 16.7 | 19 | 6 | 5 | 16 | 36 | 30 | 0.6 | 0.3 | 0.148 | 0.151 | 0.185 | | 54405 U | 60 | 27 | 42 | 62 | 28 | 30.4 | 33 | 11 | 8 | 15 | 50 | 42 | 1 | 0.6 | 0.641 | 0.68 | 0.825 | | 54205 U | 47 | 27 | 36 | 50 | 17.5 | 19.2 | 21.5 | 7 | 5.5 | 16.5 | 40 | 36 | 0.6 | 0.3 | 0.213 | 0.236 | 0.293 | | 54305 U | 52 | 27 | 38 | 55 | 21 | 22.8 | 25 | 8 | 6 | 18 | 45 | 38 | 1 | 0.3 | 0.324 | 0.35 | 0.434 | | 54406 U | 70 | 32 | 50 | 75 | 32 | 34.1 | 37 | 12 | 9 | 16 | 56 | 50 | 1 | 0.6 | 0.978 | 1.01 | 1.27 | | 54206 U | 52 | 32 | 42 | 55 | 18 | 19.8 | 22 | 7 | 5.5 | 20 | 45 | 42 | 0.6 | 0.3 | 0.254 | 0.288 | 0.345 | | 54306 U | 60 | 32 | 45 | 62 | 23.5 | 25.1 | 27.5 | 9 | 7 | 19.5 | 50 | 45 | 1 | 0.3 | 0.483 | 0.511 | 0.621 | | 54407 U | 80 | 37 | 58 | 85 | 36.5 | 38.5 | 41.5 | 14 | 10 | 18.5 | 64 | 58 | 1 | 0.6 | 1.43 | 1.47 | 1.83 | | 54207 U | 62 | 37 | 48 | 65 | 21 | 22.9 | 25 | 8 | 7 | 21 | 50 | 48 | 1 | 0.3 | 0.406 | 0.447 | 0.57 | | 54307 U | 68 | 37 | 52 | 72 | 27 | 28.6 | 31 | 10 | 7.5 | 21 | 56 | 52 | 1 | 0.3 | 0.71 | 0.744 | 0.915 | | 54208 U | 68 | 42 | 55 | 72 | 22.5 | 23.8 | 26.5 | 9 | 7 | 25 | 56 | 55 | 1 | 0.6 | 0.543 | 0.581 | 0.713 | | 54308 U | 78 | 42 | 60 | 82 | 30.5 | 33 | 35.5 | 12 | 8.5 | 23.5 | 64 | 60 | 1 | 0.6 | 1.04 | 1.13 | 1.38 | | 54408 U | 90 | 42 | 65 | 95 | 40 | 42.2 | 46 | 15 | 12 | 22 | 72 | 65 | 1 | 0.6 | 1.98 | 2.02 | 2.54 | | 54209 U | 73 | 47 | 60 | 78 | 23 | 24.3 | 27 | 9 | 7.5 | 23 | 56 | 60 | 1 | 0.6 | 0.606 | 0.652 | 0.823 | | 54309 U | 85 | 47 | 65 | 90 | 32 | 34.1 | 37 | 12 | 10 | 21 | 64 | 65 | 1 | 0.6 | 1.28 | 1.34 | 1.71 | | 54409 U | 100 | 47 | 72 | 105 | 44.5 | 47.9 | 51.5 | 17 | 12.5 | 23.5 | 80 | 72 | 1 | 0.6 | 2.71 | 2.85 | 3.53 | | 54210 U
54310 U
54410 U | 78
95
110 | 52
52
52 | | 82
100
115 | 24
36
48 | 25.5
39.3
50.6 | 28
42
55 | 9
14
18 | 7.5
11
14 | 30.5
23
30 | 64
72
90 | 62
72
80 | 1
1
1.5 | 0.6
0.6
0.6 | 0.697
1.78
3.51 | 0.75
1.94
3.59 | 0.949
2.46
4.45 | | 54211 U
54311 U
54411 U | 90
105
120 | 57
57
57 | | 95
110
125 | 27.5
39.5
53.5 | 29.8
43.8
56 | 32.5
46.5
60.5 | 10
15
20 | 9
11.5
15.5 | 32.5
25.5
22.5 | 72
80
90 | 72
80
88 | 1
1
1.5 | 0.6
0.6
0.6 | 1.11
2.43
4.66 | 1.22
2.7
4.68 | 1.55
3.35
5.82 | | 54212 U
54312 U
54412 U
54413 U | 95
110
130
140 | 62
62
62
68 | 85
95 | 100
115
135
145 | 28
39.5
57
62 | 30
42.8
60
66.2 | 33
46.5
64
71 | 10
15
21
23 | 9
11.5
16
17.5 | 30.5
36.5
28
34 | 72
90
100
112 | 78
85
95
100 | 1
1
1.5
2 | 0.6
0.6
0.6
1 | 1.22
2.59
5.74
7.41 | 1.33
2.82
5.82
7.66 | 1.66
3.45
7.24
9.47 | | 54213 U
54313 U
54214 U | 100
115
105 | 67
67
72 | 90 | 105
120
110 | 28.5
40
28.5 | 30.2
43.4
30.3 | 33.5
47
33.5 | 10
15
10 | 9
12.5
9 | 38.5
34.5
36.5 | 80
90
80 | 82
90
88 | 1
1
1 | 0.6
0.6
1 | 1.34
2.8
1.44 | 1.45
3.06
1.59 | 1.81
3.8
1.95 | | 54314 U | 125 | 72 | 98 | 130 | 44 | 48.2 | 52 | 16 | 13 | 39 | 100 | 98 | 1 | 1 | 3.67 | 4.07 | 4.95 | | 54414 U | 150 | 73 | 110 | 155 | 65.5 | 69.1 | 74.5 | 24 | 19.5 | 28.5 | 112 | 110 | 2 | 1 | 8.99 | 9.12 | 11.3 | ### Bore Diameter 60 – 130 mm | | | Bou | | Dimensio | ns | | | ,, | Basic Load R | Ü | f) | _ | | Bearing N | umbers(1) | |----------|----------------------|--------------------------|------------------------|----------------------------|------------------------|------------------------|--------------------|---|--|-------------------------------------|--------------------------------------|---------------------|-------|-------------------------------|------------------------------------| | d_2 | d | D | T_1 | T_5 | T_7 | γ
min. | ${m r}_1$ min. | $C_{\rm a}$ | C_{0a} | $C_{ m a}$ | C_{0a} | (mi)
Grease | Oil | With
Flat Seat | With
Aligning
Seat | | 60 | 75
75
75 | 110
135
160 | 47
79
115 | 49.6
87.2
123 | 57
95
135 | 1
1.5
2 | 1
1
1 | 78 000
159 000
254 000 | 209 000
365 000
560 000 | 7 950
16 200
25 900 | 21 300
37 500
57 000 | 1 200 | | 52315 | 54215
54315
54415 | | 65 | 80
80
80
85 | 115
140
170
180 | 48
79
120
128 | 51
86.2
128.4
138 | 58
95
140
150 | 1
1.5
2.1
2.1 | 1
1
1
1.1 | 79 000
164 000
272 000
310 000 | 218 000
395 000
620 000
755 000 | 8 050
16 700
27 800
31 500 | 22 300
40 000
63 500
77 000 | 1 200
850 | 1 300 | 52316 | 54216
54316
54416
54417 X | | 70 | 85
85
90 | 125
150
190 | 55
87
135 | 59.2
95.2
143.4 | 67
105
157 | 1
1.5
2.1 | 1
1
1.1 | 96 000
207 000
330 000 | 264 000
490 000
825 000 | 9 800
21 100
33 500 | 26 900
50 000
84 000 | 1 100 | 1 600 | | 54217
54317
54418 X | | 75
80 | 90
90
100 | 135
155
210 | 62
88
150 | 69
97.2
160 | 76
106
176 | 1.1
1.5
3 | 1
1
1.1 | 114 000
214 000
370 000 | 310 000
525 000
985 000 | 11 600
21 900
38 000 | 31 500
53 500
100 000 | 1 100 | 1 600 | | 54218
54318
54420 X | | 85
90 | 100
100
110 | 150
170
230 | 67
97
166 | 72.8
105.4
— | 81
115
— | 1.1
1.5
3 | 1
1
1.1 | 135 000
239 000
415 000 | 375 000
595 000
1 150 000 | 13 700
24 300
42 000 | 38 500
61 000
118 000 | 1 300
950
600 | 1 500 | | 54220
54320
— | | 95 | 110
110
120 | 160
190
250 | 67
110
177 | 71.4
118.4
— | 81
128
— | 1.1
2
4 | 1
1
1.5 | 136 000
282 000
515 000 | 395 000
755 000
1 540 000 | 13 900
28 800
52 500 | 40 000
77 000
157 000 | 1 200
850
560 | 1 300 | 52222
52322 X
52424 X | 54222
54322 X
— | | 100 | 120
120
130 | 170
210
270 | 68
123
192 | 71.6
131.2
— | 82
143
— | 1.1
2.1
4 | 1.1
1.1
1.5 | 141 000
330 000
525 000 | 430 000
930 000
1 590 000 | 14 400
33 500
53 500 | 44 000
95 000
162 000 | | 1 100 | 52224
52324 X
52426 X | 54224
54324 X
— | | 110 | 130
130
140 | 190
225
280 | 80
130
196 | 85.8
—
— | 96
—
— | 1.5
2.1
4 | 1.1
1.1
1.5 | | 550 000
1 030 000
1 750 000 | 18 700
35 500
56 500 | 56 000
105 000
178 000 | | 1 100 | 52226 X
52326 X
52428 X | 54226 X
—
— | | 120 | 140
140
150 | 200
240
300 | 81
140
209 | 86.2
— | 99
—
— | 1.5
2.1
4 | 1.1
1.1
2 | | 575 000
1 130 000
2 010 000 | 18 900
37 500
63 000 | | 1 000
670
480 | 1 000 | 52228 X
52328 X
52430 X | 54228 X
—
— | | 130 | 150
150
160 | 215
250
320 | 89
140
226 | 95.6
—
— | 109
—
— | 1.5
2.1
5 | 1.1
1.1
2 | | 735 000
1 200 000
2 210 000 | 24 300
39 000
66 000 | | 900
630
430 | 950 | 52230 X
52330 X
52432 X | 54230 X
—
— | Note (1) The outside diameter d_3 of the central washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | | | | | | Di | mensio
(mm) | ns | | | | | | nent an
nsions | d Fillet
(mm) | ı | Mass (kg
approx. |) | |---|----------------------------|----------------------|-------------------------|-------------------|----------------------------|------------------------------|----------------------------|----------------------|----------------------|----------------------------|-------------------------|-------------------------|-------------------------------|------------------------|------------------------------|------------------------------|---------------------------------| | With
Aligning
Seat Washer | d_3 | D_1 | D_2 | D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | $D_{ m a}$ max. | γ _a
max. | $ m \emph{r}_{b}$ max. | With
Flat Seat | | With
Aligning
Seat Washer | | 54215 U
54315 U
54415 U | 110
135
160 | 77
77
78 | 105 | 115
140
165 | 28.5
48.5
70.5 | 29.8
52.6
74.5 | 33.5
56.5
80.5 | 10
18
26 | 9.5
15
21 | 47.5
32.5
36.5 | 90
100
125 | 92
105
115 | 1
1.5
2 | 1
1
1 | 1.54
4.74
10.8 | 1.66
5.14
11 | 2.06
6.38
13.7 | | 54216 U
54316 U
54416 U
54417 XU | 115
140
170
179.5 | 82
82
83
88 | 98
110
125
130 | 175 | 29
48.5
73.5
78.5 | 30.5
52.1
77.7
83.5 | 34
56.5
83.5
89.5 | 10
18
27
29 | 10
15
22
23 | 45
45.5
30.5
40.5 | 90
112
125
140 | 98
110
125
130 | 1
1.5
2
2 | 1
1
1 | 1.66
4.99
12.6
15.4 | 1.78
5.39
12.8
15.8 | 2.21
6.61
16
19.5 | | 54217 U
54317 U
54418 XU | 125
150
189.5 | 88
88
93 | | | 33.5
53
82.5 | 35.6
57.1
86.7 | 39.5
62
93.5 | 12
19
30 | 11
17.5
25.5 | 49.5
39
34.5 | 100
112
140 | 105
115
140 | 1
1.5
2 | 1
1
1 | 2.26
6.38
17.5 | 2.45
6.8
18.1 | 3.02
10.5
22.5 | | 54218 U
54318 U
54420 XU | 135
155
209.5 |
93
93
103 | 110
120
155 | 160 | 38
53.5
91.5 | 41.5
58.1
96.5 | 45
62.5
104.5 | 14
19
33 | 13.5
18
27 | 42
36.5
43.5 | 100
112
160 | 110
120
155 | 1
1.5
2.5 | 1
1
1 | 3.09
6.79
26.8 | 3.42
7.33
27.2 | 4.39
9.29
33.4 | | 54220 U
54320 U
— | 150
170
229 | 103
103
113 | | 155
175
— | 41
59
101.5 | 43.9
63.2
— | 48
68
— | 15
21
37 | 14
18
— | 49
42
— | 112
125
— | 125
135
159 | 1
1.5
2.5 | 1
1
1 | 4.08
8.82
35.6 | 4.54
9.47
— | 5.64
11.6
— | | 54222 U
54322 XU
— | 160
189.5
249 | 113
113
123 | 135
150
— | | 41
67
108.5 | 43.2
71.2
— | 48
76
— | 15
24
40 | 14
20.5
— | 62
47
— | 125
140
— | 135
150
174 | 1
2
3 | 1
1
1.5 | 4.39
12.7
47.6 | 4.83
13.5
— | 5.94
16.6
— | | 54224 U
54324 XU
— | 170
209.5
269 | 123
123
134 | 145
165
— | 175
220
— | 41.5
75
117 | 43.3
79.1
— | 48.5
85
— | 15
27
42 | 15
22
— | 58.5
58
— | 125
160
— | 145
165
188 | 1
2
3 | 1
1
1.5 | 4.92
17.6
57.8 | 5.4
16.4
— | 6.68
22.9
— | | 54226 XU
—
— | 189.5
224
279 | 133
134
144 | 160
— | 195
— | 49
80
120 | 51.9
—
— | 57
— | 18
30
44 | 17
— | 63
— | 140
— | 160
169
198 | 1.5
2
3 | 1
1
1.5 | 7.43
21.5
62.4 | 8.24
— | 10.2
— | | 54228 XU
—
— | 199.5
239
299 | 143
144
153 | 170
— | 210
— | 49.5
85.5
127.5 | 52.1
— | 58.5
—
— | 18
31
46 | 17
— | 83.5
—
— | 160
— | 170
181
212 | 1.5
2
3 | 1
1
2 | 8.01
24.8
77.8 | 8.87
— | 11.2
— | | 54230 XU
—
— | 214.5
249
319 | 153
154
164 | 180
— | 225
—
— | 54.5
85.5
138 | 57.8
—
— | 64.5
—
— | 20
31
50 | 20.5
— | 74.5
— | 160
— | 180
191
226 | 1.5
2
4 | 1
1
2 | 10.4
30.3
93.6 | 11.5
—
— | 15
—
— | B 220 B 221 ### Bore Diameter 135 – 190 mm | | | Bou | | Dimensio | ns | | | | Basic Load R | • | gf} | Limiting
(mi) | | Bearing N | lumbers(1) | |-------|--------------------------|--------------------------|------------------------|--------------------------|----------------------|----------------------|----------------------|--|--|--------------------------------------|--|--------------------------|--------------|-------------------------------|------------------------------| | d_2 | d | D | T_1 | T_5 | T_7 | γ
min. | ${m r}_1$ min. | C_{a} | C_{0a} | $C_{\rm a}$ | C_{0a} | Grease | Oil | With
Flat Seat | With
Aligning
Seat | | 135 | 170 | 340 | 236 | _ | _ | 5 | 2.1 | 715 000 | 2 480 000 | 73 000 | 253 000 | 400 | 600 | 52434 X | _ | | 140 | 160
160
180 | 225
270
360 | 90
153
245 | 97.4
—
— | 110
— | 1.5
3
5 | 1.1
1.1
3 | 249 000
475 000
750 000 | 805 000
1 570 000
2 730 000 | 25 400
48 500
76 500 | 82 000
160 000
278 000 | 850
600
380 | 900 | 52232 X
52332 X
52436 X | 54232 X
—
— | | 150 | 170
170
180
180 | 240
280
250
300 | 97
153
98
165 | 104.4
—
102.4
— | 117
—
118
— | 1.5
3
1.5
3 | 1.1
1.1
2
3 | 280 000
465 000
284 000
480 000 | 915 000
1 570 000
955 000
1 680 000 | 28 500
47 500
28 900
49 000 | 93 000
160 000
97 000
171 000 | 800
560
800
530 | 850
1 200 | 52334 X | 54234 X
—
54236 X
— | | 160 | 190
190 | 270
320 | 109
183 | 116.4
— | 131 | 2
4 | 2 | 320 000
550 000 | 1 110 000
1 960 000 | 32 500
56 000 | 113 000
199 000 | 710
480 | | 52238 X
52338 X | 54238 X
— | | 170 | 200
200 | 280
340 | 109
192 | 115.6
— | 133 | 2
4 | 2 | 315 000
600 000 | 1 110 000
2 220 000 | 32 500
61 500 | 113 000
227 000 | 710
450 | | 52240 X
52340 X | 54240 X
— | | 190 | 220 | 300 | 110 | 115.2 | 134 | 2 | 2 | 325 000 | 1 210 000 | 33 500 | 123 000 | 670 | 1 000 | 52244 X | 54244 X | Note (1) The outside diameter d_3 of the central washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | | | | | | Di | mensio
(mm) | ns | | | | | | nent an
nsions | d Fillet
(mm) | ı | Mass(kç
approx | | |---------------------------------|----------------------------|--------------------------|----------|----------------------|-------------------------|------------------------|----------------------|----------------------|------------------------|-----------------------|----------------------|--------------------------|-------------------------------|----------------------|------------------------------|--------------------------|---------------------------------| | With
Aligning
Seat Washer | d_3 | D_1 | D_2 | D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | $D_{ m a}$ max. | γ _a
max. | $ m \emph{r}_b$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | _ | 339 | 174 | _ | _ | 143 | _ | _ | 50 | _ | _ | _ | 240 | 4 | 2 | 110 | _ | _ | | 54232 XU
—
— | 224.5
269
359 | 163
164
184 | 190
— | 235
—
— | 55
93
148.5 | 58.7
—
— | 65
—
— | 20
33
52 | 21
— | 70
— | 160
— | 190
205
254 | 1.5
2.5
4 | 1
1
2.5 | 11.2
35.1
126 | 12.7
—
— | 16.5
—
— | | 54234 XU
54236 XU | 239.5
279
249
299 | 173
174
183
184 | | 250
—
260
— | 59
93
59.5
101 | 62.7
—
61.7
— | 69
—
69.5
— | 21
33
21
37 | 21.5
—
21.5
— | 87
—
108.5
— | 180
—
200
— | 200
215
210
229 | 1.5
2.5
1.5
2.5 | 1
1
2
2.5 | 13.6
40.8
14.8
46.3 | 15.2
—
16.1
— | 19.8
—
20.6
— | | 54238 XU
— | 269
319 | 194
195 | 230 | 280 | 66.5
111.5 | 70.2
— | 77.5
— | 24
40 | 23 | 93.5
— | 200 | 230
244 | 2 | 2 | 22.1
113 | 22.2
— | 29.8
— | | 54240 XU
— | 279
339 | 204
205 | 240
— | 290
— | 66.5
117 | 69.8
— | 78.5
— | 24
42 | 23 | 120.5 | 225
— | 240
258 | 2 | 2 | 23.1
78.4 | 23.2 | 30.6 | | 54244 XU | 299 | 224 | 260 | 310 | 67 | 69.6 | 79 | 24 | 25 | 114 | 225 | 260 | 2 | 2 | 25.2 | 27.8 | 34.1 | Bore Diameter 35 - 130 mm | | Boundary D | | | | ad Ratings
N) | ٧ - | Speeds
in ⁻¹) | |-----|------------|----|------------------|-------------|-------------------|--------|------------------------------| | d | D | T | ∤
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Grease | Oil | | 35 | 80 | 32 | 1.1 | 95 500 | 247 000 | 1 000 | 3 000 | | 40 | 78 | 22 | 1 | 63 000 | 194 000 | 1 200 | 3 600 | | 45 | 65 | 14 | 0.6 | 33 000 | 100 000 | 1 700 | 5 000 | | | 85 | 24 | 1 | 71 000 | 233 000 | 1 100 | 3 400 | | 50 | 110 | 27 | 1.1 | 139 000 | 470 000 | 900 | 2 800 | | | 95 | 27 | 1.1 | 113 000 | 350 000 | 1 000 | 3 000 | | 55 | 105 | 30 | 1.1 | 134 000 | 450 000 | 900 | 2 600 | | 60 | 95 | 26 | 1 | 99 000 | 325 000 | 1 000 | 3 000 | | | 110 | 30 | 1.1 | 139 000 | 480 000 | 850 | 2 600 | | 65 | 100 | 27 | 1 | 110 000 | 325 000 | 950 | 2 800 | | | 115 | 30 | 1.1 | 145 000 | 515 000 | 850 | 2 600 | | 70 | 150 | 36 | 2 | 259 000 | 935 000 | 670 | 2 000 | | | 125 | 34 | 1.1 | 191 000 | 635 000 | 750 | 2 200 | | 75 | 100 | 19 | 1 | 63 500 | 221 000 | 1 100 | 3 400 | | | 135 | 36 | 1.5 | 209 000 | 735 000 | 710 | 2 200 | | 80 | 115 | 28 | 1 | 120 000 | 420 000 | 900 | 2 600 | | | 140 | 36 | 1.5 | 208 000 | 740 000 | 710 | 2 000 | | 85 | 110 | 19 | 1 | 75 000 | 298 000 | 1 100 | 3 200 | | | 125 | 31 | 1 | 151 000 | 485 000 | 800 | 2 400 | | | 150 | 39 | 1.5 | 257 000 | 995 000 | 630 | 1 900 | | 90 | 120 | 22 | 1 | 96 000 | 370 000 | 950 | 3 000 | | | 155 | 39 | 1.5 | 250 000 | 885 000 | 630 | 1 900 | | 100 | 170 | 42 | 1.5 | 292 000 | 1 110 000 | 560 | 1 700 | | 110 | 160 | 38 | 1.1 | 228 000 | 855 000 | 630 | 1 900 | | | 190 | 48 | 2 | 390 000 | 1 490 000 | 500 | 1 500 | | 120 | 170 | 39 | 1.1 | 233 000 | 895 000 | 600 | 1 800 | | | 210 | 54 | 2.1 | 505 000 | 1 930 000 | 450 | 1 400 | | 130 | 190 | 45 | 1.5 | 300 000 | 1 090 000 | 530 | 1 600 | | | 225 | 58 | 2.1 | 585 000 | 2 370 000 | 430 | 1 300 | | | 270 | 85 | 4 | 895 000 | 3 300 000 | 320 | 950 | | Bearing Numbers | | | ensions
nm) | | | ment and I
ensions (m | | Mass
(kg) | |-----------------|----------------------------|-------|----------------|------|-----------------|--------------------------|-------------------------------|--------------| | bearing Numbers | $d_{\scriptscriptstyle 1}$ | D_1 | $D_{ m w}$ | t | $d_{ m a}$ min. | D_{a} max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | 35 TMP 14 | 80 | 37 | 12 | 10 | 71 | 46 | 1 | 0.97 | | 40 TMP 93 | 78 | 42 | 8 | 7 | 71 | 48 | 1 | 0.525 | | 45 TMP 11 | 65 | 47 | 6 | 4 | 60 | 49 | 0.6 | 0.144 | | 45 TMP 93 | 85 | 47 | 8 | 8 | 78 | 53 | 1 | 0.665 | | 50 TMP 74 | 109 | 52 | 11 | 8 | 100 | 61 | 1 | 1.52 | | 50 TMP 93 | 93 | 52 | 11 | | 89 | 57 | 1 | 0.94 | | 55 TMP 93 | 105 | 55.2 | 11 | 9.5 | 98 | 63 | 1 | 1.28 | | 60 TMP 12 | 95 | 62 | 10 | 8 | 88 | 67 | 1 | 0.735 | | 60 TMP 93 | 110 | 62 | 11 | 9.5 | 103 | 68 | 1 | 1.36 | | 65 TMP 12 | 100 | 67 | 12.5 | 7.25 | 93 | 71 | 1 | 0.805 | | 65 TMP 93 | 115 | 65.2 | 11 | 9.5 | 108 | 73 | 1 | 1.44 | | 70 TMP 74 | 149 | 72 | 15 | 10.5 | 137 | 84 | 2 | 3.8 | | 70 TMP 93 | 125 | 72 | 14 | 10 | 117 | 78 | 1 | 1.95 | | 75 TMP 11 | 100 | 77 | 8 | 5.5 | 96 | 79 | 1 | 0.41 | | 75 TMP 93 | 135 | 77 | 14 | 11 | 125 | 84 | 1.5 | 2.42 | | 80 TMP 12 | 115
| 82 | 11 | 8.5 | 109 | 86 | 1 | 1.02 | | 80 TMP 93 | 138 | 82 | 14 | 11 | 130 | 91 | 1.5 | 2.54 | | 85 TMP 11 | 110 | 87 | 7.5 | 5.75 | 105 | 89 | 1 | 0.46 | | 85 TMP 12 | 125 | 88 | 14 | 8.5 | 118 | 92 | 1 | 1.36 | | 85 TMP 93 | 148 | 87 | 14 | 12.5 | 140 | 95 | 1.5 | 3.2 | | 90 TMP 11 | 119 | 91.5 | 9 | 6.5 | 114 | 95 | 1 | 0.725 | | 90 TMP 93 | 155 | 90.2 | 16 | 11.5 | 144 | 101 | 1.5 | 3.3 | | 100 TMP 93 | 170 | 103 | 16 | 13 | 159 | 110 | 1.5 | 4.25 | | 110 TMP 12 | 160 | 113 | 15 | 11.5 | 150 | 119 | 1 | 2.66 | | 110 TMP 93 | 190 | 113 | 19 | 14.5 | 179 | 120 | 2 | 6.15 | | 120 TMP 12 | 170 | 123 | 15 | 12 | 160 | 129 | 1 | 2.93 | | 120 TMP 93 | 210 | 123 | 22 | 16 | 199 | 129 | 2 | 8.55 | | 130 TMP 12 | 187 | 133 | 19 | 13 | 177 | 142 | 1.5 | 4.5 | | 130 TMP 93 | 225 | 133 | 22 | 18 | 214 | 140 | 2 | 10.4 | | 130 TMP 94 | 270 | 133 | 32 | 26.5 | 254 | 150 | 3 | 26.2 | **Remarks** For cylindrical roller thrust bearings not listed adove, please contact NSK. B 224 B 225 Bore Diameter 140 – 320 mm | | Boundary [
(m | Dimensions
m) | | | ad Ratings | 1 | Speeds
in ⁻¹) | |-----|------------------|------------------|------------------|------------------|-------------------|--------|------------------------------| | d | D | T | γ
min. | C_{a} | $C_{0\mathrm{a}}$ | Grease | Oil | | 140 | 200 | 46 | 2 | 285 000 | 1 120 000 | 500 | 1 500 | | | 240 | 60 | 2.1 | 610 000 | 2 360 000 | 400 | 1 200 | | | 280 | 85 | 4 | 990 000 | 3 800 000 | 300 | 900 | | 150 | 215 | 50 | 2 | 375 000 | 1 500 000 | 480 | 1 400 | | | 250 | 60 | 2.1 | 635 000 | 2 510 000 | 400 | 1 200 | | 160 | 200 | 31 | 1 | 173 000 | 815 000 | 630 | 1 900 | | | 270 | 67 | 3 | 745 000 | 3 150 000 | 360 | 1 100 | | 170 | 240 | 55 | 1.5 | 485 000 | 1 960 000 | 430 | 1 300 | | | 280 | 67 | 3 | 800 000 | 3 500 000 | 340 | 1 000 | | 180 | 300 | 73 | 3 | 1 000 000 | 4 000 000 | 320 | 950 | | | 360 | 109 | 5 | 1 640 000 | 6 200 000 | 240 | 710 | | 190 | 270 | 62 | 3 | 705 000 | 2 630 000 | 360 | 1 100 | | | 320 | 78 | 4 | 1 080 000 | 4 500 000 | 300 | 900 | | 200 | 250 | 37 | 1.1 | 365 000 | 1 690 000 | 500 | 1 500 | | | 340 | 85 | 4 | 1 180 000 | 5 150 000 | 280 | 800 | | 220 | 270 | 37 | 1.1 | 385 000 | 1 860 000 | 480 | 1 500 | | | 300 | 63 | 2 | 770 000 | 3 100 000 | 340 | 1 000 | | 240 | 300 | 45 | 1.5 | 435 000 | 2 160 000 | 400 | 1 200 | | | 340 | 78 | 2.1 | 965 000 | 4 100 000 | 280 | 850 | | 260 | 320 | 45 | 1.5 | 460 000 | 2 350 000 | 400 | 1 200 | | | 360 | 79 | 2.1 | 995 000 | 4 350 000 | 280 | 850 | | 280 | 350 | 53 | 1.5 | 545 000 | 2 800 000 | 340 | 1 000 | | | 380 | 80 | 2.1 | 1 050 000 | 4 750 000 | 260 | 800 | | 300 | 380 | 62 | 2 | 795 000 | 4 000 000 | 300 | 900 | | | 420 | 95 | 3 | 1 390 000 | 6 250 000 | 220 | 670 | | 320 | 400 | 63 | 2 | 820 000 | 4 250 000 | 300 | 900 | | | 440 | 95 | 3 | 1 420 000 | 6 550 000 | 220 | 670 | | Bearing Numbers | | | ensions
mm) | | | tment and f
nensions (m | | Mass
(kg) | |-----------------|----------------------------|-------|----------------|------|-----------------|----------------------------|-------------------------------|--------------| | bearing Numbers | $d_{\scriptscriptstyle 1}$ | D_1 | $D_{ m w}$ | t | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | 140 TMP 12 | 197 | 143 | 17 | 14.5 | 188 | 153 | 2 | 4.85 | | 140 TMP 93 | 240 | 143 | 25 | 17.5 | 226 | 154 | 2 | 12.2 | | 140 TMP 94 | 280 | 143 | 32 | 26.5 | 262 | 158 | 3 | 27.5 | | 150 TMP 12 | 215 | 153 | 19 | 15.5 | 202 | 163 | 2 2 | 6.15 | | 150 TMP 93 | 250 | 153 | 25 | 17.5 | 236 | 165 | | 12.8 | | 160 TMP 11 | 200 | 162 | 11 | 10 | 191 | 168 | 1 | 2.21 | | 160 TMP 93 | 265 | 164 | 25 | 21 | 255 | 173 | 2.5 | 16.9 | | 170 TMP 12 | 237 | 173 | 22 | 16.5 | 227 | 182 | 1.5 | 8.2 | | 170 TMP 93 | 280 | 173 | 25 | 21 | 265 | 183 | 2.5 | 17.7 | | 180 TMP 93 | 300 | 185 | 32 | 20.5 | 284 | 194 | 2.5 | 22.5 | | 180 TMP 94 | 354 | 189 | 45 | 32 | 335 | 205 | 4 | 58.2 | | 190 TMP 12 | 266 | 195 | 30 | 16 | 255 | 200 | 2.5 | 11.8 | | 190 TMP 93 | 320 | 195 | 32 | 23 | 303 | 205 | 3 | 27.6 | | 200 TMP 11 | 247 | 203 | 17 | 10 | 242 | 207 | 1 | 4.1 | | 200 TMP 93 | 340 | 205 | 32 | 26.5 | 322 | 218 | 3 | 34.5 | | 220 TMP 11 | 267 | 223 | 17 | 10 | 262 | 227 | 1 2 | 4.5 | | 220 TMP 12 | 297 | 224 | 30 | 16.5 | 287 | 232 | | 13.5 | | 240 TMP 11 | 297 | 243 | 18 | 13.5 | 288 | 251 | 1.5 | 7.2 | | 240 TMP 12 | 335 | 244 | 32 | 23 | 322 | 258 | 2 | 23.3 | | 260 TMP 11 | 317 | 263 | 18 | 13.5 | 308 | 272 | 1.5 | 7.75 | | 260 TMP 12 | 355 | 264 | 32 | 23.5 | 342 | 276 | 2 | 25.2 | | 280 TMP 11 | 347 | 283 | 20 | 16.5 | 335 | 294 | 1.5 | 11.6 | | 280 TMP 12 | 375 | 284 | 32 | 24 | 362 | 296 | 2 | 27.2 | | 300 TMP 11 | 376 | 304 | 25 | 18.5 | 365 | 315 | 2 | 16.7 | | 300 TMP 12 | 415 | 304 | 38 | 28.5 | 398 | 322 | 2.5 | 42 | | 320 TMP 11 | 396 | 324 | 25 | 19 | 385 | 335 | 2 | 18 | | 320 TMP 12 | 435 | 325 | 38 | 28.5 | 418 | 340 | 2.5 | 44.5 | **Remarks** For cylindrical roller thrust bearings not listed adove, please contact NSK. B 226 B 227 Mass (kg) Bore Diameter 60 – 200 mm Dimensions (mm) Spacer Sleeve Dimensions (mm) $\begin{aligned} & \textbf{Dynamic Equivalent Load} \\ & P = 1.2F_r + F_a \\ & \textbf{Static Equivalent Load} \\ & P_0 = 2.8F_r + F_a \\ & \textbf{However}, F_r/F_a \leqq 0.55 \text{ must be} \\ & \textbf{satisfied}. \end{aligned}$ Abutment and Fillet Dimensions (mm) | | | Dimensior
nm) | ıs | (| Basic Load | • | gf} | Limiting
Speeds | Bearing | |----------|-------------------|------------------|-------------------|-------------------------------|-------------------------------------|----------------------------|-------------------------------|-----------------------------|-------------------------------| | d | D | T | γ
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | C_{a} | C_{0a} | (min ⁻¹)
Oil | Numbers | | 60 | 130 | 42 | 1.5 | 330 000 | 885 000 | 33 500 | 90 000 | 2 600 | 29412 E | | 65 | 140 | 45 | 2 | 405 000 | 1 100 000 | 41 500 | 112 000 | 2 400 | 29413 E | | 70 | 150 | 48 | 2 2 | 450 000 | 1 240 000 | 46 000 | 126 000 | 2 400 | 29414 E | | 75 | 160 | 51 | | 515 000 | 1 430 000 | 52 500 | 146 000 | 2 200 | 29415 E | | 80
85 | 170
150
180 | 54
39
58 | 2.1
1.5
2.1 | 575 000
330 000
630 000 | 1 600 000
1 040 000
1 760 000 | 58 500
34 000
64 500 | 163 000
106 000
179 000 | 2 000
2 400
1 900 | 29416 E
29317 E
29417 E | | 90 | 155 | 39 | 1.5 | 350 000 | 1 080 000 | 35 500 | 110 000 | 2 200 | 29318 E | | | 190 | 60 | 2.1 | 695 000 | 1 950 000 | 70 500 | 199 000 | 1 800 | 29418 E | | 100 | 170 | 42 | 1.5 | 410 000 | 1 280 000 | 41 500 | 131 000 | 2 000 | 29320 E | | | 210 | 67 | 3 | 840 000 | 2 400 000 | 86 000 | 245 000 | 1 600 | 29420 E | | 110 | 190 | 48 | 2 | 530 000 | 1 710 000 | 54 000 | 174 000 | 1 800 | 29322 E | | | 230 | 73 | 3 | 1 010 000 | 2 930 000 | 103 000 | 299 000 | 1 500 | 29422 E | | 120 | 210 | 54 | 2.1 | 645 000 | 2 100 000 | 65 500 | 214 000 | 1 600 | 29324 E | | | 250 | 78 | 4 | 1 160 000 | 3 400 000 | 119 000 | 350 000 | 1 400 | 29424 E | | 130 | 225 | 58 | 2.1 | 740 000 | 2 450 000 | 75 500 | 250 000 | 1 500 | 29326 E | | | 270 | 85 | 4 | 1 330 000 | 3 900 000 | 135 000 | 400 000 | 1 200 | 29426 E | | 140 | 240 | 60 | 2.1 | 840 000 | 2 810 000 | 85 500 | 287 000 | 1 400 | 29328 E | | | 280 | 85 | 4 | 1 370 000 | 4 200 000 | 140 000 | 425 000 | 1 200 | 29428 E | | 150 | 250 | 60 | 2.1 | 870 000 | 2 900 000 | 89 000 | 296 000 | 1 400 | 29330 E | | | 300 | 90 | 4 | 1 580 000 | 4 900 000 | 162 000 | 500 000 | 1 100 | 29430 E | | 160 | 270 | 67 | 3 | 1 010 000 | 3 400 000 | 103 000 | 345 000 | 1 300 | 29332 E | | | 320 | 95 | 5 | 1 740 000 | 5 400 000 | 178 000 | 550 000 | 1 100 | 29432 E | | 170 | 280 | 67 | 3 | 1 050 000 | 3 500 000 | 107 000 | 355 000 | 1 200 | 29334 E | | | 340 | 103 | 5 | 1 680 000 | 5 800 000 | 171 000 | 595 000 | 1 000 | 29434 | | 180 | 300 | 73 | 3 | 1 230 000 | 4 200 000 | 125 000 | 430 000 | 1 100 | 29336 E | | | 360 | 109 | 5 | 1 870 000 | 6 500 000 | 190 000 | 660 000 | 900 | 29436 | | 190 | 320 | 78 | 4 | 1 370 000 | 4 700 000 | 140 000 | 480 000 | 1 100 | 29338 E | | | 380 | 115 | 5 | 2 100 000 | 7 450 000 | 215 000 | 760 000 | 850 | 29438 | | 200 | 280 | 48 | 2 | 540 000 | 2 310 000 | 55 000 | 236 000 | 1 500 | 29240 | | | 340 | 85 | 4 | 1 570 000 | 5 450 000 | 160 000 | 555 000 | 1 000 | 29340 E | | | 400 | 122 | 5 | 2 290 000 | 8 150 000 | 234 000 | 835 000 | 800 | 29440 | | d_1 | D_1 | B,B_1 | B_2 | С | A | $d_{\scriptscriptstyle \mathrm{S1}}$ max. | $d_{ ext{S2}}$ max. | $d_{ m a}^{(1)}$ min. | $D_{ m a}$ max. | $D_{ m b}$ min. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | |---------------------|-------------------|------------------|-----------------|----------------|-------------------|---|---------------------|-----------------------|-------------------|-----------------|-------------------------------|--------------------| | 114.5 | 89 | 27 | 38 | 20 | 38 | 67 | 67 | 90 | 108 | 133 | 1.5 | 2.55 | | 121.5 | 93 | 29.5 | 40.5 | 22 | 42 | 72 | 72 | 100 | 115 | 143 | 2 | 3.2 | | 131.5 | 102 | 31 | 43 | 24 | 44 | 78 | 78 | 105 | 125 | 153 | 2 | 3.9 | | 138 | 107 | 33.5 | 46 | 25 | 47 | 83 | 83 | 115 | 132 | 163 | | 4.65 | | 148 | 114.5 | 35 | 48.5 | 27 | 50 | 89 | 89 | 120 | 140 | 173 | 2 | 5.55 | | 134.5 | 112 | 24.5 | 35.5 | 19 | 50 | 91 | 91 | 115 | 135 | 153 | 1.5 | 2.7 | | 156.5 | 124 | 37 | 51.5 | 28 | 54 | 95 | 95 | 130 | 150 | 183 | 2 | 6.55 | | 139.5 | 118 | 24.5 | 35 | 19 | 52 | 97 | 97 | 120 | 140 | 158 | 1.5 | 2.83 | | 165.5 | 129.5 | 39 | 54.5 | 29 | 56 | 100 | 100 | 135 | 157 | 193 | 2 | 7.55 | | 152 | 128 | 26.2 | 38 | 20.8 | 58 | 107 | 107 | 130 | 150 | 173 | 1.5 | 3.6 | | 185 | 144 | 43 | 59.5 | 33 | 62 | 111 | 111 | 150 | 175 | 214 | 2.5 | 10.3 | | 169.5 | 142.5 | 30.3 | 43.5 | 24 | 64 | 117 | 117 | 145 | 165 | 193 | 2 | 5.25 | | 200 | 157 | 47 | 64.5 | 36 | 69 |
121 | 129 | 165 | 190 | 234 | 2.5 | 13.3 | | 187.5 | 156.5 | 34 | 48.5 | 27 | 70 | 130 | 130 | 160 | 180 | 214 | 2 | 7.3 | | 215 | 171 | 50.5 | 69.5 | 38 | 74 | 132 | 142 | 180 | 205 | 254 | | 16.6 | | 203.5 | 168.5 | 37 | 53.5 | 28 | 76 | 141 | 143 | 170 | 195 | 229 | 2 | 8.95 | | 235 | 185 | 54 | 74.5 | 42 | 81 | 143 | 153 | 195 | 225 | 275 | | 21.1 | | 216.5 | 179 | 38.5 | 54 | 30 | 82 | 148 | 154 | 185 | 205 | 244 | 2 | 10.4 | | 244.5 | 195.5 | 54 | 74.5 | 42 | 86 | 153 | 162 | 205 | 235 | 285 | | 22.2 | | 224 | 190 | 38 | 54.5 | 29 | 87 | 158 | 163 | 195 | 215 | 254 | 2 | 10.8 | | 266 | 209 | 58 | 81 | 44 | 92 | 164 | 175 | 220 | 250 | 306 | 3 | 27.3 | | 243 | 203 | 42 | 60 | 33 | 92 | 169 | 176 | 210 | 235 | 275 | 2.5 | 14.3 | | 278 | 224.5 | 60.5 | 84.5 | 46 | 99 | 175 | 189 | 230 | 265 | 326 | 4 | 32.1 | | 252 | 214.5 | 42.2 | 60.5 | 32 | 96 | 178 | 188 | 220 | 245 | 285 | 2.5 | 14.8 | | 310 | 243 | 37 | 99 | 50 | 104 | — | — | 245 | 285 | — | 4 | 43.5 | | 270 | 227 | 46 | 65.5 | 36 | 103 | 189 | 195 | 235 | 260 | 306 | 2.5 | 19 | | 330 | 255 | 39 | 105 | 52 | 110 | — | — | 260 | 300 | | 4 | 52 | | 288.5 | 244 | 49 | 69 | 38 | 110 | 200 | 211 | 250 | 275 | 326 | 3 | 23 | | 345 | 271 | 41 | 111 | 55 | 117 | | — | 275 | 320 | — | 4 | 60 | | 266
306.5
365 | 236
257
280 | 15
53.5
43 | 46
75
117 | 24
41
59 | 108
116
122 | 211
— | 224
— | 235
265
290 | 255
295
335 | 346
— | 2
3
4 | 8.55
28.5
69 | **Note** (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. ## Bore Diameter 220 - 420 mm Dynamic Equivalent Load $P = 1.2F_{\rm r} + F_{\rm a}$ Static Equivalent Load $P_0 = 2.8F_r + F_a$ However, $F_{\rm r}/F_{\rm a} \le 0.55$ must be satisfied. | | | Dimension | 1S | | Basic Load | | gf} | Limiting
Speeds | Bearing | |-----|--------------------------|-------------------------|----------------------|--|---|-------------------------------|--|-----------------------------|-------------------------------------| | d | D | T | γ
min. | $C_{\rm a}$ | C_{0a} | $C_{\rm a}$ | C_{0a} | (min ⁻¹)
Oil | Numbers | | 220 | 300
360
420 | 48
85
122 | 2
4
6 | 560 000
1 340 000
2 350 000 | 2 500 000
5 200 000
8 650 000 | 57 000
137 000
240 000 | 255 000
530 000
880 000 | 1 400
950
800 | 29244
29344
29444 | | 240 | 340
380
440 | 60
85
122 | 2.1
4
6 | 800 000
1 360 000
2 420 000 | 3 450 000
5 400 000
9 100 000 | 82 000
139 000
247 000 | 350 000
550 000
930 000 | 1 200
950
750 | 29248
29348
29448 | | 260 | 360
420
480 | 60
95
132 | 2.1
5
6 | 855 000
1 700 000
2 820 000 | 3 850 000
6 800 000
10 700 000 | 87 500
173 000
287 000 | 395 000
695 000
1 090 000 | 1 200
800
710 | 29252
29352
29452 | | 280 | 380
440
520
520 | 60
95
145
145 | 2.1
5
6
6 | 885 000
1 830 000
3 400 000
3 950 000 | 4 100 000
7 650 000
13 100 000
14 900 000 | | 420 000
780 000
1 330 000
1 520 000 | 1 100
800
630
630 | 29256
29356
29456
29456 EM | | 300 | 420
480
540 | 73
109
145 | 3
5
6 | 1 160 000
2 190 000
3 500 000 | 5 150 000
9 100 000
13 700 000 | 118 000
224 000
355 000 | 525 000
925 000
1 390 000 | 950
710
630 | 29260
29360
29460 | | 320 | 440
500
580 | 73
109
155 | 3
5
7.5 | 1 190 000
2 230 000
3 650 000 | 5 450 000
9 400 000
14 600 000 | 122 000
227 000
370 000 | 555 000
960 000
1 490 000 | 950
670
560 | 29264
29364
29464 | | 340 | 460
540
620 | 73
122
170 | 3
5
7.5 | 1 230 000
2 640 000
4 400 000 | 5 750 000
11 200 000
17 400 000 | | 590 000
1 140 000
1 780 000 | 900
630
530 | 29268
29368
29468 | | 360 | 500
560
640
640 | 85
122
170
170 | 4
5
7.5
7.5 | 1 550 000
2 670 000
4 200 000
5 450 000 | 7 300 000
11 500 000
17 200 000
20 400 000 | 430 000 | 745 000
1 180 000
1 750 000
2 800 000 | 800
600
500
500 | 29272
29372
29472
29472 EM | | 380 | 520
600
670 | 85
132
175 | 4
6
7.5 | 1 620 000
3 300 000
4 800 000 | 7 800 000
14 500 000
19 500 000 | | 795 000
1 480 000
1 990 000 | 800
560
480 | 29276
29376
29476 | | 400 | 540
620
710 | 85
132
185 | 4
6
7.5 | 1 640 000
3 250 000
5 400 000 | 8 000 000
14 500 000
22 100 000 | | 815 000
1 480 000
2 250 000 | 750
530
450 | 29280
29380
29480 | | 420 | 580
650
730 | 95
140
185 | 5
6
7.5 | 2 010 000
3 500 000
5 650 000 | 9 800 000
15 700 000
23 500 000 | 355 000 | 1 000 000
1 600 000
2 400 000 | 670
500
450 | 29284
29384
29484 | | | | Dime r
(m | n sions
m) | | | ment and
ensions (r | | Mass
(kg) | | |-------|-------|---------------------|----------------------|----|-----|------------------------|-----------------------|-------------------------|---------| | d_1 | D_1 | B_1 | B_2 | С | A | $d_{ m a}^{(1)}$ min. | D_{a} max. | ${\pmb{\gamma}}_a$ max. | approx. | | 285 | 254 | 15 | 46 | 24 | 117 | 260 | 275 | 2 | 9.2 | | 335 | 280 | 29 | 81 | 41 | 125 | 285 | 315 | 3 | 33 | | 385 | 308 | 43 | 117 | 58 | 132 | 310 | 355 | 5 | 74 | | 325 | 283 | 19 | 57 | 30 | 130 | 285 | 305 | 2 | 16.5 | | 355 | 300 | 29 | 81 | 41 | 135 | 300 | 330 | 3 | 35.5 | | 405 | 326 | 43 | 117 | 59 | 142 | 330 | 375 | 5 | 79 | | 345 | 302 | 19 | 57 | 30 | 139 | 305 | 325 | 2 | 18 | | 390 | 329 | 32 | 91 | 45 | 148 | 330 | 365 | 4 | 48.5 | | 445 | 357 | 48 | 127 | 64 | 154 | 360 | 405 | 5 | 105 | | 365 | 323 | 19 | 57 | 30 | 150 | 325 | 345 | 2 | 19 | | 410 | 348 | 32 | 91 | 46 | 158 | 350 | 390 | 4 | 52.5 | | 480 | 384 | 52 | 140 | 68 | 166 | 390 | 440 | 5 | 132 | | 480 | 380 | 52 | 140 | 70 | 166 | 410 | 445 | 5 | 134 | | 400 | 353 | 21 | 69 | 38 | 162 | 355 | 380 | 2.5 | 30 | | 450 | 379 | 37 | 105 | 50 | 168 | 380 | 420 | 4 | 74 | | 500 | 402 | 52 | 140 | 70 | 175 | 410 | 460 | 5 | 140 | | 420 | 372 | 21 | 69 | 38 | 172 | 375 | 400 | 2.5 | 32.5 | | 470 | 399 | 37 | 105 | 53 | 180 | 400 | 440 | 4 | 77 | | 555 | 436 | 55 | 149 | 75 | 191 | 435 | 495 | 6 | 175 | | 440 | 395 | 21 | 69 | 37 | 183 | 395 | 420 | 2.5 | 33.5 | | 510 | 428 | 41 | 117 | 59 | 192 | 430 | 470 | 4 | 103 | | 590 | 462 | 61 | 164 | 82 | 201 | 465 | 530 | 6 | 218 | | 480 | 423 | 25 | 81 | 44 | 194 | 420 | 455 | 3 | 51 | | 525 | 448 | 41 | 117 | 59 | 202 | 450 | 495 | 4 | 107 | | 610 | 480 | 61 | 164 | 82 | 210 | 485 | 550 | 6 | 228 | | 580 | 474 | 61 | 164 | 83 | 210 | 495 | 550 | 6 | 220 | | 496 | 441 | 27 | 81 | 42 | 202 | 440 | 475 | 3 | 52 | | 568 | 477 | 44 | 127 | 63 | 216 | 480 | 525 | 5 | 140 | | 640 | 504 | 63 | 168 | 85 | 230 | 510 | 575 | 6 | 254 | | 517 | 460 | 27 | 81 | 42 | 212 | 460 | 490 | 3 | 55 | | 590 | 494 | 44 | 127 | 64 | 225 | 500 | 550 | 5 | 150 | | 680 | 536 | 67 | 178 | 89 | 236 | 540 | 610 | 6 | 306 | | 553 | 489 | 30 | 91 | 46 | 225 | 490 | 525 | 4 | 72 | | 620 | 520 | 48 | 135 | 68 | 235 | 525 | 575 | 5 | 170 | | 700 | 556 | 67 | 178 | 89 | 244 | 560 | 630 | 6 | 323 | **Note** (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. B 230 B 231 Bore Diameter 440 - 500 mm $\begin{aligned} & \textbf{Dynamic Equivalent Load} \\ & P = 1.2F_{\rm r} + F_{\rm a} \\ & \textbf{Static Equivalent Load} \\ & P_0 = 2.8F_{\rm r} + F_{\rm a} \\ & \textbf{However, } F_{\rm r} / F_{\rm a} \leqq 0.55 \text{ must be} \\ & \text{satisfied.} \end{aligned}$ | | | Dimer
(m | | | | Abuti
Dime | Mass
(kg) | | | |-------|-------|--------------------|-------|-----|-----|-----------------------|-----------------------|----------------------|---------| | d_1 | D_1 | B_1 | B_2 | С | A | $d_{ m a}^{(1)}$ min. | D_{a} max. | $m{\gamma}_{a}$ max. | approx. | | 575 | 508 | 30 | 91 | 49 | 235 | 510 | 545 | 4 | 77 | | 645 | 548 | 49 | 140 | 70 | 245 | 550 | 600 | 5 | 190 | | 745 | 588 | 74 | 199 | 100 | 260 | 595 | 670 | 8 | 407 | | 710 | 577 | 74 | 199 | 101 | 257 | 605 | 675 | 8 | 402 | | 592 | 530 | 30 | 91 | 46 | 245 | 530 | 570 | 4 | 80 | | 666 | 567 | 51 | 144 | 72 | 257 | 575 | 630 | 5 | 210 | | 765 | 608 | 74 | 199 | 100 | 272 | 615 | 690 | 8 | 420 | | 624 | 556 | 33 | 99 | 55 | 259 | 555 | 595 | 4 | 97 | | 690 | 590 | 51 | 144 | 72 | 270 | 595 | 650 | 5 | 215 | | 810 | 638 | 81 | 216 | 108 | 280 | 645 | 730 | 8 | 545 | | 645 | 574 | 33 | 99 | 55 | 268 | 575 | 615 | 4 | 100 | | 715 | 611 | 51 | 144 | 74 | 280 | 615 | 670 | 5 | 220 | | 830 | 661 | 81 | 216 | 107 | 290 | 670 | 750 | 8 | 560 | # ANGULAR CONTACT THRUST BALL BEARINGS **DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS** ANGULAR CONTACT THRUST **BALL BEARINGS FOR BALL SCREWS** Bore Diameter 35 – 280mm B238 Bore Diameter 15 – 60mm B242 ### **DESIGN, TYPE, AND FEATURES** ### **DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS** Double-Direction Angular Contact Thrust Ball Bearings are specially designed high precision bearings for the main spindles of machine tools. Compared with the Thrust Ball Bearings in the 511 Series, this type contains more balls of smaller diameter and has a contact angle of 60°. Consequently, the influence of centrifugal force is less and they can withstand higher speed and have higher rigidity. Bearings in Series 20 and 29 have the same inner and outer diameters as the double-row cylindrical roller bearings in Series NN30 and NN49 respectively, and they are both used for high axial loads. Their cages are machined brass. There are the BTR, BAR
Series of highly rigid angular contact ball bearings suitable for high speed that can be easily replaced by these double-direction angular contact ball bearings. For more details, please contact NSK. ### ANGULAR CONTACT THRUST BALL BEARINGS FOR BALL SCREWS Bearings of this type were specially designed to support NSK Precision Ball Screws. They are usually used in combinations of more than two bearings and with a preload. Their contact angle is 60°. For more details, please refer to Catalog CAT. No. E1254 SUPER PRECISION BEARINGS. Their cages are molded polyamide. B 234 B 235 ### TOLERANCES AND RUNNING ACCURACY **DOUBLE-DIRECTION ANGULAR CONTACT THRUST** BALL BEARINGS Table 1 ANGULAR CONTACT THRUST BALL BEARINGS FOR BALL SCREWS Table 2 The limiting chamfer dimensions of bearings of both types conform to Table 8.9.1 (Page A78). Table 1 Tolerances for Double-Direction Angular Contact Thrust Ball Bearings (Class 7 (1)) Table 1. 1 Tolerances for Bearing Bore and Height and Running Accuracy Units: µm | (| re Diameter $m{l}$ m) | Δ_a | $l_{ m mp}$ | $\Delta_{T\mathrm{s}}$ | | $K_{i\mathrm{a}}$ (or K_{ea}) | S_d | $S_{i\mathrm{a}}$ (or S_{ea}) | |------------|-----------------------|------------|-------------|------------------------|-------|---|-------|---| | over incl. | | high | low | high | low | max. | max. | max. | | _ | 30 | 0 | - 5 | 0 | - 300 | 5 | 4 | 3 | | 30 | 50 | 0 | - 5 | 0 | - 400 | 5 | 4 | 3 | | 50 | 80 | 0 | - 8 | 0 | - 500 | 6 | 5 | 5 | | 80 | 120 | 0 | - 8 | 0 | - 600 | 6 | 5 | 5 | | 120 | 180 | 0 | -10 | 0 | - 700 | 8 | 8 | 5 | | 180 | 250 | 0 | -13 | 0 | - 800 | 8 | 8 | 6 | | 250 | 315 | 0 | -15 | 0 | - 900 | 10 | 10 | 6 | | 315 | 400 | 0 | -18 | 0 | -1200 | 10 | 12 | 7 | Note (1) Class 7 is NSK Standard. Table 1. 2 Tolerances for Housing Washer Outside Diameter Units : µm | Nominal Outsi | | $\Delta D_{ m s}$ | | | | | |---------------|-------|-------------------|------|--|--|--| | over | incl. | high | low | | | | | 30 | 50 | -25 | - 41 | | | | | 50 | 80 | -30 | - 49 | | | | | 80 | 120 | -36 | - 58 | | | | | 120 | 180 | -43 | - 68 | | | | | 180 | 250 | -50 | - 79 | | | | | 250 | 315 | -56 | - 88 | | | | | 315 | 400 | -62 | - 98 | | | | | 400 | 500 | -68 | -108 | | | | | 500 | 630 | -76 | -120 | | | | Symbols in the tables are described on Page A59. Table 2 Tolerances and Running Accuracy of Angular Contact Thrust Ball Bearings for Ball Screws (Class 7A (1)) Table 2. 1 Tolerances and Limits for Shaft and Housing Washer Unite : um | | | | | | | | | | Οπισ . μπ | |------------------------------|-------|------------|------------|---|------|-----------------------------------|-------------------|-------|-----------| | Nominal Bore Diamete d (mm) | | Δ_d | mp | $arDelta_{B ext{s}}$ (or $arDelta_{C ext{s}}$) | | $V_{B{ m s}}$ (or $V_{C{ m s}}$) | $K_{i\mathrm{a}}$ | S_d | S_{ia} | | over | incl. | high | low | high | low | max. | max. | max. | max. | | 10 | 18 | 0 | - 4 | 0 | -120 | 1.5 | 2.5 | 4 | 2.5 | | 18 | 30 | 0 | - 5 | 0 | -120 | 1.5 | 3 | 4 | 2.5 | | 30 | 50 | 0 | - 6 | 0 | -120 | 1.5 | 4 | 4 | 2.5 | | 50 | 80 | 0 | - 7 | 0 | -150 | 1.5 | 4 | 5 | 2.5 | Note (1) Class 7A is NSK Standard. ### **RECOMMENDED FITS** ### **DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS** The shaft washer and shaft should be in soft contact with neither interference nor clearance, and the housing washer and housing bore should be loosely fitted. For a bearing arrangement with a double-row cylindrical roller bearing, the tolerances for the outside diameter should be f6 to produce a loose fit. ### ANGULAR CONTACT THRUST BALL BEARINGS FOR BALL SCREWS A tolerance of h5 is recommended for shafts and H6 for housing bores. ### INTERNAL CLEARANCE AND PRELOAD In order to produce an appropriate preload on bearings when they are mounted, the following axial internal clearances are recommended. | DOUBI | LE-ROW ANGULAR CONTACT THRUST | | |--------|------------------------------------|---------------| | BALL E | BEARINGS | Clearance C7 | | ANGUI | LAR CONTACT THRUST BALL BEARINGS F | OR . | | RALL S | SCREWS | Clearance C10 | Example of Application of Double-Direction Angular Contact Thrust Ball Bearing (Main Spindle of Machine Tool) Table 2. 2 Tolerances and Running Accuracy of Housing Washer Unite : um | | | | | | | Offits . µIII | | | |---|-------------------------------------|-------|------|------------|-------------|---------------|--|--| | 1 | Nominal Outside Diameter $D \ (mm)$ | | Δ | $D_{ m s}$ | $K_{ m ea}$ | Sea | | | | | over | incl. | high | low | max. | max. | | | | | 30 | 50 | 0 | -6 | 5 | 2.5 | | | | | 50 | 80 | 0 | - 7 | 5 | 2.5 | | | | | 80 | 120 | 0 | -8 | 5 | 2.5 | | | **B 236** B 237 ### Bore Diameter 35 - 150 mm | | Abutm | ent and F
(m | illet Dime
m) | nsions | Mass
(kg) | |-----------------|------------|-----------------|----------------------------|----------------------------------|--------------| | Bearing Numbers | $d_{ m a}$ | $D_{\rm a}$ | r _a max. | $\pmb{\gamma}_{\mathrm{b}}$ max. | approx. | | 35 TAC 20X+L | 46 | 58 | 1 | 0.6 | 0.375 | | 40 TAC 20X+L | 51 | 63 | 1 | 0.6 | 0.460 | | 45 TAC 20X+L | 57 | 70 | 1 | 0.6 | 0.580 | | 50 TAC 20X+L | 62 | 75 | 1 | 0.6 | 0.625 | | 55 TAC 20X+L | 69 | 84 | 1 | 0.6 | 0.945 | | 60 TAC 20X+L | 74 | 89 | 1 | 0.6 | 1.000 | | 65 TAC 20X+L | 79 | 94 | 1 | 0.6 | 1.080 | | 70 TAC 20X+L | 87 | 104 | 1 | 0.6 | 1.460 | | 75 TAC 20X+L | 92 | 109 | 1 | 0.6 | 1.550 | | 80 TAC 20X+L | 99 | 117 | 1 | 0.6 | 2.110 | | 85 TAC 20X+L | 104 | 122 | 1 | 0.6 | 2.210 | | 90 TAC 20X+L | 110 | 131 | 1.5 | 1 | 2.930 | | 95 TAC 20X+L | 115 | 136 | 1.5 | 1 | 3.050 | | 100 TAC 29X+L | 117 | 134 | 1 | 0.6 | 1.950 | | 100 TAC 20X+L | 120 | 141 | 1.5 | 1 | 3.200 | | 105 TAC 29X+L | 122 | 139 | 1 | 0.6 | 2.040 | | 105 TAC 20X+L | 127 | 150 | 2 | 1 | 4.100 | | 110 TAC 29X+L | 127 | 144 | 1 | 0.6 | 2.120 | | 110 TAC 20X+L | 134 | 158 | 2 | 1 | 5.150 | | 120 TAC 29X+L | 139 | 157 | 1 | 0.6 | 2.940 | | 120 TAC 20X+L | 144 | 168 | 2 | 1 | 5.500 | | 130 TAC 29X+L | 150 | 170 | 1.5 | 1 | 3.950 | | 130 TAC 20X+L | 160 | 187 | 2 | 1 | 8.200 | | 140 TAC 29D+L | 158 | 182 | 1.5 | 1 | 4.200 | | 140 TAC 20D+L | 167 | 198 | 2 | 1 | 8.750 | | 150 TAC 29D+L | 172 | 200 | 2 | 1 | 6.600 | | 150 TAC 20D+L | 178 | 213 | 2 | 1 | 10.700 | **Remarks** Nominal bearing bore and outside diameters for **20X · 20D** and **29X · 29D** bearing series are the same as those for the **NN30** and **NNU49 · NN49** bearing series respectively. Bore Diameter 160 - 280 mm | | Вс | undary D
(mr | | ns | | (| Basic Load F | • | :gf} | Limiting Speeds
(min ⁻¹) | | |-----|------------|-----------------|----------|------------------|---------------------|--------------------|----------------------|------------------|-------------------|---|----------------| | d | $D^{(1)}$ | T | С | γ
min. | ${m \gamma}_1$ min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | $C_{\rm a}$ | C_{0a} | Grease | Oil | | 160 | 220
240 | 72
96 | 36
48 | 2
2.1 | 1
1.1 | 118 000
185 000 | 490 000
680 000 | 12 100
18 900 | 50 000
69 500 | 2 400
2 300 | 2 700
2 500 | | 170 | 230
260 | 72
108 | 36
54 | 2
2.1 | 1
1.1 | 120 000
218 000 | 520 000
810 000 | 12 300
22 200 | 53 000
82 500 | 2 300
2 100 | 2 500
2 400 | | 180 | 250
280 | 84
120 | 42
60 | 2
2.1 | 1
1.1 | 158 000
281 000 | 655 000
1 020 000 | 16 100
28 700 | 67 000
104 000 | 2 100
2 000 | 2 400
2 200 | | 190 | 260
290 | 84
120 | 42
60 | 2
2.1 | 1
1.1 | 161 000
285 000 | 695 000
1 060 000 | 16 400
29 000 | 71 000
108 000 | 2 000
1 900 | 2 300
2 100 | | 200 | 280
310 | 96
132 | 48
66 | 2.1
2.1 | 1.1
1.1 | 204 000
315 000 | 855 000
1 180 000 | 20 800
32 000 | 87 000
120 000 | 1 900
1 800 | 2 100
2 000 | | 220 | 300 | 96 | 48 | 2.1 | 1.1 | 210 000 | 930 000 | 21 400 | 95 000 | 1 800 | 2 000 | | 240 | 320 | 96 | 48 | 2.1 | 1.1 | 213 000 | 980 000 | 21 700 | 100 000 | 1 700 | 1 800 | | 260 | 360 | 120 | 60 | 2.1 | 1.1 | 315 000 | 1 390 000 | 32 000 | 141 000 | 1 500 | 1 700 | | 280 | 380 | 120 | 60 | 2.1 | 1.1 | 320 000 | 1 470 000 | 32 500 | 150 000 | 1 400 | 1 600 | Note (1) Outside tolerance is f6. | D : N . | Abutm | Abutment and Fillet Dimensions (mm) | | | | | |--------------------------------|-------------------------------|-------------------------------------|--------------------|--------------------------|------------------|--| | Bearing Numbers | $d_{\scriptscriptstyle m a}$ | D_{a} | r a
max. | ${m \gamma}_{ m b}$ max. | approx. | | | 160 TAC 29D+L
160 TAC 20D+L | 182
191 | 210
228 | 2
2 | 1
1 | 7.000
13.000 | | | 170 TAC 29D+L
170 TAC 20D+L | 192
206 | 219
245 | 2 2 | 1
1 | 7.350
17.700 | | | 180 TAC 29D+L
180 TAC 20D+L | 207
220 | 238
264 | 2 2 | 1
1 | 10.700
23.400 | | | 190 TAC 29D+L
190 TAC 20D+L | 217
230 | 247
274 | 2 2 | 1
1 | 11.200
24.400 | | | 200 TAC 29D+L
200 TAC 20D+L | 230
245 | 267
291 | 2 2 | 1
1 | 15.700
31.500 | | | 220 TAC 29D+L | 250 | 287 | 2 | 1 | 17.000 | | | 240 TAC 29D+L | 270 | 307 | 2 | 1 | 18.300 | | | 260 TAC 29D+L | 300 | 344 | 2 | 1 | 31.500 | | | 280 TAC 29D+L | 320 | 364 | 2 | 1 | 33.500 | | Remarks Nominal bearing bore and outside diameters for 20X · 20D and 29X · 29D bearing series are the same as those for the NN30 and NNU49 · NN49 bearing series respectively. B 240 B 241 Bore Diameter 15 - 60 mm | | Bounda | ı ry Dim
(mm) | ensions | 3 | | | ensions
mm) | | Limiting S
(min | | Danis North | Mass
(kg) | |----------------------|----------------------|-------------------------|------------------|--------------------------
----------------------------|----------------------|----------------------|------------------------------|----------------------------------|----------------------------------|--|----------------------------------| | d | D | В | γ
min. | ${m \gamma}_1$ min. | d_1 | d_2 | D_1 | D_2 | Grease | Oil | Bearing Numbers | approx. | | 15
17
20
25 | 47
47
47
62 | 15
15
15
15 | 1
1
1
1 | 0.6
0.6
0.6
0.6 | 27.2
27.2
27.2
37 | 34
34
34
45 | 34
34
34
45 | 39.6
39.6
39.6
50.7 | 6 000
6 000
6 000
4 500 | 8 000
8 000
8 000
6 000 | 15 TAC 47B
17 TAC 47B
20 TAC 47B
25 TAC 62B | 0.144
0.144
0.135
0.252 | | 30
35 | 62
72 | 15
15 | 1
1 | 0.6
0.6 | 39.5
47 | 47
55 | 47
55 | 53.2
60.7 | 4 300
3 600 | 5 600
5 000 | 30 TAC 62B
35 TAC 72B | 0.224
0.31 | | 40 | 72
90 | 15
20 | 1
1 | 0.6
0.6 | 49
57 | 57
68 | 57
68 | 62.7
77.2 | 3 600
3 000 | 4 800
4 000 | 40 TAC 72B
40 TAC 90B | 0.275
0.674 | | 45
50 | 75
100
100 | 15
20
20 | 1
1
1 | 0.6
0.6
0.6 | 54
64
67.5 | 62
75
79 | 62
75
79 | 67.7
84.2
87.7 | 3 200
2 600
2 600 | 4 300
3 600
3 400 | 45 TAC 75B
45 TAC 100B
50 TAC 100B | 0.27
0.842
0.778 | | 55
60 | 100
120
120 | 20
20
20 | 1
1
1 | 0.6
0.6
0.6 | 67.5
82
82 | 79
93
93 | 79
93
93 | 87.7
102.2
102.2 | 2 600
2 200
2 200 | 3 400
3 000
3 000 | 55 TAC 100B
55 TAC 120B
60 TAC 120B | 0.714
1.23
1.16 | **Note** (1) These values apply when the standard preload (C10) is used. Four-Row Combination Dynamic Equivalent Load | | $P_{\rm a} = XF_{\rm r} + YF_{\rm a}$ | | |---|---------------------------------------|---| | _ | | Т | | | Rows | Two Rows | | Three Rows | | | Four Rows | | | |--|-----------------------|------------|-------------|------------|-------------|---------------|------------|-------------|---------------| | Combination | | DF | DT | DFD D | | DTD | DFT | DFF | DFT | | | ial Load
tained by | One
Row | Two
Rows | One
Row | Two
Rows | Three
Rows | One
Row | Two
Rows | Three
Rows | | P /P < | Χ | 1.9 | _ | 1.43 | 2.33 | _ | 1.17 | 2.33 | 2.53 | | $F_{\rm a}/F_{\rm r} \leq e^{-\epsilon}$ | Υ | 0.55 | _ | 0.77 | 0.35 | _ | 0.89 | 0.35 | 0.26 | | D /D> | Х | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | $F_{\rm a}/F_{\rm r} > e^{-r}$ | Υ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Basic Load Ratings $C_{\rm a}$ | | | Limiting Axial Load | | |--------------|--------------------------------|----------------|----------------|---------------------|----------------| | Sustained by | | one row | two rows | three rows | one row | two rows | three rows | | DF | DT, DFD, DFF | DTD, DFT | DF | DT, DFD, DFF | DTD, DFT | | (N) {kgf} | | 21 900 | 35 500 3 650 | 47 500 4 850 | 26 600 2 710 | 53 000 5 400 | 79 500 8 150 | | | 35 500 3 650 | 47 500 4 850 | 26 600 2 710 | 53 000 5 400 | 79 500 8 150 | | | 35 500 3 650 | 47 500 4 850 | 26 600 2 710 | 53 000 5 400 | 79 500 8 150 | | | 46 500 4 700 | 61 500 6 250 | 40 500 4 150 | 81 500 8 300 | 79 500 12 500 | | 29 200 2 980 | 47 500 4 850 | 63 000 6 400 | 43 000 4 400 | 86 000 8 800 | 129 000 13 200 | | 31 000 3 150 | 50 500 5 150 | 67 000 6 850 | 50 000 5 100 | 100 000 10 200 | 150 000 15 300 | | 31 500 3 250 | 51 500 5 250 | 68 500 7 000 | 52 000 5 300 | 104 000 10 600 | 157 000 16 000 | | 59 000 6 000 | 95 500 9 750 | 127 000 13 000 | 89 500 9 150 | 179 000 18 300 | 269 000 27 400 | | 33 000 3 350 | 53 500 5 450 | 71 000 7 250 | 57 000 5 800 | 114 000 11 600 | 170 000 17 400 | | 61 500 6 300 | 100 000 10 200 | 133 000 13 600 | 99 000 10 100 | 198 000 20 200 | 298 000 30 500 | | 63 000 6 400 | 102 000 10 400 | 136 000 13 800 | 104 000 10 600 | 208 000 21 200 | 310 000 32 000 | | 63 000 6 400 | 102 000 10 400 | 136 000 13 800 | 104 000 10 600 | 208 000 21 200 | 310 000 32 000 | | 67 500 6 850 | 109 000 11 200 | 145 000 14 800 | 123 000 12 600 | 246 000 25 100 | 370 000 37 500 | | 67 500 6 850 | 109 000 11 200 | 145 000 14 800 | 123 000 12 600 | 246 000 25 100 | 370 000 37 500 | B 242 B 243 # **NEEDLE ROLLER BEARINGS** CAGE & NEEDLE ROLLER ASSEMBLIES Inscribed Circle Diameter 5 – 100mm···· B252 Cage & Needle Roller Assemblies for Connecting Rod Inscribed Circle Diameter 12 – 30mm···· B256 ### DRAWN CUP NEEDLE ROLLER BEARINGS With Cage Full Complement Type Inscribed Circle Diameter 4 - 55mm B258 SOLID NEEDLE ROLLER BEARINGS Inscribed Circle Diameter 8 - 55mm B258 THRUST NEEDLE ROLLER BEARINGS Bore Diameter 10 - 100mm B274 CAM FOLLOWERS Outside Diameter 16 - 90mm ... B276 ROLLER FOLLOWERS Bore Diameter 5 - 50mm B278 For needle roller bearings, there are many designs and types bearings. Catalog Specified catalog, NSK Needle Roller Bearings CAT.No.E1419 lists bearings shown in Table 1. Representative examples selected from them, are shown in this catalog. (shown with in Table 1) For details, please refer individual specified catalog. For bearing selection, please contact NSK. B 244 B 245 #### Table 1 Types of Needle Roller Bearings ### **DIMENSIONAL ACCURACY - RUNNING ACCURACY** ### DRAWN CUP NEEDLE ROLLER BEARINGS The correct form and dimensional accuracy of outer ring of drawn cup needle roller bearing is achieved only by press fitting into proper housing with appropriate interference. Therefore, roller inscribed circle diameter is measured after press fitted into a standard ring gauge. The dimension of ring gauge and tolerance of roller inscribed circle diameter are shown in Tables 2 and 3. Table 2 is applicable to standard drawn cup needle roller bearings (metric series), and Table 3 shows tolerance of roller inscribed circle diameter based on ISO Standards. For bearings assured by ISO Standards, please order by adding symbol of "-1" at the end of bearing number. Table 2 Inspection Gauge Dimensions (General Metric) of Drawn Cup Needle Roller Bearings. (FJ, FJH, MFJ, MFJH) E. FH. ME. MFH | | | | Units mm | | |-----------------------------|---------------|------------|-------------|--| | Nominal Roller
Inscribed | Bore Diameter | Plug Gauge | | | | Circle Diameter, $F_{ m w}$ | of Ring Gauge | GO Gauge | NO-GO Gauge | | | 4 | 7. 996 | 4. 023 | 4. 048 | | | 5 | 8. 996 | 5. 023 | 5. 048 | | | 6 | 9. 996 | 6. 028 | 6. 053 | | | 7 | 10. 995 | 7. 031 | 7. 056 | | | 8 | 11. 995 | 8. 031 | 8. 056 | | | 9 | 12. 995 | 9. 031 | 9. 056 | | | 10 | 13. 995 | 10. 031 | 10. 056 | | | 12 | 15. 995 | 12. 031 | 12. 056 | | | FH 12 | 17. 995 | 12. 031 | 12. 056 | | | 13 | 18. 993 | 13. 034 | 13. 059 | | | 14 | 19. 993 | 14. 034 | 14. 059 | | | 15 | 20. 993 | 15. 034 | 15. 059 | | | 16 | 21. 993 | 16. 034 | 16. 059 | | | 17 | 22. 972 | 17. 013 | 17. 038 | | | 18 | 23. 972 | 18. 013 | 18. 038 | | | 20 | 25. 972 | 20. 013 | 20. 038 | | | 22 | 27. 972 | 22. 013 | 22. 038 | | | 25 | 31. 967 | 25. 013 | 25. 038 | | | 28 | 34. 967 | 28. 013 | 28. 038 | | | 30 | 36. 967 | 30. 013 | 30. 038 | | | 35 | 41. 967 | 35. 013 | 35. 043 | | | 40 | 46. 967 | 40. 013 | 40. 043 | | | 45 | 51. 961 | 45. 013 | 45. 043 | | | 50 | 57. 961 | 50. 013 | 50. 043 | | | 55 | 62. 961 | 55. 013 | 55. 043 | | **Remarks** This is the gauge dimension for Inspection of minimum diameter, F_{wmin} , of roller inscribed circle diameter. Table 3 Ring Gauge of Drawn Cup Needle Roller Bearings and Tolerance of Roller Inscribed Circle Diameter (ISO Standards) (FJ, FJH, MFJ and MFJH) F. FH. MF and MFH | Units mm | | | | | | |---|----------------|---|---------|--|--| | Nominal Roller
Inscribed | Bore Diameter | Tolerance for Roller Inscribed Circle Diameter, $F_{ m wmin}$ (1) | | | | | Circle Diameter, $F_{ m w}$ | of hilly dauge | min. | max. | | | | 4 | 7. 984 | 4. 010 | 4. 028 | | | | 5 | 8. 984 | 5. 010 | 5. 028 | | | | 6 | 9. 984 | 6. 010 | 6. 028 | | | | 7 | 10. 980 | 7. 013 | 7. 031 | | | | 8 | 11. 980 | 8. 013 | 8. 031 | | | | H 8 | 13. 980 | 8. 013 | 8. 031 | | | | 9 | 12. 980 | 9. 013 | 9. 031 | | | | H 9 | 14. 980 | 9. 013 | 9. 031 | | | | 10 | 13. 980 | 10. 013 | 10. 031 | | | | H 10 | 15. 980 | 10. 013 | 10. 031 | | | | 12 | 15. 980 | 12. 016 | 12. 034 | | | | H 12 | 17. 980 | 12. 016 | 12. 034 | | | | 13 | 18. 976 | 13. 016 | 13. 034 | | | | 14 | 19. 976 | 14. 016 | 14. 034 | | | | 15 | 20. 976 | 15. 016 | 15. 034 | | | | 16 | 21. 976 | 16. 016 | 16. 034 | | | | 17 | 22. 976 | 17. 016 | 17. 034 | | | | 18 | 23. 976 | 18. 016 | 18. 034 | | | | 20 | 25. 976 | 20. 020 | 20. 041 | | | | 22 | 27. 976 | 22. 020 | 22. 041 | | | | 25 | 31. 972 | 25. 020 | 25. 041 | | | | 28 | 34. 972 | 28. 020 | 28. 041 | | | | 30 | 36. 972 | 30. 020 | 30. 041 | | | | 35 | 41. 972 | 35. 025 | 35. 050 | | | | 40 | 46. 972 | 40. 025 | 40. 050 | | | | 45 | 51. 967 | 45. 025 | 45. 050 | | | | 50 | 57. 967 | 50. 025 | 50. 050 | | | | 55 | 62. 967 | 55. 030 | 55. 060 | | | | Note (1) When using a cylinder instead of an inner ring | | | | | | **Note** (1) When using a cylinder instead of an inner ring, F_{wmin} is the diameter of the cylinder at which the internal clearance is zero in at least one radial direction. (F_{wmin} is the minimum diameter of each inscribed circle diameter where deviation is assumed.) **Remarks** To measure the roller inscribed circle diameter, use the following plug gauges: GO gauge: The same dimensions as the minimum tolerance of the roller inscribed circle diameter $F_{\rm wmin}$. NO-GO gauge: The dimensions should be the maximum tolerance of roller inscribed circle diameter, $F_{ m wmin}$, plus 0.002 mm. ### **SOLID NEEDLE ROLLER BEARINGS** Table 8. 2 (A60-63 pages) Tolerance of roller inscribed
circle diameter for solid needle roller bearings without inner rings are shown in Table 4. Table 4 Inscribed Circle Diameter for Metric Solid Needle Roller Bearings | Ne | eule nuller bi | earniys | Units µm | |------------|-----------------------------|---|--| | Circle Dia | Inscribed meter, $F_{ m w}$ | Deviation (F6) Diameter, $F_{ m wr}$ Inscribed Circle D $\Delta F_{ m v}$ | $_{ m min}$, of Roller iameter $F_{ m wmin}$ $^{(1)}$ | | over | incl. | high | low | | 6 | 10 | + 22 | +13 | | 10 | 18 | + 27 | +16 | | 18 | 30 | + 33 | +20 | | 30 | 50 | + 41 | +25 | | 50 | 80 | + 49 | +30 | | 80 | 120 | + 58 | +36 | | 120 | 180 | + 68 | +43 | | 180 | 250 | + 79 | +50 | | 250 | 315 | + 88 | +56 | | 315 | 400 | + 98 | +62 | | 400 | 500 | +108 | +68 | Note (1) When using a cylinder instead of an inner ring, F_{wmin} is the diameter of the cylinder at which the internal clearance is zero in at least one radial direction. (F_{wmin} is the minimum diameter of each inscribed circle diameter where deviation is assumed.) #### CAM FOLLOWERS - ROLLER FOLLOWERS - Table 8. 2 (A60-63 pages) The tolerance zone class of stud diameter d of cam followers is h7, and the tolerance of assembled width of inner ring of roller followers is shown in bearing table. These tolerances are applied to the bearings before surface treatment. Cam Follower Dimensional Tolerences is always applited to the bearing before surface treatment. # RECOMMENDED FITTING AND BEARING INTERNAL CLEARANCE CAGE & NEEDLE ROLLER ASSEMBLIES Recommended fitting of cage & roller under typical operating condition is shown in Table 5. By combining cage & roller, shaft, and housing, appropriate radial internal clearance is obtained. However, the fitting and the radial internal clearance of cage & roller for connecting rod should be determined by the type of engine, characteristic, and driving condition etc.. For details, please refer to specified catalog. Table 5 Fitting Tolerances for Shafts and Housing Bores | | | Fitting Tolerance | | | | |----------------------|--|------------------------|--------------------|--------------|--| | Operating Conditions | | sh | housing bore | | | | | | $F_{\rm w} \leq$ 50 mm | $F_{\rm w}>$ 50 mm | nousing bore | | | | High Accuracy, Oscillating Motion | js5 (j5) | h5 | | | | | Normal | h5 | g5 | G6 | | | | High Temperature, Large Shaft Deflection | f6 | | | | | | and Mounting Error of Bearings | | | | | #### DRAWN CUP NEEDLE ROLLER BEARINGS For FJ, FJH, and MFJH types and F, FH, and MFH types, if tolerance of fitting such as shaft:h6, and housing bore:N7 (in case of thick steel housing), are applied under general operating condition, appropriate radial internal clearance is obtained. In case that outer ring rotation, the fitting of shaft: f6, housing bore: R7, and light alloy housing or steel housing of less than 6mm thickness, the housing bore should be smaller than N7 by 0.013 – 0.025 mm. ### SOLID NEEDLE ROLLER BEARINGS Recommended fitting for solid needle roller bearings with inner rings Table 9. 2 (Page A84) Table 9. 4 (Page A85) Internal clearance of solid needle roller bearings with inner rings Table 9. 14 (Page A91) However, for needle roller bearing of wider bearing width, and with long needle rollers, bearings with CN clearance are not necessarily common, but large clearance is selected frequently. For the solid needle roller bearing without inner ring, it is possible to select radial internal clearance shown in Table 6 by selecting tolerance class of shaft, which is fitting to the bearing. Table 6 Fitting Tolerances and Radial Internal clearance of Shafts Assembled with Solid Needle Roller Bearings without Inner Rings | Nominal Roller Inscribed Circle Diameter $F_{ m w}$ (mm) | | C2 | CN | C3 | C4 | | |--|-------|----|----|----|----|--| | over | incl. | | | | | | | 6 | 180 | k5 | g5 | f6 | e6 | | | 180 | 315 | j6 | f6 | e6 | d6 | | | 315 | 490 | h6 | e6 | d6 | с6 | | #### THRUST NEEDLE ROLLER BEARINGS Recommended Fitting of Thrust Needle Roller Bearings and Thrust Raceway are shown in Table 7. Table 7 Recommended Fitting of Thrust Needle Roller Bearings and Thrust Raceway Units mm | Classification | Tuna | Cage or | Tolerance class or dimension tolerance | | | |----------------------------|--------------|---------------|--|-----------------------------|--| | Classification | Type | raceway guide | Shaft | Housing bore | | | Thrust Needle Bearing Cage | FNTA | Bore | h8 | D _c (1)+over 1.0 | | | & Needle Roller Assemblies | FINIA | Outside | _ | H10 | | | Thrust Pooring Dings | FTRA to FTRE | Bore | h8 | $D_{ m c}$ (1)+over 1.0 | | | Thrust Bearing Rings | | Outside | _ | H10 | | **Note** (1) D_c represents outside diameter of the cage. Remarks If the cage is guided by outside diameter, to prevent the wear of housing bore, it is necessary to harden the surface at least. B 248 B 249 ### **CAM FOLLOWERS · ROLLER FOLLOWERS** The recommended fittings for the mounting area of cam follower studs are shown in Table 8. Recommended shaft fittings of roller follower are shown in Table 9. Since cam followers are used with cantilevered mounting, they should be fixed with little clearance of the fitting surface as much as possible. Since a roller follower is generally used with outer ring rotation, the fitting with shaft is transition or loose fit. In case that heavy loads impose to the roller follower, it is recommended to use the shaft of quench hardening treatment, and with tight fit. For the details, please refer to specified catalog. Table 8 Recommended Fitting for Stud Mounting Part of Cam Followers | FCR. FCRS | Туре | Fitting Tolerance of
Mounting Hole | |--------------------|------------------------|---------------------------------------| | FCJ, FCJS JS7 (J7) | FCR, FCRS
FCJ, FCJS | JS7 (J7) | Table 9 Recommended Staft Fittings of Roller Followers | Load | Fitting Tolerance of Shaft | |------------------------|----------------------------| | Light Load/Normal Load | g6 or h6 | | Heavy Load | k6 | ### SHAFT AND HOUSING SPECIFICATIONS The specification of shaft and housing for radial needle roller bearings, which are used under general operating condition, is shown in Table 10. Table 10 Shaft and housing Specifications of Radial Needle Roller Bearings (Cage & Needle Roller Assemblies/Drawn Cup Bearings/Solid Bearings) | Category | Sh | aft | Housing Bore | | | | |------------------|--|--|--|--|--|--| | Galegory | Raceway Surface | Fitting Surface | Raceway Surface | Fitting Surface | | | | Out-of-Roundness | $\frac{\text{IT3}}{2}$ | IT3 L IT4 | IT3 | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | | | Tolerance | 2 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | 2 | ${2}$ to ${2}$ | | | | Cylindricity | $\frac{\text{IT3}}{2}$ | IT3 L IT4 | IT3 | IT4 L IT5 | | | | Tolerance | 2 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT3}}{2}$ | $\frac{\text{IT}4}{2}$ to $\frac{\text{IT}5}{2}$ | | | | Roughness | 0.4 | 0.8 | 0.8 | 1.6 | | | | $R_a(\mu m)$ | 0.4 | 0.8 | 0.6 | 1.0 | | | | Hardness | HRC58 to 64
Appropriate depth
of hardening layer
required | _ | HRC58 to 64
Appropriate depth
of hardening layer
required | _ | | | **Remarks** 1. For the specification of shaft and housing of cage & needle roller assembly for connecting rod, please refer to specified catalog. 2. These are general recommendation by radius method. For the value of standard tolerance (IT), please refer to Appendix 11 (page C22) Specifications of Thrust Bearings Raceway Surface are shown in Table 11. Table 11 Specifications of Thrust Bearings Raceway Surface | Squareness A | 0.5/1000 incl (mm/mm) | | |----------------------------------|---|---| | Squareness B | 1.0/1000 incl (mm/mm) | | | Roughness
R _a (µm) | 0.4 | _ | | Hardness | HRC58 to 64
(HRC60 to 64 is fovorable) | _ | ### LIMITING INCLINATION ANGLES The limiting inclination angle of radial needle roller bearing under general load condition is 0.001 radian (3.4') approximately. For the detail, please refer to specified catalog., # PERMISSBLE TRACK LOAD Table 12 Permissble Load Hardness (HRC) 20 25 30 35 40 45 50 55 58 **Coefficient of Track** Coefficient 0.4 0.5 0.6 8.0 1.0 1.4 1.9 2.6 3.2 The permissble load of the track is determined by compression strength or hardness. The permissble load of the track shown in the bearing table is value of a track made of steel with a hardness of HRC40. Table 12 indicates the permissible load coefficient of the track for each hardness. The permissible load of the track for each hardness can be obtained by multiplying the permissible load coefficient of the track corresponding to each hardness. ### **PRE-PACKED GREASE** The cam follower/roller follower with a seal is pre-lubricated with lithium soap-based grease. The range of operating temperature is -10 to $+110\,^{\circ}\mathrm{C}$. For the cam follower/roller follower without seal, please lubricate with suitable lubricant. # MAXIMUM PERMISSIBLE LOAD AND MAXIMUM CLAMP TORQUE OF CAM FOLLOWERS. The maximum radial Load that the cam follower can carry is determined by the bearing strengh and shear strengh of the stud rather than the Load rating for neele bearings. This value is given in the bearing table as the maximum permissible Load. Since the stud of the cam follower receives bending stress and tensile stress from the bearing Load, the screw clamp torque should not exceed the value shown in the bearing table. ### LIMITING
SPEED The limiting speeds of bearings are shown in bearing tables. However, depending on load condition of the bearing, the limiting speeds are necessary to compensate. Also, improvement of lubrication method allows to take higher limiting speed. For the detail, please refer to A37 page. FWF • FWJ Inscribed Circle Diameter 5 – 22 mm | Bound | dary Dimen | sions | | | ad Ratings | | | Limiting Speeds | | | |------------|----------------|---------------------|---------------------------|----------------------------|------------|-----------------------|-------------------------|----------------------------|----------------------------|--| | | (mm) | -0.2 | | (N) | | {ko | gf} | (mi | n ⁻¹) | | | $F_{ m W}$ | $E_{ m W}$ | $B_{\rm C}^{-0.55}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | | $C_{\rm r}$ | C_{0r} | Grease | Oil | | | 5
6 | 8
9
9 | 8
8
10 | 2 330
2 200
3 350 | 1 860
1 780
3 050 | | 237
224
340 | 189
182
310 | 60 000
48 000
48 000 | 95 000
75 000
75 000 | | | 7 | 10
10 | 8
10 | 2 840
3 650 | 2 560
3 550 | | 290
375 | 261
360 | 40 000
40 000 | 67 000
67 000 | | | 8 | 11
11 | 10
13 | 3 950
4 750 | 4 000
5 150 | | 400
485 | 410
525 | 34 000
34 000 | 56 000
56 000 | | | 9 | 12
12 | 10
13 | 3 750
5 100 | 3 850
5 750 | | 380
520 | 395
585 | 30 000
30 000 | 50 000
50 000 | | | 10 | 13
13
14 | 10
13
13 | 3 950
5 400
6 500 | 4 300
6 350
6 750 | | 405
550
660 | 435
650
690 | 28 000
28 000
28 000 | 45 000
45 000
45 000 | | | 12 | 15
15
16 | 10
13
13 | 4 350
5 950
7 350 | 5 100
7 600
8 350 | | 445
605
750 | 520
775
850 | 22 000
22 000
22 000 | 36 000
36 000
38 000 | | | 14 | 18
18
20 | 10
13
17 | 6 750
8 050
13 400 | 7 750
9 750
14 600 | | 690
820
1 370 | 790
995
1 490 | 19 000
19 000
20 000 | 32 000
32 000
32 000 | | | 15 | 19
19
21 | 10
13
17 | 7 050
8 400
13 400 | 8 400
10 500
14 800 | | 720
860
1 370 | 855
1 070
1 510 | 18 000
18 000
19 000 | 28 000
28 000
30 000 | | | 16 | 20
20
22 | 10
13
17 | 7 350
8 800
14 700 | 9 000
11 300
16 900 | | 750
895
1 500 | 920
1 150
1 720 | 17 000
17 000
17 000 | 26 000
26 000
28 000 | | | 17 | 21
21
23 | 10
13
17 | 7 650
10 200
15 100 | 9 650
14 000
17 800 | | 780
1 040
1 540 | 985
1 420
1 810 | 16 000
16 000
16 000 | 26 000
26 000
26 000 | | | 18 | 22
22
24 | 10
13
17 | 7 900
9 450
17 400 | 10 300
12 900
21 600 | | 805
965
1 770 | 1 050
1 310
2 210 | 15 000
15 000
15 000 | 24 000
24 000
24 000 | | | 20 | 24
24
26 | 10
13
17 | 8 000
9 700
18 000 | 10 700
13 700
23 200 | | 815
990
1 830 | 1 090
1 400
2 370 | 13 000
13 000
14 000 | 20 000
20 000
22 000 | | | 22 | 26
26
28 | 10
13
17 | 8 600
10 300
17 300 | 12 200
15 300
22 700 | | 880
1 050
1 760 | 1 240
1 560
2 310 | 12 000
12 000
12 000 | 19 000
19 000
20 000 | | Note (*) These bearings have polyamide cages. The maximum permissible operating temperature for these bearings is 100 °C for continued operation and 120 °C for short periods. | Bearing Numbers | Mass
(g) | |-----------------|-------------| | | approx. | | * FBNP-588 | 1.0 | | * FBNP-698 | 1.2 | | * FBNP-6910 | 1.5 | | * FBNP-7108 | 1.3 | | * FBNP-71010 | 1.6 | | * FBNP-81110 | 1.8 | | * FBNP-81113 | 2.6 | | * FBNP-91210 | 2.0 | | * FBNP-91213 | 2.6 | | FBN-101310 | 2.2 | | FBN-101313 | 2.9 | | FWF-101413 | 4.0 | | FBN-121510 | 2.6 | | FBN-121513 | 3.4 | | FWF-121613 | 4.6 | | FWF-141810 | 4.1 | | FWF-141813 | 5.3 | | FWF-142017 | 11 | | FWF-151910 | 4.3 | | FWF-151913 | 5.6 | | FWF-152117 | 12 | | FWF-162010 | 4.6 | | FWF-162013 | 6.0 | | FWF-162217 | 12 | | FWF-172110 | 4.8 | | FWJ-172113 | 6.3 | | FWF-172317 | 14 | | FWF-182210 | 5.1 | | FWF-182213 | 6.6 | | FWJ-182417 | 14 | | FWF-202410 | 5.6 | | FWF-202413 | 7.3 | | FWJ-202617 | 15 | | FWF-222610 | 6.1 | | FWF-222613 | 7.9 | | FWF-222817 | 16 | NSK FWF • FWJ Inscribed Circle Diameter 25 – 100 mm | Boun | dary Dimen | sions | | Basic Load | • | · · · · · · | Speeds | |------------|----------------|---------------------|----------------------------|----------------------------|------------------------|-------------------------|----------------------------| | E | | -0.2
-0.55 | | (N) | {kgf} | (mi | , | | $F_{ m W}$ | $E_{ m W}$ | $B_{\rm C}^{-0.55}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ $C_{0 m r}$ | Grease | Oil | | 25 | 29 | 10 | 9 350 | 14 100 | 950 1 440 | 10 000 | 17 000 | | | 29 | 13 | 11 300 | 18 000 | 1 150 1 830 | 10 000 | 17 000 | | 28 | 31 | 17 | 19 200 | 26 800 | 1 950 2 740 | 9 500 | 17 000 | | | 33 | 13 | 13 700 | 20 400 | 1 400 2 080 | 9 500 | 15 000 | | | 33 | 17 | 17 600 | 28 300 | 1 800 2 890 | 9 500 | 15 000 | | | 34 | 17 | 19 900 | 29 100 | 2 020 2 970 | 9 500 | 15 000 | | 30 | 35 | 13 | 14 000 | 21 600 | 1 430 2 200 | 8 500 | 14 000 | | | 35 | 17 | 18 700 | 31 500 | 1 910 3 200 | 8 500 | 14 000 | | | 37 | 20 | 26 000 | 38 000 | 2 650 3 850 | 9 000 | 14 000 | | 32 | 37 | 13 | 15 100 | 24 400 | 1 540 2 480 | 8 000 | 13 000 | | | 37 | 17 | 18 500 | 31 500 | 1 880 3 200 | 8 000 | 13 000 | | | 39 | 20 | 27 300 | 41 000 | 2 780 4 200 | 8 500 | 13 000 | | 35 | 40 | 13 | 14 900 | 24 600 | 1 520 2 500 | 7 500 | 12 000 | | | 40 | 17 | 20 500 | 37 000 | 2 090 3 750 | 7 500 | 12 000 | | | 42 | 20 | 30 000 | 47 500 | 3 050 4 850 | 7 500 | 12 000 | | 40 | 45
45
48 | 17
27
25 | 21 000
32 000
40 500 | 40 000
68 000
66 500 | 2 150 | 6 300
6 300
6 700 | 10 000
10 000
10 000 | | 45 | 50 | 17 | 21 600 | 43 000 | 2 200 4 350 | 5 600 | 9 000 | | | 50 | 27 | 34 000 | 77 500 | 3 500 7 900 | 5 600 | 9 000 | | | 53 | 25 | 44 000 | 77 000 | 4 500 7 850 | 5 600 | 9 500 | | 50 | 55 | 20 | 26 900 | 59 000 | 2 750 6 050 | 5 000 | 8 000 | | | 55 | 27 | 35 000 | 83 000 | 3 600 8 450 | 5 000 | 8 000 | | | 58 | 25 | 48 500 | 90 500 | 4 950 9 200 | 5 300 | 8 500 | | 55 | 61 | 20 | 31 000 | 64 000 | 3 150 6 500 | 4 500 | 7 500 | | | 61 | 30 | 47 000 | 109 000 | 4 750 11 100 | 4 500 | 7 500 | | | 63 | 25 | 50 000 | 97 500 | 5 100 9 950 | 4 800 | 7 500 | | 60 | 66 | 20 | 33 000 | 71 500 | 3 350 7 300 | 4 300 | 6 700 | | | 66 | 30 | 50 000 | 122 000 | 5 100 12 400 | 4 300 | 6 700 | | | 68 | 25 | 52 000 | 105 000 | 5 300 10 700 | 4 300 | 6 700 | | 65 | 73 | 30 | 61 000 | 132 000 | 6 200 13 400 | 4 000 | 6 300 | | 70 | 78 | 30 | 63 000 | 140 000 | 6 400 14 300 | 3 600 | 6 000 | | 75 | 83 | 30 | 65 000 | 151 000 | 6 650 15 400 | 3 400 | 5 600 | | 80 | 88 | 30 | 69 000 | 166 000 | 7 050 17 000 | 3 200 | 5 000 | | 85 | 93 | 30 | 71 000 | 176 000 | 7 250 17 900 | 3 000 | 4 800 | | 90 | 98 | 30 | 70 000 | 177 000 | 7 150 18 000 | 2 800 | 4 500 | | 95 | 103 | 30 | 69 500 | 177 000 | 7 100 18 100 | 2 600 | 4 300 | | 100 | 108 | 30 | 75 500 | 201 000 | 7 700 20 500 | 2 400 | 4 000 | | | Mass | |---------------------------|------------| | Bearing Numbers | (g) | | bearing Numbers | | | | approx. | | FWF-252910 | 6.9 | | FWF-252913
FWF-253117 | 8.9
18 | | FWF-283313 | 13 | | FWF-283317 | 16 | | FWF-283417 | 20 | | FWF-303513
FWF-303517A | 14
18 | | FWF-303517A
FWF-303720 | 30 | | FWF-323713 | 14 | | FWJ-323717 | 19 | | FWF-323920
FWF-354013 | 32
16 | | FWF-354013
FWF-354017 | 20 | | FWJ-354220 | 34 | | FWF-404517A
FWF-404527 | 23 | | FWF-404825 | 36
56 | | FWF-455017 | 26 | | FWF-455027
FWF-455325 | 41
62 | | FWF-505520 | 37 | | FWF-505527 | 50 | | FWF-505825 | 77 | | FWF-556120
FWF-556130 | 53
81 | | FWF-556325 | 85 | | FWF-606620 | 57 | | FWF-606630
FWF-606825 | 87
91 | | FWF-657330 | 120 | | FWF-707830 | 125 | | FWF-758330 | 135 | | FWF-808830
FWF-859330 | 145
150 | | FWF-909830 | 160 | | FWF-9510330 | 175 | | FWF-10010830 | 185 | 12 14 15 16 18 20 22 23 24 25 28 29.75 30 32 35 36.75 37 38 16 15 17 20 16 16 16.5 16 18 Cage & Needle Roller Assemblies for Large Ends of Connecting Rods Inscribed Circle Diameter 12 - 30 mm | Boundary Dimensions (mm) -0.2 -0.4 | | | | Basic Load | Bearing Numbers | Mass
(g) | | |------------------------------------|----------------|-------------------------|----------------------------|----------------------------|---|--|-------------------| | $F_{ m W}$ | $E_{ m W}$ | $B_{\mathrm{C}}^{-0.4}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ $C_{0 m r}$ | | approx. | | 12
14 | 16
19
20 | 10
10
12 | 6 100
7 800
8 900 | 6 500
8 050
8 600 | 620 665
795 820
910 880 | FWF-121610-E
FWF-141910-E
FWF-142012-E | 4.0
6.2
8.3 | | 15 | 19
20
21 | 9
10
10 | 5 650
7 300
7 950 | 6 250
7 600
7 500 | 575 640
745 775
810 765 | FWF-15199-E
FWF-152010-E
FWF-152110-E | 4.1
6.0
8.5 | | 16 | 21
22 | 11
12 | 8 650
9 500 | 9 600
9 600 | 880 980
965 980 | FWF-162111-E
FWF-162212-E | 7.5
9.5 | | 18 | 23
24 | 14
12 | 11 800
10 000 | 14 800
10 600 | 1 200 1 510
1 020 1 080 | FWF-182314-E
FWF-182412-E | 10
11 | | 20 | 26
26
28 | 12
17
18 | 12 200
16 800
18 100 | 14 100
21 200
19 400 | 1 250 | FWF-202612-E
FWF-202617-E
FWF-202818-E | 13
17
25 | | 22 | 28
29
32 | 14
15
16 | 13 900
16 300
19 700 | 17 100
19 000
19 400 | 1 420 1 740
1 660 1 930
2 010 1 970 | FWF-222814-E
FWF-222915-E
FWF-223216-E | 14
19
31 | 1 800 1 590 1 830 2 200 1 810 1 880 1 990 2 230 2 600 1 980 2 070 2 480 2 840 2 230 2 410 2 650 3 100 3 450 FWF-233116-E FWF-243015-E FWF-243017-E FWF-243120-E FWF-253216-E FWF-283516-E FWF-293616Z-E FWF-303716-E
FWF-303818-E 24 25 28 29 35 19 400 20 300 24 300 27 800 21 900 23 700 26 000 30 500 34 000 17 600 15 600 17 900 21 600 17 700 18 400 19 600 21 900 25 500 | Воц | undary Dimen:
(mm) | sions | | Basic Lo | ad Ratings
{kgf | n | | Mass
(g) | |------------|-----------------------|--------------------------|-----------------------------------|-------------------------------------|----------------------------|--------------------------------|--|--------------------------| | $F_{ m W}$ | $E_{ m W}$ | $B_{ m C}^{^{-0.2}}$ | $C_{ m r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Bearing Numbers | approx. | | 9 | 12 | 11.5 | 4 300 | 4 650 | 440 | 475 | FBN-91211Z-E | 3.5 | | 10 | 14 | 12.7 | 5 900 | 5 950 | 605 | 610 | FBN-101412Z-E | 5.0 | | 12 | 15
16
16
16 | 14.3
13
15.5
16 | 6 400
7 250
8 500
8 500 | 8 400
8 200
10 000
10 000 | 655
740
865
865 | 855
835
1 020
1 020 | FBN-121514Z-E
FBN-121613-E
FBN-121615Z-E
FBN-121616-E | 4.8
6.4
7.0
7.5 | | 14 | 18
18
18
18 | 12
16.5
18
20 | 6 950
9 250
10 700
9 550 | 8 050
11 600
14 000
12 000 | 710
945
1 090
975 | 820
1 180
1 430
1 230 | FBN-141812-E
FBN-141816Z-E
FBN-141818-E
FBN-141820-E1 | 6.5
8.5
11.5
13 | | 15 | 19
21 | 18
18 | 11 300
12 900 | 15 300
13 900 | 1 150
1 310 | 1 560
1 420 | FBN-151918-E
FBN-152118-E | 11
13 | | 16 | 20
20
21 | 22
23.5
20 | 13 700
14 900
14 200 | 20 000
22 300
18 100 | 1 400
1 520
1 450 | 2 040
2 280
1 840 | FBN-162022-E
FBN-162023Z-E
FBN-162120-E | 14
15
16 | | 17 | 21 | 23 | 14 800 | 22 500 | 1 510 | 2 290 | FBN-172123-E | 16 | | 18 | 22
22
22 | 17
22
23.6 | 11 500
14 200
15 400 | 16 500
21 600
24 100 | 1 170
1 440
1 570 | 1 680
2 200
2 460 | FBN-182217-E
FBN-182222-E
FBN-182223Z-E | 12
15
16 | | 19 | 23 | 23.7 | 16 000 | 25 800 | 1 630 | 2 630 | FBN-192323Z-E | 17 | B 256 B 257 # FJ • MFJ (With Cage) # F • MF (Full Complement Type) Inscribed Circle Diameter 4 – 16 mm | Воц | | Dimens | ions | Basic Dynamic L | oad Ratings | Limiting
(N) | Loads
{kgf} | Limiting
(mi | • | | Bearing | |------------------|----------------------|----------------------|--------------------------|-------------------------------------|--------------------------------|-----------------------------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------| | $F_{ m W}$ | D | $C^{-0.25}$ | C_1, C_2 max. | $C_{\rm r}$ | | $P_{ m ma}$ | | Grease | Oil | Wit
Open | h Cage
Closed | | 4
5
6
7 | 8
9
10
11 | 8
9
9 | 0.8
0.8
0.8
0.8 | 1 720
1 860
2 320
2 550 | 175
190
237
260 | 675
745
985
1 110 | 69
76
101
113 | 45 000
43 000
36 000
30 000 | 75 000
71 000
56 000
48 000 | * FJP-48
FJ-59
FJ-69
FJ-79 | MFJ-59
MFJ-69
MFJ-79 | | 8 | 12
14
14 | 10
10
10 | 0.8
1.0
1.9 | 2 840
4 300
5 550 | 289
435
565 | 1 270
1 770
2 980 | 130
180
305 | 26 000
28 000
6 300 | 43 000
45 000
10 000 | FJ-810
FJH-810
— | MFJ-810
MFJH-810
— | | 9 | 13
15
15 | 10
10
10 | 0.8
1.0
1.8 | 3 300
4 550
6 100 | 335
465
625 | 1 600
1 910
3 350 | 163
194
340 | 22 000
24 000
6 000 | 36 000
40 000
10 000 | FJ-910
FJH-910
— | MFJ-910
MFJH-910
— | | 10 | 14
16
16 | 10
10
10 | 0.8
1.0
1.9 | 3 500
4 900
6 650 | 360
500
680 | 1 760
2 100
3 700 | 179
214
375 | 20 000
22 000
5 600 | 32 000
34 000
9 000 | FJ-1010
FJH-1010
— | MFJ-1010
MFJH-1010
— | | 12 | 16
18
18 | 10
12
12 | 0.8
1.0
1.9 | 4 150
6 450
9 000 | 420
655
920 | 2 210
3 050
5 700 | 225
310
580 | 17 000
17 000
4 500 | 26 000
28 000
7 500 | FJ-1210
FJH-1212
— | MFJ-1210
MFJH-1212
— | | 13 | 19
19 | 12
12 | 1.0
1.9 | 6 950
9 550 | 710
975 | 3 400
6 100 | 345
625 | 16 000
4 300 | 26 000
7 100 | FJ-1312
— | MFJ-1312
— | | 14 | 20
20
20
20 | 12
12
16
16 | 1.0
2.2
1.0
2.2 | 6 500
9 450
9 500
13 300 | 665
965
970
1 360 | 3 250
6 350
5 300
9 850 | 335
645
540
1 000 | 15 000
3 800
15 000
3 800 | 24 000
6 000
24 000
6 000 | FJ-1412
—
FJ-1416 | MFJ-1412
MFJ-1416 | | 15 | 21
21
21 | 12
12
14 | 1.0
1.8
1.8 | 7 650
10 300
12 400 | 780
1 050
1 270 | 3 900
6 900
8 800 | 400
705
895 | 14 000
3 800
3 800 | 22 000
6 000
6 000 | FJ-1512
—
— | MFJ-1512
— | | | 21
21 | 16
16 | 1.0
1.8 | 11 000
14 500 | 1 120
1 480 | 6 200
10 700 | 635
1 090 | 14 000
3 800 | 22 000
6 000 | FJ-1516
— | MFJ-1516 | | 16 | 22
22
22
22 | 12
12
16
16 | 1.0
2.2
1.0
2.2 | 7 100
10 200
10 400
14 400 | 725
1 040
1 060
1 460 | 3 750
7 100
6 050
11 100 | 380
725
620
1 130 | 12 000
3 400
12 000
3 400 | 20 000
5 300
20 000
5 300 | FJ-1612
FJ-1616 | MFJ-1612
—
MFJ-1616
— | Note (*) These bearing have polyamide cages. The maximum permissible operating temperature for these bearings is 100 °C for continued operation and 120 °C for short periods. | Numbers | | In c | | Mass Without Inner Ring
(g) | | | | | |---|---|---|----------------------|--------------------------------|--|--------------------------|--------------------------|------------------------| | Full Comp
Open | lement Type
Closed | Bearing Numbers of Inner Ring Dimensions (mm) d B | | Dimensi | t and Fillet ons (mm) \mathcal{Y}_a (max.) | approx.
Open Closed | | | | ======================================= | ======================================= | ======================================= | = | = | ======================================= | = | 1.3
1.7
2.2
2.3 | —
1.9
2.4
2.7 | | <u>—</u>
FH-810 | <u>–</u>
MFH-810 | Ξ | _ | _ | | _ | 2.7
5.2
6.0 | 3.2
5.5
6.3 | | —
FH-910 | <u></u>
MFH-910 | = | = | _ | _ | _ | 3.2
5.7
6.4 | 3.6
6.1
6.8 | |
FH-1010 | <u>_</u>
MFH-1010 | FIR-71010
FIR-71010
FIR-71010 | 7
7
7 | 10.5
10.5
10.5 | 9
9
9 | 0.3
0.3
0.3 | 3.6
6.1
6.9 | 4.1
6.6
7.3 | |

FH-1212 | <u>_</u>
MFH-1212 | FIR-81210
FIR-81212
FIR-81212 | 8
8
8 | 10.5
12.5
12.5 | 10
10
10 | 0.3
0.3
0.3 | 4.1
7.7
10 | 4.5
8.2
11 | | <u></u>
F-1312 |
MF-1312 | FIR-101312
FIR-101312 | 10
10 | 12.5
12.5 | 12
12 | 0.3
0.3 | 8.6
11 | 9.5
12 | | F-1412
F-1416 | MF-1412
MF-1416 | FIR-101412
FIR-101412
FIR-101416
FIR-101416 | 10
10
10
10 | 12.5
12.5
16.5
16.5 | 12
12
12
12 | 0.3
0.3
0.3
0.3 | 10
12
13
18 | 11
14
14
19 | |
F-1512
F-1514 | MF-1512
MF-1514 | FIR-121512
FIR-121512 | 12
12
— | 12.5
12.5
— | 14
14
— | 0.3
0.3
— | 10
12
15 | 11
14
16 | | <u></u>
F-1516 |
MF-1516 | FIR-121516
FIR-121516 | 12
12 | 16.5
16.5 | 14
14 | 0.3
0.3 | 13
17 | 14
18 | | F-1612
F-1616 | MF-1612
MF-1616 | FIR-121612
FIR-121612
FIR-121616
FIR-121616 | 12
12
12
12 | 12.5
12.5
16.5
16.5 | 14
14
14
14 | 0.3
0.3
0.3
0.3 | 11
14
14
18 | 12
15
15
20 | # FJ • MFJ (With Cage) ## F • MF (Full Complement Type) Inscribed Circle Diameter 17 – 28 mm | Βοι | | Dimens | ions | Basic Dynamic I | • | Limiting | Loads | Limiting | | | Bearing | |------------|----------|-------------|------------|------------------|----------------|------------------|----------------|-----------------|-------------------|-------------|--------------| | | (1 | mm)
0 | | (N) | {kgf} | (N) | {kgf} | (mii | n ^{−1}) | 14/:41- | 0 | | $F_{ m W}$ | D | $C^{-0.25}$ | | $C_{\rm r}$ | | $P_{ m ma}$ | ix | Grease | Oil | | Cage | | | | | max. | | | | | | | Open | Closed | | 17 | 23
23 | 12
12 | 1.0
1.8 | 8 450
11 300 | 860
1 150 | 4 450
7 750 | 455
790 | 12 000
3 400 | 19 000
5 600 | FJ-1712 | MFJ-1712 | | | 23 | 16 | 1.0 | 12 100 | 1 230 | 7 100 | 720 | 12 000 | 19 000 | FJ-1716 | MFJ-1716 | | | 23 | 16 | 1.8 | 15 800 | 1 610 | 12 000 | 1 220 | 3 400 | 5 600 | _ | _ | | 18 | 24 | 12 | 1.0 | 7 650 | 780 | 4 200 | 430 | 11 000 | 18 000 | FJ-1812 | MFJ-1812 | | | 24
24 | 12
16 | 2.2
1.0 | 10 900
11 200 | 1 110
1 140 | 7 900
6 800 | 805
695 | 3 000
11 000 | 5 000
18 000 | FJ-1816 | MFJ-1816 | | | 24 | 16 | 2.2 | 15 300 | 1 560 | 12 300 | 1 250 | 3 000 | 5 000 | _ | _ | | 20 | 26 | 12 | 1.0 | 8 150 | 835 | 4 650 | 475 | 10 000 | 16 000 | FJ-2012 | MFJ-2012 | | | 26
26 | 12
16 | 2.2
1.0 | 11 500
11 900 | 1 170
1 210 | 8 700
7 550 | 885
770 | 2 800
10 000 | 4 500
16 000 | FJ-2016 | MFJ-2016 | | | 26 | 16 | 2.2 | 16 200 | 1 650 | 13 500 | 1 380 | 2 800 | 4 500 | | | | | 26 | 20 | 1.0 | 15 300 | 1 560 | 10 500 | 1 070 | 10 000 | 16 000 | FJ-2020 | MFJ-2020 | | | 26 | 20 | 2.2 | 20 500 | 2 090 | 18 300 | 1 870 | 2 800 | 4 500 | _ | _ | | 22 | 28 | 12 | 1.0 | 8 650 | 880 | 5 150 | 525 | 9 000 | 14 000 | FJ-2212 | MFJ-2212 | | | 28
28 | 12
16 | 2.2
1.0 | 12 100
12 600 | 1 230
1 290 | 9 500
8 350 | 970
850 | 2 400
9 000 | 4 000
14 000 |
FJ-2216 |

MFJ-2216 | | | 28 | 16 | 2.2 | 17 100 | 1 740 | 14 800 | 1 510 | 2 400 | 4 000 | | | | | 28 | 20 | 1.0 | 16 200 | 1 660 | 11 500 | 1 180 | 9 000 | 14 000 | FJ-2220 | MFJ-2220 | | | 28 | 20 | 2.2 | 21 600 | 2 200 | 20 000 | 2 040 | 2 400 | 4 000 | _ | _ | | 25 | 32 | 16 | 1.0 | 15 200 | 1 550 | 9 350 | 955 | 8 000 | 13 000 | FJ-2516 | MFJ-2516 | | | 32
32 | 16
20 | 2.5
1.0 | 20 200
19 800 | 2 060
2 020 | 16 200
13 100 | 1 650
1 340 | 2 800
8 000 | 4 500
13 000 | FJ-2520 | MFJ-2520 | | | 32 | 20 | 2.5 | 25 900 | 2 640 | 22 200 | 2 260 | 2 800 | 4 500 | | | | | 32 | 26 | 1.0 | 26 200 | 2 670 | 18 800 | 1 920 | 8 000 | 13 000 | FJ-2526 | MFJ-2526 | | | 32 | 26 | 2.5 | 34 000 | 3 450 | 31 500 | 3 200 | 2 800 | 4 500 | _ | _ | | 28 | 35 | 16 | 1.0 | 15 600 | 1 590 | 9 950 | 1 020 | 7 100 | 11 000 | FJ-2816 | MFJ-2816 | | | 35
35 | 16
20 | 2.5
1.0 | 21 300
20 500 | 2 170
2 090 | 17 900
14 200 | 1 820
1 450 | 2 400
7 100 | 4 000
11 000 | FJ-2820 | MFJ-2820 | | | 35 | 20 | 2.5 | 27 300 | 2 780 | 24 600 | 2 510 | 2 400 | 4 000 | <u>_</u> | _ | | | 35 | 26 | 1.0 | 26 900 | 2 750 | 20 200 | 2 060 | 7 100 | 11 000 | FJ-2826 | MFJ-2826 | | | 35 | 26 | 2.5 | 35 500 | 3 650 | 34 500 | 3 550 | 2 400 | 4 000 | _ | _ | | Numbers | | In c | ase of in | ner ring is | used | | Mass Without Inner Ring
(g) | | | |-----------------------|---------------------|--|----------------------|------------------------------|----------------------|---|--------------------------------|----------------------|--| | Full Compler
Open | nent Type
Closed | Bearing Numbers
of Inner Ring | | indary
ions (mm)
B | Dimens | nt and Fillet ions (mm) γ_a (max.) | | orox.
Closed | | | F-1712
F-1716 | MF-1712
MF-1716 | = | = | = | = | = | 10
14
14
18 | 11
15
16
20 | | | F-1812
F-1816 | MF-1812
MF-1816 | FIR-151812
FIR-151812
FIR-151816
FIR-151816 | 15
15
15
15 | 12.5
12.5
16.5
16.5 | 17
17
17
17 | 0.3
0.3
0.3
0.3 | 12
14
16
19 | 14
16
18
22 | | | F-2012 | MF-2012 | FIR-172012
FIR-172012
FIR-172016 | 17
17
17 | 12.5
12.5
16.5 | 19
19
19 | 0.3
0.3
0.3 | 13
17
17 | 15
19
19 | | | F-2016
F-2020 | MF-2016
MF-2020 | FIR-172016
FIR-172020
FIR-172020 | 17
17
17 | 16.5
20.5
20.5 | 19
19
19 | 0.3
0.3
0.3 | 22
22
28 | 25
24
30 | | | F-2212 | MF-2212 | FIR-172212
FIR-172212
FIR-172216 | 17
17
17 | 12.5
12.5
16.5 | 19
19
19 | 0.3
0.3
0.3 | 14
18
19 | 17
21
22 | | | F-2216

F-2220 | MF-2216
MF-2220 | FIR-172216
FIR-172220
FIR-172220 | 17
17
17 | 16.5
20.5
20.5 | 19
19
19 | 0.3
0.3
0.3 | 24
23
30 | 27
26
33 | | | F-2516 | MF-2516 | FIR-202516
FIR-202516
FIR-202520 | 20
20
20 | 16.5
16.5
20.5 | 22
22
22 | 0.3
0.3
0.3 | 24
31
31 | 27
35
34 | | | F-2520
—
F-2526 | MF-2520
MF-2526 | FIR-202520
FIR-202526
FIR-202526 | 20
20
20 | 20.5
26.5
26.5 | 22
22
22 | 0.3
0.3
0.3 | 40
40
52 | 43
43
55 | | | F-2816 | MF-2816 | FIR-222816
FIR-222816
FIR-222820 | 22
22
22 | 16.5
16.5
20.5 | 24
24
24 | 0.3
0.3
0.3 | 27
35
34 | 31
40
38 | | | F-2820
F-2826 | MF-2820
MF-2826 | FIR-222820
FIR-222826
FIR-222826 | 22
22
22 | 20.5
26.5
26.5 | 24
24
24 | 0.3
0.3
0.3 | 44
45
57 | 48
49
62 | | B 260 B 261 # FJ • MFJ (With Cage) # F • MF (Full Complement Type) Inscribed Circle Diameter 30 – 55 mm | Вοι | | Dimens | ions | Basic Dynamic L | • | Limiting | | Limiting | | | Bearing | |------------|----------------------|----------------------|--------------------------|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------|--------------------------------| | _ | | 'n | | (N) | {kgf} | (N) | {kgf} | (mii | 1 ⁻¹) | With | Cane | | $F_{ m W}$ | D | $C^{-0.25}$ | C_1, C_2 max. | $C_{\rm r}$ | | $P_{ m ma}$ | ЭX | Grease | Oil | Open | Closed | | 30 | 37
37
37 | 16
16
20 | 1.0
2.5
1.0 | 15 600
22 100
19 400 | 1 590
2 250
1 970 | 10 100
18 900
13 300 | 1 030
1 930
1 360 | 6 700
2 400
6 700 | 10 000
3 800
10 000 | FJ-3016L
FJ-3020 | MFJ-3016
MFJ-3020 | | | 37
37
37 | 20
26
26 | 2.5
1.0
2.5 | 28 400
26 000
37 000 | 2 900
2 660
3 800 | 26 200
19 500
37 000 | 2 670
1 990
3 750 | 2 400
6 700
2 400 | 3 800
10 000
3 800 | FJ-3026 | MFJ-3026 | | 35 | 42
42
42 | 16
16
20 | 1.0
2.5
1.0 | 18 100
24 000
23 600 | 1 850
2 450
2 410 | 12 800
22 000
17 900 | 1 300
2 240
1 830 | 5 600
2 000
5 600 | 9 000
3 400
9 000 | FJ- <u>3</u> 516
FJ-3520 | MFJ-3516
MFJ-3520 | | | 42
42
42 | 20
26
26 | 2.5
1.0
2.5 | 31 000
31 500
40 000 | 3 150
3 200
4 100 | 30 000
25 800
42 500 | 3 100
2 630
4 350 | 2 000
5 600
2 000 | 3 400
9 000
3 400 | FJ-3526 | MFJ- <u>3</u> 526 | | 40 | 47
47
47 | 16
16
20 | 1.0
2.5
1.0 | 18 600
25 700
23 500 | 1 890
2 620
2 400 | 13 600
24 900
18 500 | 1 390
2 540
1 890 | 4 800
1 800
4 800 | 7 500
3 000
7 500 | FJ-4016
—
FJ-4020 | MFJ-4016
—
MFJ-4020 | | | 47
47 | 20
26 | 2.5
1.0 | 32 500
31 500 | 3 350
3 200 | 34 000
26 900 | 3 450
2 740 | 1 800
4 800 | 3 000
7 500 |
FJ-4026 | MFJ-4026 | | 45 | 52
52
52
52 | 16
16
20
20 | 1.0
2.5
1.0
2.5 | 19 900
27 300
25 500
35 000 | 2 030
2 790
2 600
3 550 | 15 400
27 800
21 200
38 500 | 1 570
2 840
2 160
3 900 | 4 300
1 600
4 300
1 600 | 6 700
2 600
6 700
2 600 | FJ-4516
FJ-4520 | MFJ-4516
MFJ-4520 | | 50 | 58
58
58
58 | 20
20
24
24 | 1.1
2.8
1.1
2.8 | 28 900
39 500
36 000
48 000 | 2 940
4 050
3 700
4 900 | 23 100
41 500
30 500
53 000 | 2 350
4 250
3 150
5 400 | 3 800
1 700
3 800
1 700 | 6 300
2 800
6 300
2 800 | FJ-5020L
—
FJ-5024
— | MFJ-5020
—
MFJ-5024
— | | 55 | 63
63
63 | 20
20
24
24 | 1.1
2.8
1.1
2.8 | 30 000
41 500
37 500
50 500 | 3 100
4 250
3 850
5 150 | 25 100
45 500
33 500
58 000 | 2 560
4 650
3 400
5 950 | 3 400
1 600
3 400
1 600 | 5 600
2 400
5 600
2 400 | FJ-5520
FJ-5524 | MFJ-5520
MFJ-5524 | | Numbers | | In c | | Mass Without Inner Ring
(g) | | | | | |----------------------|---------------------|--|-------------------------------|--------------------------------|----------------|---|-----------------------|------------------------| | Full Compler
Open | ment Type
Closed | Bearing Numbers of Inner Ring | | indary ions (mm) B | Dimensi | nt and Fillet ions (mm) γ_a (max.) | | orox.
Closed | | F-3016 | MF-3016 | <u></u> | <u>_</u>
25 | <u></u>
20.5 | <u> </u> | 0.3 | 26
35
35 | 31
40
39 | | F-3020
F-3026 | MF-3020
MF-3026 | FIR-253020
FIR-253026
FIR-253026 | 25
25
25 | 20.5
26.5
26.5 | 27
27
27 | 0.3
0.3
0.3 | 46
46
61 | 51
50
66 | | F-3516 | MF-3516 | <u></u>
FIR-303520 | 30 | <u></u> | 34 | 0.6 | 32
53
41 | 38
60
45 | | F-3520
F-3526 | MF-3520
MF-3526 | FIR-303520
FIR-303526
FIR-303526 | 30
30
30 | 20.5
26.5
26.5 | 34
34
34 | 0.6
0.6
0.6 | 42
54
70 | 49
58
76 | | F-4016 | MF-4016 | <u>-</u>
FIR-354020 | <u>-</u>
35 | <u></u> | 39 | 0.6 | 34
48
46 | 43
56
51 | | F-4020
— | MF-4020
— | FIR-354020
FIR-354026 | 35
35 | 20.5
26.5 | 39
39 | 0.6
0.6 | 60
60 | 69
65 | | F-4516
F-4520 | MF-4516
MF-4520 | —
FIR-404520
FIR-404520 | 40
40 | 20.5
20.5 | | 0.6
0.6 | 39
53
53
67 | 50
64
59
78 | | F-5020
F-5024 | MF-5020
MF-5024 | FIR-455020
—
—
—
— | 45
—
— | 20.5 | 49
 | 0.6 | 56
81
69
98 | 71
95
84
110 | |
F-5520
F-5524 | MF-5520
MF-5524 | _
_
_ | <u>-</u>
 <u>-</u>
 - | _
_
_
_ | _
_
_ | = | 60
88
72
105 | 79
105
90
125 | RLM • LM RNA • NA | Numbers | 1 | | | Boundary Dimensions (mm) Abutment and Fillet Dimensions (mm) | | mensions | Mass
(kg) | | |--------------------------|--|----------------------|--------------------------|--|--|--------------------------|----------------------------------|----------------------------------| | Without Inner Ring | With Inner Ring | d | В | $d_{ m a}$ min. | $\begin{array}{c} D_{\rm a} \\ {\rm max.} \end{array}$ | $ m \emph{r}_a$ max. | appi
Without Inner Ring | | | = | LM 91612-1
— | 6
— | 12
— | 8 — | 14
14 | 0.3
0.3 | 0.009
0.011 | 0.013 | | = | _ | _ | _ | _ | 15
15 | 0.3
0.3 | 0.008
0.012 | _ | | = | LM 1212 | 8 | 12.2 | 10 | 15 | 0.3 | 0.007 | 0.013 | | | LM 121912 | 8 | 12.2 | 10 | 17 | 0.3 | 0.011 | 0.017 | | RNA 4900
— | NA 4900
LM 1416
LM 1420 | 10
10
10 | 13
16.2
20.2 | 12
12
12 | 20
20
20 | 0.3
0.3
0.3 | 0.016
0.019
0.024 | 0.024
0.028
0.036 | | = | LM 1515 | 10 | 15.2 | 12 | 18 | 0.3 |
0.011 | 0.022 | | | LM 1520 | 10 | 20.2 | 12 | 18 | 0.3 | 0.015 | 0.03 | | | LM 152215 | 10 | 15.2 | 12 | 20 | 0.3 | 0.016 | 0.027 | | RNA 4901

RNA 6901 | NA 4901
LM 1616
LM 1620
NA 6901 | 12
12
12
12 | 13
16.2
20.2
22 | 14
14
14
14 | 22
22
22
22 | 0.3
0.3
0.3
0.3 | 0.018
0.021
0.027
0.03 | 0.027
0.032
0.041
0.045 | | = | LM 1710 | 12 | 10.2 | 14 | 20 | 0.3 | 0.008 | 0.017 | | | LM 172425 | 12 | 25.2 | 16 | 20 | 0.5 | 0.03 | 0.052 | | = | LM 1815 | 15 | 15.2 | 19 | 21 | 0.5 | 0.019 | 0.028 | | | LM 1820 | 15 | 20.2 | 19 | 21 | 0.5 | 0.025 | 0.037 | | = = | LM 2010 | 15 | 10.2 | 19 | 23 | 0.5 | 0.014 | 0.025 | | | LM 2015 | 15 | 15.2 | 19 | 23 | 0.5 | 0.021 | 0.037 | | | LM 2020 | 15 | 20.2 | 19 | 23 | 0.5 | 0.028 | 0.049 | | | LM 2025 | 15 | 25.2 | 19 | 23 | 0.5 | 0.035 | 0.061 | | RNA 4902 | NA 4902 | 15 | 13 | 17 | 26 | 0.3 | 0.021 | 0.035 | | RNA 5902 | NA 5902 | 15 | 18 | 17 | 26 | 0.3 | 0.032 | 0.051 | | RNA 6902 | NA 6902 | 15 | 23 | 17 | 26 | 0.3 | 0.039 | 0.064 | | = | LM 2220 | 17 | 20.2 | 21 | 25 | 0.5 | 0.03 | 0.054 | | | LM 2225 | 17 | 25.2 | 21 | 25 | 0.5 | 0.038 | 0.068 | | RNA 4903
RNA 5903
 | NA 4903
NA 5903
LM 223020
NA 6903 | 17
17
17
17 | 13
18
20.2
23 | 19
19
21
19 | 28
28
26
28 | 0.3
0.3
0.5
0.3 | 0.023
0.034
0.035
0.041 | 0.038
0.055
0.06
0.068 | **Remarks** If a full complement roller bearing is required, please contact NSK. B 264 B 265 RLM • LM RNA • NA Inscribed Circle Diameter 25 – 35 mm | Воі | Boundary Dimensions
(mm) | | | (1 | Basic Load | Ratings
{kg | af} | | g Speeds
in ⁻¹) | Bearing | |------------|-----------------------------|----------------|-------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------------------|--------------------------------|--| | $F_{ m W}$ | D | С | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | C_{0r} | Grease | Oil | Without Inner Ring | | 25 | 32
32
32 | 12
20
25 | 0.5
0.5
0.5 | 10 300
18 800
22 700 | 13 700
29 700
37 500 | 1 050
1 920
2 310 | 1 400
3 050
3 850 | 8 500
8 500
8 500 | 14 000
14 000
14 000 | RLM 2512
RLM 2520
RLM 2525 | | | 37
37
37 | 17
23
30 | 0.3
0.3
0.3 | 19 700
27 800
36 500 | 22 900
35 500
50 500 | 2 010
2 830
3 700 | 2 340
3 650
5 150 | 11 000
11 000
11 000 | 18 000
18 000
18 000 | = | | 28 | 35
35
37 | 20
25
30 | 0.5
0.5
0.5 | 19 900
23 900
34 000 | 33 000
42 000
52 500 | 2 030
2 440
3 450 | 3 350
4 250
5 350 | 7 500
7 500
7 500 | 12 000
12 000
12 000 | RLM 2820
RLM 2825
RLM 283730 | | | 39
39
39 | 17
23
30 | 0.3
0.3
0.3 | 22 400
28 300
37 000 | 30 500
41 500
58 500 | 2 290
2 890
3 800 | 3 150
4 200
6 000 | 9 500
9 500
9 500 | 15 000
15 000
15 000 | | | 30 | 37
40
40 | 25
20
30 | 0.5
0.5
0.5 | 24 500
25 000
35 000 | 44 000
36 000
56 000 | 2 490
2 550
3 600 | 4 500
3 650
5 700 | 7 100
7 100
7 100 | 12 000
12 000
12 000 | RLM 3025
RLM 304020
RLM 304030 | | | 42
42
42 | 17
23
30 | 0.3
0.3
0.3 | 21 400
30 000
39 500 | 26 800
41 500
59 000 | 2 180
3 100
4 050 | 2 740
4 250
6 050 | 9 000
9 000
9 000 | 14 000
14 000
14 000 | | | 32 | 42
42 | 20
30 | 0.5
0.5 | 25 800
36 500 | 38 000
59 000 | 2 630
3 700 | 3 900
6 050 | 6 700
6 700 | 11 000
11 000 | RLM 3220
RLM 3230 | | | 45
45
45 | 17
23
30 | 0.3
0.3
0.3 | 22 200
31 500
41 000 | 28 700
44 500
63 500 | 2 270
3 200
4 200 | 2 930
4 550
6 450 | 8 500
8 500
8 500 | 13 000
13 000
13 000 | = | | 35 | 42
42 | 20
30 | 0.5
0.5 | 22 300
31 000 | 41 000
63 500 | 2 270
3 200 | 4 200
6 450 | 6 300
6 300 | 10 000
10 000 | RLM 3520
RLM 3530 | | | 45
45
45 | 20
25
30 | 0.5
0.5
0.5 | 27 500
33 000
38 500 | 42 500
54 500
66 000 | 2 800
3 400
3 950 | 4 350
5 550
6 750 | 6 300
6 300
6 300 | 10 000
10 000
10 000 | RLM 354520
RLM 354525
RLM 354530 | | | 47
47
47 | 17
23
30 | 0.3
0.3
0.3 | 23 900
33 500
44 000 | 32 500
50 500
71 500 | 2 430
3 450
4 500 | 3 300
5 150
7 300 | 7 500
7 500
7 500 | 12 000
12 000
12 000 | = | **Remarks** If a full complement roller bearing is required, please contact NSK. | Numbers | | | Dimensions | Abutment | and Fillet Dir
(mm) | mensions | Ma:
(kg | | |--------------------|-----------------|----|------------|-----------------|--|---------------------------------------|----------------------------|-------| | Without Inner Ring | With Inner Ring | d | В | $d_{ m a}$ min. | $\begin{array}{c} D_{\rm a} \\ {\rm max.} \end{array}$ | $oldsymbol{\gamma}_{\mathrm{a}}$ max. | appr
Without Inner Ring | | | = | LM 2512 | 20 | 12.2 | 24 | 28 | 0.5 | 0.02 | 0.036 | | | LM 2520 | 20 | 20.2 | 24 | 28 | 0.5 | 0.034 | 0.061 | | | LM 2525 | 20 | 25.2 | 24 | 28 | 0.5 | 0.042 | 0.076 | | RNA 4904 | NA 4904 | 20 | 17 | 22 | 35 | 0.3 | 0.055 | 0.077 | | RNA 5904 | NA 5904 | 20 | 23 | 22 | 35 | 0.3 | 0.089 | 0.12 | | RNA 6904 | NA 6904 | 20 | 30 | 22 | 35 | 0.3 | 0.098 | 0.14 | | = | LM 2820 | 22 | 20.2 | 26 | 31 | 0.5 | 0.038 | 0.062 | | | LM 2825 | 22 | 25.2 | 26 | 31 | 0.5 | 0.047 | 0.092 | | | LM 283730 | 22 | 30.2 | 26 | 33 | 0.5 | 0.075 | 0.13 | | RNA 49/22 | NA 49/22 | 22 | 17 | 24 | 37 | 0.3 | 0.056 | 0.086 | | RNA 59/22 | NA 59/22 | 22 | 23 | 24 | 37 | 0.3 | 0.091 | 0.135 | | RNA 69/22 | NA 69/22 | 22 | 30 | 24 | 37 | 0.3 | 0.096 | 0.15 | | Ξ | LM 3025 | 25 | 25.2 | 29 | 33 | 0.5 | 0.05 | 0.092 | | | LM 304020 | 25 | 20.2 | 29 | 36 | 0.5 | 0.06 | 0.093 | | | LM 304030 | 25 | 30.2 | 29 | 36 | 0.5 | 0.09 | 0.14 | | RNA 4905 | NA 4905 | 25 | 17 | 27 | 40 | 0.3 | 0.063 | 0.091 | | RNA 5905 | NA 5905 | 25 | 23 | 27 | 40 | 0.3 | 0.10 | 0.14 | | RNA 6905 | NA 6905 | 25 | 30 | 27 | 40 | 0.3 | 0.11 | 0.16 | | Ξ | LM 3220 | 28 | 20.2 | 32 | 38 | 0.5 | 0.064 | 0.09 | | | LM 3230 | 28 | 30.2 | 32 | 38 | 0.5 | 0.096 | 0.14 | | RNA 49/28 | NA 49/28 | 28 | 17 | 30 | 43 | 0.3 | 0.076 | 0.099 | | RNA 59/28 | NA 59/28 | 28 | 23 | 30 | 43 | 0.3 | 0.11 | 0.145 | | RNA 69/28 | NA 69/28 | 28 | 30 | 30 | 43 | 0.3 | 0.13 | 0.175 | | Ξ | LM 3520 | 30 | 20.2 | 34 | 38 | 0.5 | 0.046 | 0.085 | | | LM 3530 | 30 | 30.2 | 34 | 38 | 0.5 | 0.07 | 0.13 | | = | LM 354520 | 30 | 20.2 | 34 | 41 | 0.5 | 0.069 | 0.11 | | | LM 354525 | 30 | 25.2 | 34 | 41 | 0.5 | 0.086 | 0.135 | | | LM 354530 | 30 | 30.2 | 34 | 41 | 0.5 | 0.10 | 0.16 | | RNA 4906 | NA 4906 | 30 | 17 | 32 | 45 | 0.3 | 0.072 | 0.105 | | RNA 5906 | NA 5906 | 30 | 23 | 32 | 45 | 0.3 | 0.11 | 0.15 | | RNA 6906 | NA 6906 | 30 | 30 | 32 | 45 | 0.3 | 0.13 | 0.19 | B 266 B 267 RLM • LM RNA • NA RLM | Во | undary D
(mi | | ons | | Basic Lo | ad Ratings | :gf} | _ ~ | Speeds
n ⁻¹) | Bearin | |------------|-----------------|----------------|-------------------|----------------------------|------------------------------|-------------------------|---------------------------|-------------------------|-----------------------------|--------------------------| | $F_{ m W}$ | D | С | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Grease | Oil | Without Inner Ring | | 37 | 47
47 | 20
30 | 0.6
0.6 | 28 200
39 500 | 45 000
69 500 | 2 880
4 050 | 4 550
7 100 | 6 000
6 000 | 9 500
9 500 | RLM 3720
RLM 3730 | | 38 | 48
48 | 20
30 | 0.6
0.6 | 29 000
41 000 | 47 000
73 000 | 2 960
4 150 | 4 800
7 450 | 5 600
5 600 | 9 000
9 000 | RLM 3820
RLM 3830 | | 40 | 50
50 | 20
30 | 0.6
0.6 | 29 700
42 000 | 49 000
76 500 | 3 050
4 250 | 5 000
7 800 | 5 300
5 300 | 9 000
9 000 | RLM 4020
RLM 4030 | | | 52
52
52 | 20
27
36 | 0.6
0.6
0.6 | 29 900
40 500
56 000 | 45 000
66 000
101 000 | 3 050
4 100
5 700 | 4 600
6 750
10 300 | 6 700
6 700
6 700 | 10 000
10 000
10 000 | = | | 42 | 55
55
55 | 20
27
36 | 0.6
0.6
0.6 | 30 500
41 500
57 500 | 47 500
69 500
106 000 | 3 100
4 200
5 850 | 4 800
7 100
10 900 | 6 300
6 300
6 300 | 10 000
10 000
10 000 | Ξ | | 45 | 55
55 | 20
30 | 0.6
0.6 | 31 000
43 500 | 53 500
83 500 | 3 150
4 450 | 5 500
8 500 | 4 800
4 800 | 8 000
8 000 | RLM 4520
RLM 4530 | | 48 | 62
62
62 | 22
30
40 | 0.6
0.6
0.6 | 39 000
54 500
72 000 | 61 500
95 000
137 000 | 3 950
5 550
7 350 | 6 300
9 700
13 900 | 5 600
5 600
5 600 | 9 000
9 000
9 000 | = | | 50 | 62
62 | 20
25 | 0.6
0.6 | 35 500
43 000 | 60 500
77 500 | 3 600
4 400 | 6 150
7 900 | 4 300
4 300 | 7 100
7 100 | RLM 506220
RLM 506225 | | 52 | 68
68
68 | 22
30
40 | 0.6
0.6
0.6 | 41 000
57 000
76 000 | 67 500
104 000
149 000 | 4 150
5 800
7 750 | 6 900
10 600
15 200 | 5 000
5 000
5 000 | 8 000
8 000
8 000 | = | | 55 | 65
67 | 30
20 | 0.6
0.6 | 49 000
38 000 | 104 000
68 000 | 5 000
3 850 | 10 600
6 900 | 4 000
4 000 | 6 300
6 300 | RLM 5530
RLM 556720 | | 58 | 72
72
72 | 22
30
40 | 0.6
0.6
0.6 | 42 500
59 500
79 000 | 73 500
113 000
163 000 | 4 350
6 050
8 050 | 7 500
11 500
16 600 | 4 500
4 500
4 500 | 7 100
7 100
7 100 | = | RNA **Remarks** If a full complement roller bearing is required, please contact NSK. | Numbers | | | Dimensions | Abutment |
and Fillet Dir
(mm) | mensions | Ma:
(kg | | |--------------------|-----------------|----|------------|-----------------|--|---------------------------------|----------------------------|-------| | Without Inner Ring | With Inner Ring | d | В | $d_{ m a}$ min. | $\begin{array}{c} D_{\rm a} \\ {\rm max.} \end{array}$ | $oldsymbol{\gamma}_{ m a}$ max. | appr
Without Inner Ring | | | Ξ | LM 3720 | 32 | 20.3 | 36 | 43 | 0.6 | 0.072 | 0.115 | | | LM 3730 | 32 | 30.3 | 36 | 43 | 0.6 | 0.11 | 0.17 | | = | LM 3820 | 32 | 20.3 | 36 | 44 | 0.6 | 0.074 | 0.125 | | | LM 3830 | 32 | 30.3 | 36 | 44 | 0.6 | 0.11 | 0.195 | | Ξ | LM 4020 | 35 | 20.3 | 39 | 46 | 0.6 | 0.078 | 0.125 | | | LM 4030 | 35 | 30.3 | 39 | 46 | 0.6 | 0.12 | 0.19 | | RNA 49/32 | NA 49/32 | 32 | 20 | 36 | 48 | 0.6 | 0.092 | 0.16 | | RNA 59/32 | NA 59/32 | 32 | 27 | 36 | 48 | 0.6 | 0.15 | 0.24 | | RNA 69/32 | NA 69/32 | 32 | 36 | 36 | 48 | 0.6 | 0.17 | 0.29 | | RNA 4907 | NA 4907 | 35 | 20 | 39 | 51 | 0.6 | 0.11 | 0.17 | | RNA 5907 | NA 5907 | 35 | 27 | 39 | 51 | 0.6 | 0.175 | 0.25 | | RNA 6907 | NA 6907 | 35 | 36 | 39 | 51 | 0.6 | 0.20 | 0.315 | | Ξ | LM 4520 | 40 | 20.3 | 44 | 51 | 0.6 | 0.086 | 0.14 | | | LM 4530 | 40 | 30.3 | 44 | 51 | 0.6 | 0.13 | 0.21 | | RNA 4908 | NA 4908 | 40 | 22 | 44 | 58 | 0.6 | 0.15 | 0.24 | | RNA 5908 | NA 5908 | 40 | 30 | 44 | 58 | 0.6 | 0.23 | 0.355 | | RNA 6908 | NA 6908 | 40 | 40 | 44 | 58 | 0.6 | 0.265 | 0.435 | | Ξ | LM 506220 | 42 | 20.3 | 46 | 58 | 0.6 | 0.12 | 0.21 | | | LM 506225 | 42 | 25.3 | 46 | 58 | 0.6 | 0.155 | 0.265 | | RNA 4909 | NA 4909 | 45 | 22 | 49 | 64 | 0.6 | 0.19 | 0.28 | | RNA 5909 | NA 5909 | 45 | 30 | 49 | 64 | 0.6 | 0.27 | 0.39 | | RNA 6909 | NA 6909 | 45 | 40 | 49 | 64 | 0.6 | 0.335 | 0.495 | | = | LM 5530 | 45 | 30.3 | 49 | 61 | 0.6 | 0.16 | 0.34 | | | LM 556720 | 45 | 20.3 | 49 | 63 | 0.6 | 0.13 | 0.25 | | RNA 4910 | NA 4910 | 50 | 22 | 54 | 68 | 0.6 | 0.18 | 0.295 | | RNA 5910 | NA 5910 | 50 | 30 | 54 | 68 | 0.6 | 0.25 | 0.405 | | RNA 6910 | NA 6910 | 50 | 40 | 54 | 68 | 0.6 | 0.32 | 0.53 | RNA • NA Inscribed Circle Diameter 63 – 120 mm | Во | oundary D | | ons | | | oad Ratings | | Limiting | | Bearing | |------------|-------------------|----------------|-----------------|------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------|--------------------------|----------------------------------| | $F_{ m W}$ | (mi | m)
<i>C</i> | r | $C_{\rm r}$ | C_{0r} | $C_{ m r}$ | $C_{0 m r}$ | (mir
Grease | n ⁻¹)
Oil | Without Inner Ring | | _ v | | | min. | 01 | 001 | 01 | 001 | Grease | Oil | | | 63 | 80 | 25 | 1 | 53 500 | 87 500 | 5 450 | 8 950 | 4 000 | 6 700 | RNA 4911 | | | 80 | 34 | 1 | 73 500 | 133 000 | 7 500 | 13 600 | 4 000 | 6 700 | RNA 5911 | | | 80 | 45 | 1 | 93 500 | 181 000 | 9 550 | 18 500 | 4 000 | 6 700 | RNA 6911 | | 68 | 85 | 25 | 1 | 56 000 | 95 500 | 5 700 | 9 750 | 3 800 | 6 300 | RNA 4912 | | | 85 | 34 | 1 | 77 500 | 145 000 | 7 900 | 14 800 | 3 800 | 6 300 | RNA 5912 | | | 85 | 45 | 1 | 98 000 | 197 000 | 10 000 | 20 100 | 3 800 | 6 300 | RNA 6912 | | 72 | 90 | 25 | 1 | 58 500 | 103 000 | 5 950 | 10 500 | 3 600 | 5 600 | RNA 4913 | | | 90 | 34 | 1 | 81 000 | 157 000 | 8 250 | 16 000 | 3 600 | 5 600 | RNA 5913 | | | 90 | 45 | 1 | 103 000 | 213 000 | 10 500 | 21 800 | 3 600 | 5 600 | RNA 6913 | | 80 | 100 | 30 | 1 | 80 500 | 143 000 | 8 200 | 14 600 | 3 200 | 5 300 | RNA 4914 | | | 100 | 40 | 1 | 107 000 | 206 000 | 10 900 | 21 000 | 3 200 | 5 300 | RNA 5914 | | | 100 | 54 | 1 | 143 000 | 298 000 | 14 500 | 30 500 | 3 200 | 5 300 | RNA 6914 | | 85 | 105 | 30 | 1 | 84 000 | 155 000 | 8 600 | 15 800 | 3 000 | 5 000 | RNA 4915 | | | 105 | 40 | 1 | 112 000 | 222 000 | 11 400 | 22 700 | 3 000 | 5 000 | RNA 5915 | | | 105 | 54 | 1 | 149 000 | 325 000 | 15 200 | 33 000 | 3 000 | 5 000 | RNA 6915 | | 90 | 110 | 30 | 1 | 87 500 | 166 000 | 8 950 | 17 000 | 2 800 | 4 500 | RNA 4916 | | | 110 | 40 | 1 | 116 000 | 239 000 | 11 900 | 24 400 | 2 800 | 4 500 | RNA 5916 | | | 110 | 54 | 1 | 157 000 | 350 000 | 16 000 | 36 000 | 2 800 | 4 500 | RNA 6916 | | 100 | 120 | 35 | 1.1 | 104 000 | 214 000 | 10 600 | 21 800 | 2 600 | 4 000 | RNA 4917 | | | 120 | 46 | 1.1 | 138 000 | 310 000 | 14 100 | 31 500 | 2 600 | 4 000 | RNA 5917 | | | 120 | 63 | 1.1 | 174 000 | 415 000 | 17 800 | 42 500 | 2 600 | 4 000 | RNA 6917 | | 105 | 125 | 35 | 1.1 | 108 000 | 228 000 | 11 000 | 23 300 | 2 400 | 4 000 | RNA 4918 | | | 125 | 46 | 1.1 | 143 000 | 330 000 | 14 600 | 33 500 | 2 400 | 4 000 | RNA 5918 | | | 125 | 63 | 1.1 | 181 000 | 445 000 | 18 400 | 45 000 | 2 400 | 4 000 | RNA 6918 | | 110 | 130 | 35 | 1.1 | 111 000 | 242 000 | 11 400 | 24 700 | 2 200 | 3 800 | RNA 4919 | | | 130 | 46 | 1.1 | 148 000 | 350 000 | 15 100 | 35 500 | 2 200 | 3 800 | RNA 5919 | | | 130 | 63 | 1.1 | 187 000 | 470 000 | 19 100 | 48 000 | 2 200 | 3 800 | RNA 6919 | | 115
120 | 140
140
140 | 40
54
30 | 1.1
1.1
1 | 144 000
193 000
99 500 | 295 000
430 000
214 000 | 14 700
19 700
10 100 | 30 000
43 500
21 900 | 2 200
2 200
2 000 | 3 600
3 600
3 400 | RNA 4920
RNA 5920
RNA 4822 | | Numbers | | Dimensions
nm) | Abutment | and Fillet Din
(mm) | nensions | Mass
(kg) | | | |-----------------|-----|-------------------|-----------------|--|---------------------|----------------------------|------------------------|--| | With Inner Ring | d | В | $d_{ m a}$ min. | $\begin{array}{c} D_{\rm a} \\ {\rm max.} \end{array}$ | ${m r}_{ m a}$ max. | appr
Without Inner Ring | OX.
With Inner Ring | | | NA 4911 | 55 | 25 | 60 | 75 | 1 | 0.26 | 0.40 | | | NA 5911 | 55 | 34 | 60 | 75 | 1 | 0.37 | 0.56 | | | NA 6911 | 55 | 45 | 60 | 75 | 1 | 0.475 | 0.73 | | | NA 4912 | 60 | 25 | 65 | 80 | 1 | 0.28 | 0.435 | | | NA 5912 | 60 | 34 | 65 | 80 | 1 | 0.415 | 0.625 | | | NA 6912 | 60 | 45 | 65 | 80 | 1 | 0.485 | 0.76 | | | NA 4913 | 65 | 25 | 70 | 85 | 1 | 0.32 | 0.465 | | | NA 5913 | 65 | 34 | 70 | 85 | 1 | 0.48 | 0.675 | | | NA 6913 | 65 | 45 | 70 | 85 | 1 | 0.53 | 0.79 | | | NA 4914 | 70 | 30 | 75 | 95 | 1 | 0.47 | 0.74 | | | NA 5914 | 70 | 40 | 75 | 95 | 1 | 0.69 | 1.05 | | | NA 6914 | 70 | 54 | 75 | 95 | 1 | 0.89 | 1.4 | | | NA 4915 | 75 | 30 | 80 | 100 | 1 | 0.5 | 0.79 | | | NA 5915 | 75 | 40 | 80 | 100 | 1 | 0.735 | 1.1 | | | NA 6915 | 75 | 54 | 80 | 100 | 1 | 0.96 | 1.5 | | | NA 4916 | 80 | 30 | 85 | 105 | 1 | 0.53 | 0.835 | | | NA 5916 | 80 | 40 | 85 | 105 | 1 | 0.75 | 1.15 | | | NA 6916 | 80 | 54 | 85 | 105 | 1 | 0.99 | 1.55 | | | NA 4917 | 85 | 35 | 91.5 | 113.5 | 1 | 0.68 | 1.25 | | | NA 5917 | 85 | 46 | 91.5 | 113.5 | 1 | 0.99 | 1.75 | | | NA 6917 | 85 | 63 | 91.5 | 113.5 | 1 | 1.2 | 2.25 | | | NA 4918 | 90 | 35 | 96.5 | 118.5 | 1 | 0.72 | 1.35 | | | NA 5918 | 90 | 46 | 96.5 | 118.5 | 1 | 1.05 | 1.85 | | | NA 6918 | 90 | 63 | 96.5 | 118.5 | 1 | 1.35 | 2.45 | | | NA 4919 | 95 | 35 | 101.5 | 123.5 | 1 | 0.74 | 1.4 | | | NA 5919 | 95 | 46 | 101.5 | 123.5 | 1 | 1.15 | 2.0 | | | NA 6919 | 95 | 63 | 101.5 | 123.5 | 1 | 1.5 | 2.65 | | | NA 4920 | 100 | 40 | 106.5 | 133.5 | 1 | 1.15 | 1.95 | | | NA 5920 | 100 | 54 | 106.5 | 133.5 | 1 | 1.8 | 2.85 | | | NA 4822 | 110 | 30 | 115 | 135 | 1 | 0.67 | 1.1 | | **Remarks** If a full complement roller bearing is required, please contact NSK. B 270 B 271 RNA • NA Inscribed Circle Diameter 125 – 390 mm | Во | undary D | | ons | | Basic Load R | - | kgf} | Limiting
(mir | | Bearing | |------------|----------|----|------------------|-------------|-------------------|------------------|----------|------------------|-------|--------------------| | $F_{ m W}$ | D | С | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | C_{r} | C_{0r} | Grease | Oil | Without Inner Ring | | 125 | 150 | 40 | 1.1 | 149 000 | 315 000 | 15 200 | 32 500 | 2 000 | 3 200 | RNA 4922 | | | 150 | 54 | 1.1 | 200 000 | 460 000 | 20 300 | 47 000 | 2 000 | 3 200 | RNA 5922 | | 130 | 150 | 30 | 1 | 105 000 | 238 000 | 10 700 | 24 300 | 1 900 | 3 200 | RNA 4824 | | 135 | 165 | 45 | 1.1 | 192 000 | 395 000 | 19 600 | 40 500 | 1 900 | 3 000 | RNA 4924 | | | 165 | 60 | 1.1 | 253 000 | 565 000 | 25 800 | 58 000 | 1 900 | 3 000 | RNA 5924 | | 145 | 165 | 35 | 1.1 | 127 000 | 315 000 | 12 900 | 32 000 | 1 700 | 2 800 | RNA 4826 | | 150 | 180 | 50 | 1.5 | 228 000 | 515 000 | 23 200 | 52 500 | 1 700 | 2 800 | RNA 4926 | | | 180 | 67 | 1.5 | 299 000 | 725 000 | 30 500 | 74 000 | 1 700 | 2 800 | RNA 5926 | | 155 | 175 | 35 | 1.1 | 133 000 | 340 000 | 13 600 | 35 000 | 1 600 | 2 600 | RNA 4828 | | 160 | 190 | 50 | 1.5 | 235 000 | 545 000 | 24 000 | 55 500 | 1 600 | 2 600 | RNA 4928 | | | 190 | 67 | 1.5 | 310 000 | 775 000 | 31 500 | 79 000 | 1 600 | 2 600 | RNA 5928 | | 165 | 190 | 40 | 1.1 | 180 000 | 440 000 | 18 300 | 45 000 | 1 500 | 2 400 | RNA 4830 | | 175 | 200 | 40 | 1.1 | 184 000 | 465 000 | 18 700 | 47 000 | 1 400 | 2 200 | RNA 4832 | | 185 | 215 | 45 | 1.1 | 224 000 | 540 000 | 22 900 | 55 000 | 1 400 | 2 200 | RNA 4834 | | 195 | 225 | 45 | 1.1 | 230 000 | 570 000 | 23 500 | 58 000 | 1 300 | 2 000 | RNA 4836 | | 210 | 240 | 50 | 1.5 | 268 000 | 705 000 | 27 300 | 72 000 | 1 200 | 1 900 | RNA 4838 | | 220 | 250 | 50 | 1.5 | 274 000 | 740 000 | 27 900 | 75 500 | 1 100 | 1 800 | RNA 4840 | | 240 | 270 | 50 | 1.5 | 286 000 | 805 000 | 29 100 | 82 000 | 1 000 | 1 700 | RNA 4844 | | 265 | 300 | 60 | 2 | 375 000 | 1 070 000 | 38 500 | 109 000 | 950 | 1 500 | RNA 4848 | | 285 | 320 | 60 | 2 | 395 000 | 1 160 000 | 40 000 | 118 000 | 900 | 1 400 | RNA 4852 | | 305 | 350 | 69 | 2 | 510 000 | 1 390 000 | 52 000 | 142 000 | 800 | 1 300 | RNA 4856 | | 330 | 380 | 80 | 2.1 | 660 000 | 1 810 000 | 67 500 | 185 000 | 750 | 1 200 | RNA 4860 | | 350 | 400 | 80 | 2.1 | 675 000 | 1 900 000 | 69 000 | 194 000 | 710 | 1 100 | RNA 4864 | | 370 | 420 | 80 | 2.1 | 690 000 | 1
990 000 | 70 500 | 203 000 | 670 | 1 100 | RNA 4868 | | 390 | 440 | 80 | 2.1 | 705 000 | 2 080 000 | 72 000 | 212 000 | 630 | 1 000 | RNA 4872 | | Numbers Boundary Dimension (mm) | | | Abutment | and Fillet Dir
(mm) | nensions | Mass
(kg) | | | |---------------------------------|-----|----|------------------------------------|------------------------|-------------------------------|---------------------------|------|--| | With Inner Ring | d | В | $d_{\scriptscriptstyle m a}$ min. | D_{a} max. | $m{\gamma}_{\mathrm{a}}$ max. | app
Without Inner Ring | | | | NA 4922 | 110 | 40 | 116.5 | 143.5 | 1 | 1.25 | 2.1 | | | NA 5922 | 110 | 54 | 116.5 | 143.5 | 1 | 1.95 | 3.05 | | | NA 4824 | 120 | 30 | 125 | 145 | 1 | 0.71 | 1.15 | | | NA 4924 | 120 | 45 | 126.5 | 158.5 | 1 | 1.9 | 2.9 | | | NA 5924 | 120 | 60 | 126.5 | 158.5 | 1 | 2.7 | 4.05 | | | NA 4826 | 130 | 35 | 136.5 | 158.5 | 1 | 0.92 | 1.8 | | | NA 4926 | 130 | 50 | 138 | 172 | 1.5 | 2.3 | 4.0 | | | NA 5926 | 130 | 67 | 138 | 172 | 1.5 | 3.3 | 5.55 | | | NA 4828 | 140 | 35 | 146.5 | 168.5 | 1 | 0.98 | 1.9 | | | NA 4928 | 140 | 50 | 148 | 182 | 1.5 | 2.45 | 4.25 | | | NA 5928 | 140 | 67 | 148 | 182 | 1.5 | 3.55 | 6.0 | | | NA 4830 | 150 | 40 | 156.5 | 183.5 | 1 | 1.6 | 2.75 | | | NA 4832 | 160 | 40 | 166.5 | 193.5 | 1 | 1.75 | 2.95 | | | NA 4834 | 170 | 45 | 176.5 | 208.5 | 1 | 2.55 | 4.0 | | | NA 4836 | 180 | 45 | 186.5 | 218.5 | 1 | 2.65 | 4.2 | | | NA 4838 | 190 | 50 | 198 | 232 | 1.5 | 3.2 | 5.6 | | | NA 4840 | 200 | 50 | 208 | 242 | 1.5 | 3.35 | 5.9 | | | NA 4844 | 220 | 50 | 228 | 262 | 1.5 | 3.65 | 6.45 | | | NA 4848 | 240 | 60 | 249 | 291 | 2 | 5.45 | 10 | | | NA 4852 | 260 | 60 | 269 | 311 | 2 | 5.9 | 11 | | | NA 4856 | 280 | 69 | 289 | 341 | 2 | 9.5 | 15.5 | | | NA 4860 | 300 | 80 | 311 | 369 | 2 | 13 | 22 | | | NA 4864 | 320 | 80 | 331 | 389 | 2 | 13.5 | 23.5 | | | NA 4868 | 340 | 80 | 351 | 409 | 2 | 14 | 24.5 | | | NA 4872 | 360 | 80 | 371 | 429 | 2 | 15 | 26 | | **Remarks** If a full complement roller bearing is required, please contact NSK. ### FNTA (Thrust Cage & Needle Roller Assemblies) Thrust raceway washers FTRA (s=1.0) FTRB (s=1.5) FTRC (s=2.0) FTRC (s=2.0) FTRD (s=2.5) FTRE (s=3.0) Bore Diameter 10 – 100 mm | Boundary Dimensions
(mm) | | ions | (| Basic Load | Ü | af} | Limiting Speeds | | | |-----------------------------|-------------------------------------|------------------|------------------|------------|-------------|----------|-----------------------------|-----------------|-------------------| | D_{c1} , D_{p1} | D_{c} , D_{p} | D_{W} | C_{a} | C_{0a} | $C_{\rm a}$ | C_{0a} | (min ⁻¹)
Oil | Bearing Numbers | $s=1.0^{\pm0.05}$ | | 10 | 24 | 2 | 7 750 | 23 000 | 790 | 2 350 | 17 000 | FNTA-1024 | *FTRA-1024 | | 12 | 26 | 2 | 8 350 | 26 300 | 855 | 2 680 | 16 000 | FNTA-1226 | FTRA-1226 | | 15 | 28 | 2 | 7 950 | 25 800 | 810 | 2 630 | 15 000 | FNTA-1528 | FTRA-1528 | | 16 | 29 | 2 | 8 200 | 27 100 | 835 | 2 770 | 14 000 | FNTA-1629 | FTRA-1629 | | 17 | 30 | 2 | 8 400 | 28 400 | 855 | 2 900 | 14 000 | FNTA-1730 | FTRA-1730 | | 18 | 31 | 2 | 8 600 | 29 700 | 875 | 3 050 | 13 000 | FNTA-1831 | FTRA-1831 | | 20 | 35 | 2 | 11 900 | 47 000 | 1 220 | 4 800 | 12 000 | FNTA-2035 | FTRA-2035 | | 25 | 42 | 2 | 14 800 | 66 000 | 1 510 | 6 750 | 9 500 | FNTA-2542 | FTRA-2542 | | 30 | 47 | 2 | 16 500 | 79 000 | 1 680 | 8 100 | 8 500 | FNTA-3047 | FTRA-3047 | | 35 | 52 | 2 | 17 300 | 88 000 | 1 770 | 8 950 | 8 000 | FNTA-3552 | FTRA-3552 | | 40 | 60 | 3 | 26 900 | 122 000 | 2 740 | 12 400 | 6 700 | FNTA-4060 | FTRA-4060 | | 45 | 65 | 3 | 28 700 | 137 000 | 2 930 | 14 000 | 6 300 | FNTA-4565 | FTRA-4565 | | 50 | 70 | 3 3 3 | 30 500 | 152 000 | 3 100 | 15 500 | 5 600 | FNTA-5070 | FTRA-5070 | | 55 | 78 | | 37 000 | 201 000 | 3 750 | 20 500 | 5 300 | FNTA-5578 | FTRA-5578 | | 60 | 85 | | 43 000 | 252 000 | 4 400 | 25 700 | 4 800 | FNTA-6085 | FTRA-6085 | | 65 | 90 | 3 | 45 500 | 274 000 | 4 600 | 28 000 | 4 500 | FNTA-6590 | FTRA-6590 | | 70 | 95 | 4 | 59 000 | 320 000 | 6 000 | 33 000 | 4 300 | FNTA-7095 | FTRA-7095 | | 75 | 100 | 4 | 60 000 | 335 000 | 6 150 | 34 500 | 4 000 | FNTA-75100 | FTRA-75100 | | 80 | 105 | 4 | 63 000 | 365 000 | 6 450 | 37 500 | 3 800 | FNTA-80105 | FTRA-80105 | | 85 | 110 | 4 | 64 500 | 380 000 | 6 550 | 39 000 | 3 600 | FNTA-85110 | FTRA-85110 | | 90 | 120 | 4 | 80 000 | 515 000 | 8 150 | 52 500 | 3 400 | FNTA-90120 | FTRA-90120 | | 100 | 135 | 4 | 98 500 | 695 000 | 10 000 | 71 000 | 3 000 | FNTA-100135 | FTRA-100135 | ^(*) The tolerance of this bearing bore diameter is +0.025 to +0.175mm and outside diameter tolerance is -0.040 to -0.370mm | Bearing Numbers | of Matching Bearing R | | Roller Conta | | Ma:
(g | | | |-------------------------------------|-------------------------------------|-----------------|---------------------|----------------------------------|-------------------------------|-------------------|-------------------| | $s=1.5^{-0.08}$ | $s=2.0^{+0.08}$ | $s=2.5^{+0.08}$ | $s=3.0^{+0.08}$ | Outside Diameter $D_{ m e}$ min. | Bore Diameter $D_{ m i}$ max. | appr
FNTA | ox.
FTRA | | FTRB-1024
FTRB-1226
FTRB-1528 | FTRC-1024
FTRC-1226
FTRC-1528 | <u> </u> | —
—
FTRE-1528 | 22.0
24.0
26.0 | 11.5
13.5
16.5 | 2.3
3.4
3.5 | 2.9
3.3
3.5 | | FTRB-1629 | FTRC-1629 | FTRD-1629 | FTRE-1629 | 27.0 | 17.5 | 3.7 | 3.6 | | FTRB-1730 | FTRC-1730 | FTRD-1730 | FTRE-1730 | 28.0 | 18.5 | 3.8 | 3.8 | | FTRB-1831 | FTRC-1831 | FTRD-1831 | FTRE-1831 | 29.0 | 19.5 | 4 | 3.9 | | FTRB-2035 | FTRC-2035 | FTRD-2035 | FTRE-2035 | 33.0 | 21.5 | 5.4 | 5.1 | | FTRB-2542 | FTRC-2542 | FTRD-2542 | FTRE-2542 | 40.0 | 26.5 | 7.7 | 7 | | FTRB-3047 | FTRC-3047 | FTRD-3047 | FTRE-3047 | 45.0 | 31.5 | 8.9 | 7.9 | | FTRB-3552 | FTRC-3552 | FTRD-3552 | FTRE-3552 | 50.5 | 36.5 | 9.7 | 9.1 | | FTRB-4060 | FTRC-4060 | FTRD-4060 | FTRE-4060 | 57.0 | 42.0 | 18 | 12 | | FTRB-4565 | FTRC-4565 | FTRD-4565 | FTRE-4565 | 62.0 | 47.0 | 20 | 13 | | FTRB-5070 | FTRC-5070 | FTRD-5070 | FTRE-5070 | 67.0 | 51.5 | 22 | 15 | | FTRB-5578 | FTRC-5578 | FTRD-5578 | FTRE-5578 | 75.0 | 57.0 | 29 | 19 | | FTRB-6085 | FTRC-6085 | FTRD-6085 | FTRE-6085 | 82.0 | 61.5 | 35 | 22 | | FTRB-6590 | FTRC-6590 | FTRD-6590 | FTRE-6590 | 87.5 | 66.5 | 38 | 24 | | FTRB-7095 | FTRC-7095 | FTRD-7095 | FTRE-7095 | 92.5 | 71.5 | 52 | 25 | | FTRB-75100 | FTRC-75100 | FTRD-75100 | FTRE-75100 | 97.5 | 76.5 | 54 | 27 | | FTRB-80105 | FTRC-80105 | FTRD-80105 | FTRE-80105 | 102.5 | 81.5 | 58 | 28 | | FTRB-85110 | FTRC-85110 | FTRD-85110 | FTRE-85110 | 107.5 | 86.5 | 63 | 30 | | FTRB-90120 | FTRC-90120 | FTRD-90120 | FTRE-90120 | 117.5 | 91.5 | 80 | 38 | | FTRB-100135 | FTRC-100135 | FTRD-100135 | FTRE-100135 | 132.5 | 101.5 | 105 | 50 | B 274 B 275 FCR (Full Complement) FCRS Full Complement, Sealed With Thrust Washer FCJ (With Cage) FCJS Sealed, with Cage and Thrust Washer Outside Diameter 16 - 90 mm **FCR** | Bound | ary Dim
(mm) | ensions | _ | | Di | mensions
(mm) | | | | | Bearing |) Numbers | |-------|-----------------|----------|----------------------|----------|------------|------------------|----------|--------|--------------|------------------|------------------|--------------------| | D | С | d | Screw
<i>G</i> | G_1 | B_1 | B_2 | B_3 | M_2 | M_1 | γ
min. | FCR
FCJ | FCRS
FCJS | | 16 | 11
11 | 6
6 | M 6×1
M 6×1 | 8 | 28
28 | 16
16 | = | _ | 4(1)
4(1) | 0.3
0.3 | FCR-16
FCJ-16 | FCRS-16
FCJS-16 | | 19 | 11
11 | 8 | M 8×1.25
M 8×1.25 | 10
10 | 32
32 | 20
20 | _ | _ | 4(1)
4(1) | 0.3
0.3 | FCR-19
FCJ-19 | FCRS-19
FCJS-19 | | 22 | 12
12 | 10
10 | M10×1.25
M10×1.25 | 12
12 | 36
36 | 23
23 | _ | _ | 4(1)
4(1) | 0.3
0.3 | FCR-22
FCJ-22 | FCRS-22
FCJS-22 | | 26 | 12
12 | 10
10 | M10×1.25
M10×1.25 | 12
12 | 36
36 | 23
23 | _ | _ | 4(1)
4(1) | 0.3
0.3 | FCR-26
FCJ-26 | FCRS-26
FCJS-26 | | 30 | 14
14 | 12
12 | M12×1.5
M12×1.5 | 13
13 | 40
40 | 25
25 | 6
6 | 3 | 6
6 | 0.6
0.6 | FCR-30
FCJ-30 | FCRS-30
FCJS-30 | | 32 | 14
14 | 12
12 | M12×1.5
M12×1.5 | 13
13 | 40
40 | 25
25 | 6
6 | 3 | 6
6 | 0.6
0.6 | FCR-32
FCJ-32 | FCRS-32
FCJS-32 | | 35 | 18
18 | 16
16 | M16×1.5
M16×1.5 | 17
17 | 52
52 | 32.5
32.5 | 8 | 3 | 6
6 | 0.6
0.6 | FCR-35
FCJ-35 | FCRS-35
FCJS-35 | | 40 | 20
20 | 18
18 | M18×1.5
M18×1.5 | 19
19 | 58
58 | 36.5
36.5 | 8 | 3 | 6
6 | 1
1 | FCR-40
FCJ-40 | FCRS-40
FCJS-40 | | 47 | 24
24 | 20
20 | M20×1.5
M20×1.5 | 21
21 | 66
66 | 40.5
40.5 | 9
9 | 4 | 8 | 1
1 | FCR-47
FCJ-47 | FCRS-47
FCJS-47 | | 52 | 24
24 | 20
20 | M20×1.5
M20×1.5 | 21
21 | 66
66 | 40.5
40.5 | 9
9 | 4
4 | 8 | 1
1 | FCR-52
FCJ-52 | FCRS-52
FCJS-52 | | 62 | 29
29 | 24
24 | M24×1.5
M24×1.5 | 25
25 | 80
80 | 49.5
49.5 | 11
11 | 4
4 | 8 | 1
1 | FCR-62
FCJ-62 | FCRS-62
FCJS-62 | | 72 | 29
29 | 24
24 | M24×1.5
M24×1.5 | 25
25 | 80
80 | 49.5
49.5 | 11
11 | 4
4 | 8 | 1
1 | FCR-72
FCJ-72 | FCRS-72
FCJS-72 | | 80 | 35
35 | 30
30 | M30×1.5
M30×1.5 | 32
32 | 100
100 | 63
63 | 15
15 | 4
4 | 8 | 1
1 | FCR-80
FCJ-80 | FCRS-80
FCJS-80 | | 85 | 35
35 | 30
30 | M30×1.5
M30×1.5 | 32
32 | 100
100 | 63
63 | 15
15 | 4
4 | 8 | 1
1 | FCR-85
FCJ-85 | FCRS-85
FCJS-85 | | 90 | 35
35 | 30
30 | M30×1.5
M30×1.5 | 32
32 | 100
100 | 63
63 | 15
15 | 4
4 | 8 | 1
1 | FCR-90
FCJ-90 | FCRS-90
FCJS-90 | Notes (1) Only the head of the stud has on oil hole. (2) Applicable to FCRB only. Remarks Standard grease is packed in sealed cam followers, but not in cam followers without seals. | Basic Dynamic L
(N) | {kgf} | Limiting (N) |
{kgf} | Limiting Tra | ck Loads
{kgf} | Mass
(kg) | Dimensions of
Hexagonal Socket
(2)(width
across flats) | | Bush Dimer
(mm) | . , | Shoulder
Dimensions
(mm) | Tightening
(N·cm) { | | |------------------------|-------|--------------|-------|--------------|-------------------|--------------|---|-------|--------------------|-----|--------------------------------|------------------------|--------| | $C_{\rm r}$ | | $P_{ m ma}$ | х | | | approx. | (mm) | B_4 | d_1 | E | F (min.) | (max.) | (max.) | | 5 800 | 590 | 2 360 | 240 | 3 350 | 340 | 0.020 | 4 | 8 | 9 | 0.5 | 11 | 226 | 23 | | 2 830 | 288 | 2 360 | 240 | 3 350 | 340 | 0.018 | 4 | 8 | 9 | 0.5 | 11 | 226 | 23 | | 6 600 | 670 | 4 200 | 425 | 4 150 | 425 | 0.031 | 4 | 10 | 11 | 0.5 | 13 | 550 | 56 | | 3 450 | 355 | 4 200 | 425 | 4 150 | 425 | 0.030 | 4 | 10 | 11 | 0.5 | 13 | 550 | 56 | | 8 550 | 875 | 6 550 | 665 | 5 300 | 540 | 0.047 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 4 350 | 445 | 6 550 | 665 | 5 300 | 540 | 0.045 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 8 550 | 875 | 6 550 | 665 | 6 000 | 610 | 0.060 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 4 350 | 445 | 6 550 | 665 | 6 000 | 610 | 0.058 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 12 500 | 1 280 | 9 250 | 945 | 7 800 | 795 | 0.088 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 7 200 | 735 | 9 250 | 945 | 7 800 | 795 | 0.086 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 12 500 | 1 280 | 9 250 | 945 | 8 050 | 820 | 0.099 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 7 200 | 735 | 9 250 | 945 | 8 050 | 820 | 0.096 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 18 600 | 1 900 | 17 000 | 1 740 | 11 800 | 1 200 | 0.17 | 10 | 15.5 | 22 | 1 | 24 | 4 000 | 410 | | 9 700 | 990 | 17 000 | 1 740 | 11 800 | 1 200 | 0.165 | 10 | 15.5 | 22 | 1 | 24 | 4 000 | 410 | | 20 500 | 2 090 | 21 700 | 2 220 | 14 300 | 1 460 | 0.25 | 10 | 17.5 | 24 | 1 | 26 | 5 950 | 605 | | 10 300 | 1 050 | 21 700 | 2 220 | 14 300 | 1 460 | 0.24 | 10 | 17.5 | 24 | 1 | 26 | 5 950 | 605 | | 28 200 | 2 880 | 26 400 | 2 690 | 20 800 | 2 120 | 0.39 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 19 200 | 1 950 | 26 400 | 2 690 | 20 800 | 2 120 | 0.38 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 28 200 | 2 880 | 26 400 | 2 690 | 22 900 | 2 340 | 0.47 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 19 200 | 1 950 | 26 400 | 2 690 | 22 900 | 2 340 | 0.455 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 40 000 | 4 100 | 38 500 | 3 950 | 34 000 | 3 450 | 0.80 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 24 900 | 2 540 | 38 500 | 3 950 | 34 000 | 3 450 | 0.79 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 40 000 | 4 100 | 38 500 | 3 950 | 38 000 | 3 860 | 1.05 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 24 900 | 2 540 | 38 500 | 3 950 | 38 000 | 3 860 | 1.05 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 60 500 | 6 200 | 61 000 | 6 200 | 52 000 | 5 300 | 1.55 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 39 000 | 4 000 | 61 000 | 6 200 | 52 000 | 5 300 | 1.55 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 60 500 | 6 200 | 61 000 | 6 200 | 55 500 | 5 650 | 1.75 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 39 000 | 4 000 | 61 000 | 6 200 | 55 500 | 5 650 | 1.75 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 60 500 | 6 200 | 61 000 | 6 200 | 59 000 | 6 000 | 1.95 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 39 000 | 4 000 | 61 000 | 6 200 | 59 000 | 6 000 | 1.95 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | Notes (3) Applicable to FCRE only. (4) Should not be greater than r (min). FYCR (Full Complement) FYCRS Full Complement, Sealed with Thrust Washer FYCJ (With Cage) FYCJS Sealed, with Cage and Thrust Washer Bore Diameter 5 – 50 mm Full Complement, Sealed with Thrust Washer **FYCR** **FYCRS** | Remarks Standard grease is packed in sealed cam followers, but not in cam followers withou | t seals. | |---|----------| |---|----------| | Bearing | Bearing Numbers | | | | |--------------|-----------------|-----------------|-------------------|--| | FYCR
FYCJ | FYCRS
FYCJS | (kg)
approx. | (mm)
F
min. | | | FYCR-5 | FYCRS-5 | 0.016 | 10 | | | FYCJ-5 | FYCJS-5 | 0.014 | 10 | | | FYCR-6 | FYCRS-6 | 0.022 | 12 | | | FYCJ-6 | FYCJS-6 | 0.020 | 12 | | | FYCR-8 | FYCRS-8 | 0.044 | 14 | | | FYCJ-8 | FYCJS-8 | 0.042 | 14 | | | FYCR-10 | FYCRS-10 | 0.069 | 17 | | | FYCJ-10 | FYCJS-10 | 0.067 | 17 | | | FYCR-12 | FYCRS-12 | 0.076 | 19 | | | FYCJ-12 | FYCJS-12 | 0.074 | 19 | | | FYCR-15 | FYCRS-15 | 0.105 | 23 | | | FYCJ-15 | FYCJS-15 | 0.097 | 23 | | | FYCR-17 | FYCRS-17 | 0.145 | 25 | | | FYCJ-17 | FYCJS-17 | 0.14 | 25 | | | FYCR-20 | FYCRS-20 | 0.255 | 29 | | | FYCJ-20 | FYCJS-20 | 0.245 | 29 | | | FYCR-25 | FYCRS-25 | 0.285 | 34 | | | FYCJ-25 | FYCJS-25 | 0.275 | 34 | | | FYCR-30 | FYCRS-30 | 0.48 | 51 | | | FYCJ-30 | FYCJS-30 | 0.47 | 51 | | | FYCR-35 | FYCRS-35 | 0.64 | 58 | | | FYCJ-35 | FYCJS-35 | 0.635 | 58 | | | FYCR-40 | FYCRS-40 | 0.88 | 66 | | | FYCJ-40 | FYCJS-40 | 0.865 | 66 | | | FYCR-45 | FYCRS-45 | 0.93 | 72 | | | FYCJ-45 | FYCJS-45 | 0.91 | 72 | | | FYCR-50 | FYCRS-50 | 0.995 | 76 | | | FYCJ-50 | FYCJS-50 | 0.965 | 76 | | # **BALL BEARING UNITS** # SET SCREW TYPE PILLOW BLOCKS CAST HOUSING UCP2 Shaft Diameter 12 – 90mm B286 1/2 – 3 1/2 inch # **SET SCREW TYPE FLANGED UNITS CAST HOUSING** UCF2 Shaft Diameter 12 – 90mm B292 1/2 – 3 1/2 inch UCFL2 Shaft Diameter 12 – 90mm B298 1/2 - 3 1/2 inch B 280 B 281 ### 1. CONSTRUCTION The NSK bearing unit is a combination of a radial ball bearing, seal, and a housing of high-grade cast iron or pressed steel, which comes in various shapes. The outer surface of the bearing and the internal surface of the housing are spherical, so that the unit is self-aligning. The inside construction of the ball bearing for the unit is such that steel balls and retainers of the same type as in series 62 and 63 of the deep groove ball bearing are used. A duplex seal consisting of a combination of an oil-proof synthetic rubber seal and a slinger is provided on both sides. Depending on the type, the following methods of fitting to the shaft are employed: - (1) The inner ring is fastened onto the shaft in two places by set screws. - (2) The inner ring has a tapered bore and is fitted to the shaft by means of an adapter. - (3) In the eccentric locking collar system the inns ring is fastened to the shaft by means of eccentrics grooves provided at the side of the inner ring and on the collar. # 2. DESIGN FEATURES AND ADVANTAGES ### 2.1 MAINTENANCE FREE TYPE The NSK Maintenance free bearing unit contains a high-grade lithium-based grease, good for use over a long period, which is ideally suited to sealed-type bearing. Also provided is an excellent sealing device, which prevents any leakage of grease or penetration of dust and water from outside. It is designed so that the rotation of the shaft causes the sealed-in grease to circulate through the inside space, effectively providing maximum lubrication. The lubrication effect is maintained over a long period with no need for replenishment of grease. To summarize the advantages of the NSK maintenance free bearing unit: - (1) As an adequate amount of good quality grease is sealed in at the time of manufacture, there is no need for replenishment. This means savings in terms of time and maintenance costs. - (2) Since there is no need for any regreasing facilities, such as piping, a more compact design is possible. - (3) The sealed-in design eliminates the possibility of grease leakage, which could lead to stained products. ### 2.2 RELUBRICATABLE TYPE The NSK relubricatable type bearing unit has an advantage over other similar, units being so designed as to permit regreasing even in the case of misalignment of 2° to the right or left. The hole through which the grease fitting is mounted usually causes structural weakening of the housing. However, as a result of extensive testing, in the NSK bearing unit the hole is positioned so as to minimize this adverse effect. In addition, the regreasing groove has been designed to minimize weakening of the housing. While the NSK maintenance free type bearing unit is satisfactory for use under normal operating conditions in-doors, in the following circumstances it is necessary to use the relubricatable type bearing unit: - (1) Cases where the temperature of the bearing rises above 100°C, 212°F: - *-Normal temperature of up to 130°C, 266°F heat-resistant bearing units. - (2) Cases where there is excessive dust, but space does not permit using a bearing unit with a cover. - (3) Cases where the bearing unit is constantly exposed to splashes of water or any other liquid, but space does not permit using a bearing unit with a cover. - (4) Cases in which the humidity is very high, and the machine in which the bearing unit is used is run only intermittently. - (5) Cases involving a heavy load of which the Cr/Pr value is about 10 or below, and the speed is 10 min⁻¹ or below, or the movement is oscillatory. - (6) Cases where the number of revolutions is relatively high and the noise problem has to be considered; for example, when the bearing is used with the fan of an air conditioner. ### 2.3 SPECIAL SEALING FEATURE ### 2.3.1 STANDARD BEARING UNITS The sealing device of the ball bearing for the NSK bearing unit is a combination of a heat-resistant and oil-proof synthetic rubber seal and a slinger of an exclusive design. The seal, which is fixed in the outer ring, is steel-reinforced, and its lip, in contact with the inner ring, is designed to minimize frictional torque. The slinger is fixed to the inner ring of the bearing with which it rotates. There is a small clearance between its periphery and the outer ring. There are triangular protrusions on the outside face of the
slinger and, as the bearing rotates, these protrusions on the slinger create a flow of air outward from the bearing. In this way, the slinger acts as a fan which-keeps dust and water away from the bearing. These two types of seals on both sides of the bearing prevent grease leakage, and foreign matter is prevented from entering the bearing from outside. 2 -0- ### 2.3.2 BEARING UNITS WITH COVERS The NSK bearing unit with a cover consists of a standard bearing unit and an outside covering for extra protection against dust. Special consideration has been given to its design with respect to dust-proofing. Sealing devices are provided in both the bearing and the housing, so that units of this type operate satisfactorily even in such adverse environments as flour mills, steel mills, foundries, galvanizing plants and chemical plants, where excessive dust is produced and/or liquids are used. They are also eminently suitable for outdoor environments where dust and rain are inevitable, and in heavy industrial machinery such as construction and transportation equipment. The rubber seal of the cover contacts with the shaft by its two lips, as shown in Fig. 2.2 and 2.3. By filling the groove between the two lips with grease, an excellent sealing effect is obtained and, at the same time, the contacting portions of the lips are lubricated. Furthermore, the groove is so designed that when the shaft is inclined the rubber seal can move in the radial direction. When bearing units are exposed to splashes of water rather than to dust, a drain hole (5 to 8 mm, 0.2 to 0.3 inches in diameter) is provided at the bottom of the cover, and grease should be applied to the side of the bearing itself instead of into the cover. ### 2.4 SECURE FITTING Fastening the bearing to the shaft is effected by tightening the ball-end set screw, situated on the inner ring. This is a unique feature which prevents loosening, even if the bearing is subject to intense vibrations and shocks. ### 2.5 SELF-ALIGNING With the NSK bearing unit, the outer surface of the ball bearing and the inner surface of the housing are spherical, thus this bearing unit has self-aligning characteristic. Any misalignment of axis that arise from poor workmanship on the shaft or errors in fitting will be properly adjusted. ### 2.6 HIGHER RATED LOAD CAPACITY The bearing used in the unit is of the same internal construction as those in bearing series 62 and 63, and is capable of accommodating axial load as well as radial load, or composite load. The rated load capacity or this bearing is considerably higher than that of the corresponding self-aligning ball bearings used for standard plummer blocks ### 2.7 LIGHT WEIGHT YET STRONG HOUSING Housings for NSK bearing units come in various shapes. They consist of either high-grade cast iron, one-piece casting, or of precision finished pressed steel, the latter being lighter in weight. In either case, they are practically designed to combine lightness with maximum strength. ### 2.8 EASY MOUNTING The NSK bearing unit is an integrated unit consisting of a bearing and a housing. As the bearing is prelubricated at manufacture with the correct amount of high-grade lithium base, it can be mounted on the shaft just as it is. It is sufficient to carry out a short test run after mounting. ### 2.9 ACCURATE FITTING OF THE HOUSING In order to simplify the fitting of the pillow block and flange type bearing units, the housings are provided with a seat for a dowel pin, which may be utilized as needed. ### 2.10 BEARING REPLACEABILITY The bearing used in the NSK bearing unit is replaceable. In the event of bearing failure, a new bearing can be fitted to the existing housing. # 3. RECOMMENDED TORQUES FOR TIGTENING SET SCREWS ### Table 3.1 Recommended torques for tightening set screws A) Metric series, applied to metric bore size. | | ion of the
pplicable ι | | Designation of set screws | Tightening
torques
N·m (max.) | |-------------------|---------------------------|-------------------|---------------------------|-------------------------------------| | UC201 to
UC205 | _ | _ | M 5×0.8 × 7 | 3.9 | | UC206 | _ | UC305 to
UC306 | M 6×0.75× 8 | 4.9 | | UC207 | UCX05 | _ | M 6×0.75× 8 | 5.8 | | UC208 to UC210 | _ | _ | M 8×1 ×10 | 7.8 | | UC211 | UCX06 to
UCX08 | UC307 | M 8×1 ×10 | 9.8 | | UC212 | UCX09 | _ | M10×1.25×12 | 16.6 | | UC213 to UC215 | _ | UC308 to
UC309 | M10×1.25×12 | 19.6 | | UC216 | UCX10 | _ | M10×1.25×12 | 22.5 | | _ | UCX11 to
UCX12 | _ | M10×1.25×12 | 24.5 | | UC217 to UC218 | UCX13 to
UCX15 | UC310 to
UC314 | M12×1.5 ×13 | 29.4 | | _ | UCX16 to
UCX17 | _ | M12×1.5 ×13 | 34.3 | | - | UCX18 | UC315 to
UC316 | M14×1.5 ×15 | 34.3 | | - | UCX20 | UC317 to
UC319 | M16×1.5 ×18 | 53.9 | | _ | _ | UC320 to
UC324 | M18×1.5 ×20 | 58.8 | | _ | _ | UC326 to
UC328 | M20×1.5 ×25 | 78.4 | | | applied | | | |--|---------|--|--| | | | | | | | | | | | for th | ion of the
ne unit to v
given are a | vhich | Designation
of
set screws | Tightening
torques
lbf·inch (max.) | |-------------------|---|-------------------|---------------------------------|--| | UC201 to
UC205 | _ | _ | No.10 -32UNF | 34 | | UC206 | _ | UC305 to
UC306 | ¹ /4 -28UNF | 43 | | UC207 | UCX05 | _ | ¹ /4 -28UNF | 52 | | UC208 to
UC210 | _ | _ | ⁵ /16 -24UNF | 69 | | UC211 | UCX06 to
UCX08 | UC307 | ⁵ /16 -24UNF | 86 | | UC212 | UCX09 | _ | ³ /8 -24UNF | 147 | | UC213 to
UC215 | _ | UC308 to
UC309 | ³ /8 -24UNF | 173 | | UC216 | UCX10 | _ | ³ /8 -24UNF | 199 | | _ | UCX11 to
UCX12 | _ | ³ /8 -24UNF | 216 | | UC217 to
UC218 | UCX13 to
UCX15 | UC310 to
UC314 | ¹ /2 -20UNF | 260 | | _ | UCX16 to
UCX17 | _ | ¹ /2 -20UNF | 303 | | _ | UCX18 | UC315 to
UC316 | ⁹ /16 -18UNF | 303 | | _ | UCX20 | UC317 to
UC318 | ⁵ /8 -18UNF | 477 | | _ | _ | UC320 | ⁵ /8 -18UNF | 520 | | Designation of the bearings of applicable units | Designation of
set screws | Tightening
torques
N·m (max.) | |---|------------------------------|-------------------------------------| | AS201 to 205 | M5×0.8 × 7 | 3.4 | | AS206 | M6×0.75× 8 | 4.4 | | AS207 | M6×0.75× 8 | 4.9 | | AS208 | M8×1 ×10 | 6.8 | | Designation of the bearings
for the unit to which
torques given are applicable | Designation of set screws | Tightening
torques
lbf·inch (max.) | |--|---------------------------|--| | AS201 to 205 | No 10-32UNF | 30 | | AS206 | 1/4 -28UNF | 39 | | AS207 | 1/4 -28UNF | 43 | | AS208 | ⁵ /16-24UNF | 60 | # Pillow blocks units cast housing Set screw type Pressed steel dust cover type Open end Z-UCP...D1 Closed end ZM-UCP...D1 Cast dust cover type Open end C-UCP...D1 Closed end CM-UCP...D1 | Shaft
dia. | Unit number(1) | Nominal dimensions | | | | | | | | | | | Bolt
size | Bearing
number | |--|--|--|--------------------------------------|--|-------------------------------------|-----------|-----------|------------------------------------|--|---------------------------------------|--------------|----------------------|--------------|--| | mm | | | | | | n | nm inc | h | | | | | mm | | | inch | | Н | L | J | A | N | N_1 | H_1 | H_2 | L_1 | B | S | inch | | | 12
1/2 | UCP201D1
UCP201-008D1 | 30.2
1 ³ / ₁₆ | 127
5 | 95
3 ³ / ₄ | 38
1 ¹ / ₂ | 13
1/2 | 16
5/8 | 14
⁹ /16 | 62
2 ⁷ /16 | 42
1 ²¹ /32 | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC201D1
UC201-008D1 | | 15 | UCP202D1 | 30.2 | 127 | 95 | 38 | 13 | 16 | 14 | 62 | 42 | 31 | 12.7 | M10 | UC202D1 | | 9/16
5/8 | UCP202-009D1
UCP202-010D1 | 1 3/16 | 5 | 3 3/4 | 11/2 | 1/2 | 5/8 | 9/16 | 2 7/16 | 1 21/32 | 1.2205 | 0.500 | 3/8 | UC202-009D1
UC202-010D1 | | 17
11/16 | UCP203D1
UCP203-011D1 | 30.2
1 ³ / ₁₆ | 127
5 | 95
3 ³ /4 | 38
1 ¹ / ₂ | 13
1/2 | 16
5/8 | 14
⁹ / ₁₆ | 62
2 ⁷ /16 | 42
1 ²¹ /32 | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC203D1
UC203-011D1 | | 20
3/4 | UCP204D1
UCP204-012D1 | 33.3
1 ⁵ / ₁₆ | 127
5 | 95
3 ³ / ₄ | 38
1 ¹ / ₂ | 13
1/2 | 16
5/8 | 14
9/16 | 65
2 ⁹ /16 | 42
1 ²¹ / ₃₂ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC204D1
UC204-012D1 | | 25 | UCP205D1 | 36.5 | 140 | 105 | 38 | 13 | 16 | 15 | 71 | 42 | 34.1 | 14.3 | M10 | UC205D1 | | 13/ ₁₆
7/ ₈ | UCP205-013D1
UCP205-014D1
UCP205-015D1
UCP205-100D1 | 1 ⁷ /16 | 5 ¹ / ₂ | 41/8 | 1 ¹ / ₂ | 1/2 | 5/8 | | | | 1.3425 | 0.563 | 3/8 | UC205-013D1
UC205-014D1
UC205-015D1
UC205-100D1 | | 30 | UCP206D1 | 42.9 | 165 | 121 | 48 | 17 | 20 | 17 | 83 | 54 | 38.1 | 15.9 | M14 | UC206D1 | | 1 ¹ / ₁₆
1 ¹ / ₈
1 ³ / ₁₆
1 ¹ / ₄ | UCP206-101D1
UCP206-102D1
UCP206-103D1
UCP206-104D1 | 1 ¹ 1/16 | 6 ¹ / ₂ | 4 ³ / ₄ | 1 ⁷ /8 | 21/32 | 25/32 | 21/32 | 3 9/32 | 2 ¹ /8 | 1.5000 | 0.626 | 1/2 | UC206-101D1
UC206-102D1
UC206-103D1
UC206-104D1 | | 35 | UCP207D1 | 47.6 | 167 | 127 | 48 | 17 | 20 | 18 | 93 | 54 | 42.9 | 17.5 | M14 | UC207D1 | | 1 ¹ / ₄
1 ⁵ / ₁₆
1 ³ / ₈
1 ⁷ / ₁₆ | UCP207-104D1
UCP207-105D1
UCP207-106D1
UCP207-107D1 | 1 ⁷ /8 | 6 9/16 | 5 | 1 ⁷ /8 | 21/32 | 25/32 | 23/32 | 3 ²¹ / ₃₂ | 2 ¹ /8 | 1.6890 | 0.689 | 1/2 |
UC207-104D1
UC207-105D1
UC207-106D1
UC207-107D1 | | 40 | UCP208D1 | 49.2 | 184 | 137 | 54 | 17 | 20 | 18 | 98 | 52 | 49.2 | 19 | M14 | UC208D1 | | 1 ¹ / ₂
1 ⁹ / ₁₆ | UCP208-108D1
UCP208-109D1 | 1 15/16 | 7 1/4 | 5 13/32 | 2 1/8 | 21/32 | 25/32 | 23/32 | 3 27/32 | 2 1/16 | 1.9370 | 0.748 | 1/2 | UC208-108D1
UC208-109D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | | Nominal d | imensions | 3 | N | lass of un | it | |-------------------|---|--|-----------------------|----------------------------|--------------------------------|---------------------------------|------------|------------|------------| | | cover type | | | mm | | | | kg lb | | | | | | t
max. | A_4 | H_3 | A_5 | UCP | Z(ZM) | C(CM) | | P203D1
P203D1 | Z(ZM)-UCP201D1
Z(ZM)-UCP201-008D1 | C(CM)-UCP201D1
C(CM)-UCP201-008D1 | 2
⁵ /64 | 45
1 ²⁵ /32 | 67
2 5/8 | 62
2 ⁷ /16 | 0.7
1.5 | 0.7
1.5 | 1.0
2.2 | | P203D1 | Z(ZM)-UCP202D1 | C(CM)-UCP202D1 | 2 | 45 | 67 | 62 | 0.7 | 0.7 | 1.0 | | P203D1
P203D1 | Z(ZM)-UCP202-009D1
Z(ZM)-UCP202-010D1 | C(CM)-UCP202-009D1
C(CM)-UCP202-010D1 | 5/64 | 1 25/32 | 2 5/8 | 2 7/16 | 1.5 | 1.5 | 2.2 | | P203D1
P203D1 | Z(ZM)-UCP203D1
Z(ZM)-UCP203-011D1 | C(CM)-UCP203D1
C(CM)-UCP203-011D1 | 2
5/64 | 45
1 ²⁵ /32 | 67
2 5/8 | 62
2 ⁷ /16 | 0.7
1.5 | 0.7
1.5 | 1.0
2.2 | | P204D1
P204D1 | Z(ZM)-UCP204D1
Z(ZM)-UCP204-012D1 | C(CM)-UCP204D1
C(CM)-UCP204-012D1 | 2
5/64 | 45
1 ²⁵ /32 | 70
2 ³ /4 | 62
2 ⁷ /16 | 0.7
1.5 | 0.7
1.5 | 0.9
2.0 | | P205D1 | Z(ZM)-UCP205D1 | C(CM)-UCP205D1 | 2 | 48 | 76 | 70 | 0.8 | 0.9 | 1.1 | | P205D1
P205D1 | Z(ZM)-UCP205-013D1
Z(ZM)-UCP205-014D1 | C(CM)-UCP205-013D1
C(CM)-UCP205-014D1 | | | | | | | | | P205D1 | Z(ZM)-UCP205-014D1 | C(CM)-UCP205-015D1 | 5/64 | 1 ²⁹ /32 | 3 | 2 3/4 | 1.8 | 2.0 | 2.4 | | P205D1 | Z(ZM)-UCP205-100D1 | C(CM)-UCP205-100D1 | | | | | | | | | P206D1 | Z(ZM)-UCP206D1 | C(CM)-UCP206D1 | 2 | 53 | 88 | 75 | 1.4 | 1.4 | 1.7 | | P206D1
P206D1 | Z(ZM)-UCP206-101D1
Z(ZM)-UCP206-102D1 | C(CM)-UCP206-101D1
C(CM)-UCP206-102D1 | 5/64 | 2 3/32 | 3 15/32 | 2 15/16 | 3.1 | 3.1 | 3.7 | | P206D1 | Z(ZM)-UCP206-103D1 | C(CM)-UCP206-103D1 | 70. | _ /02 | 702 | _ /.0 | 0.1 | 0 | 0.7 | | P206D1 | _ | _ | | | | | | | | | P207D1 | Z(ZM)-UCP207D1 | C(CM)-UCP207D1 | 3 | 60 | 99 | 80 | 1.6 | 1.7 | 2.0 | | P207D1
P207D1 | Z(ZM)-UCP207-104D1
Z(ZM)-UCP207-105D1 | C(CM)-UCP207-104D1
C(CM)-UCP207-105D1 | 1/8 | 2 3/8 | 3 29/32 | 3 5/32 | 3.5 | 3.7 | 4.4 | | P207D1 | Z(ZM)-UCP207-106D1 | C(CM)-UCP207-106D1 | -76 | 2-70 | 3-9/32 | 3-732 | 0.0 | 3.7 | 4.4 | | P207D1 | _ | _ | | | | | | | | | P208D1 | Z(ZM)-UCP208D1 | C(CM)-UCP208D1 | 3 | 69 | 105 | 90 | 1.9 | 2.1 | 2.7 | | P208D1
P208D1 | Z(ZM)-UCP208-108D1
Z(ZM)-UCP208-109D1 | C(CM)-UCP208-108D1
C(CM)-UCP208-109D1 | 1/8 | 2 23/32 | 4 1/8 | 3 17/32 | 4.2 | 4.6 | 6.0 | | 1 20001 | Z(ZNI)-UGFZUO-109D1 | G(G(VI)-OGF200-109D1 | | | | | | | | B 286 B 287 # Pillow blocks units cast housing Set screw type Pressed steel dust cover type Open end Z-UCP...D1 Closed end ZM-UCP...D1 Cast dust cover type Open end C-UCP...D1 Closed end CM-UCP...D1 | Shaft
dia. | Unit number(1) | Nominal dimensions | | | | | | | | | | | | Bearing
number | |---|--|--------------------------|-----------------------------|--------------------------------------|--------------------------|-------|---------------------------|---------------------------|--|--------------------------|--------|-------|------------|--| | | | | | | | п | nm inc | h | | | | | | | | mm
inch | | Н | L | J | A | N | N_1 | H_1 | H_2 | L_1 | B | S | mm
inch | | | 45
15/8 | UCP209D1
UCP209-110D1 | 54 | 190 | 146 | 54 | 17 | 20 | 20 | 106 | 60 | 49.2 | 19 | M14 | UC209D1
UC209-110D1 | | 111/16 | UCP209-110D1
UCP209-111D1
UCP209-112D1 | 2 1/8 | 7 15/32 | 5 3/4 | 2 1/8 | 21/32 | 25/32 | 25/32 | 4 3/16 | 2 3/8 | 1.9370 | 0.748 | 1/2 | UC209-110D1
UC209-111D1
UC209-112D1 | | 50 | UCP210D1
UCP210-113D1 | 57.2 | 206 | 159 | 60 | 20 | 23 | 21 | 114 | 65 | 51.6 | 19 | M16 | UC210D1
UC210-113D1 | | 17/8 | UCP210-113D1
UCP210-114D1
UCP210-115D1
UCP210-200D1 | 2 ¹ /4 | 81/8 | 6 ¹ / ₄ | 2 ³ /8 | 25/32 | 29/32 | 13/16 | 4 ¹ / ₂ | 2 9/16 | 2.0315 | 0.748 | 5/8 | UC210-113D1
UC210-114D1
UC210-115D1
UC210-200D1 | | | UCP211D1 | 63.5 | 219 | 171 | 60 | 20 | 23 | 23 | 126 | 65 | 55.6 | 22.2 | M16 | UC211D1 | | 21/ ₁₆
21/ ₈ | UCP211-200D1
UCP211-201D1
UCP211-202D1
UCP211-203D1 | 2 ¹ /2 | 8 5/8 | 6 ²³ /32 | 2 3/8 | 25/32 | 29/32 | 29/32 | 4 ³¹ / ₃₂ | 2 9/16 | 2.1890 | 0.874 | 5/8 | UC211-200D1
UC211-201D1
UC211-202D1
UC211-203D1 | | 60 | UCP212D1 | 69.8 | 241 | 184 | 70 | 20 | 23 | 25 | 138 | 70 | 65.1 | 25.4 | M16 | UC212D1 | | 2 ⁵ /16
2 ³ /8 | UCP212-204D1
UCP212-205D1
UCP212-206D1
UCP212-207D1 | 2 ³ /4 | 91/2 | 7 ¹ /4 | 2 ³ /4 | 25/32 | 29/32 | 31/32 | 5 ⁷ /16 | 2 ³ /4 | 2.5630 | 1.000 | 5/8 | UC212-204D1
UC212-205D1
UC212-206D1
UC212-207D1 | | 65 | UCP213D1 | 76.2 | 265 | 203 | 70 | 25 | 28 | 27 | 151 | 77 | 65.1 | 25.4 | M20 | UC213D1 | | | UCP213-208D1
UCP213-209D1 | 3 | 10 ⁷ /16 | 8 | 2 3/4 | 31/32 | 1 ³ /32 | 1 ¹ /16 | 5 ¹⁵ /16 | 3 1/32 | 2.5630 | 1.000 | 3/4 | UC213-208D1
UC213-209D1 | | 70 | UCP214D1 | 79.4 | 266 | 210 | 72 | 25 | 28 | 27 | 157 | 77 | 74.6 | 30.2 | M20 | UC214D1 | | 211/16 | UCP214-210D1
UCP214-211D1
UCP214-212D1 | 3 1/8 | 10 ¹⁵ /32 | 8 9/32 | 2 27/32 | 31/32 | 13/32 | 1 1/16 | 6 3/16 | 3 1/32 | 2.9370 | 1.189 | 3/4 | UC214-210D1
UC214-211D1
UC214-212D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | | Nominal d | imensions | S | N | lass of uni | it | |-------------------|---|--|-----------|----------------|--------------------------|--|-----|-------------|-------| | | ,,,,, | | _ | | inch | 4 | | kg lb | | | | | | t
max. | A_4 | H_3 | A_5 | UCP | Z(ZM) | C(CM) | | P209D1 | Z(ZM)-UCP209D1 | C(CM)-UCP209D1 | 3 | 69 | 113 | 95 | 2.2 | 2.4 | 3.1 | | P209D1
P209D1 | Z(ZM)-UCP209-110D1
Z(ZM)-UCP209-111D1 | C(CM)-UCP209-110D1
C(CM)-UCP209-111D1 | 1/8 | 2 23/32 | 4 7/16 | 3 3/4 | 4.9 | 5.3 | 6.8 | | P209D1 | Z(ZM)-UCP209-112D1 | C(CM)-UCP209-112D1 | | | | | | | | | P210D1 | Z(ZM)-UCP210D1 | C(CM)-UCP210D1 | 3 | 76 | 119 | 100 | 2.7 | 2.8 | 3.6 | | P210D1
P210D1 | Z(ZM)-UCP210-113D1
Z(ZM)-UCP210-114D1 | C(CM)-UCP210-113D1
C(CM)-UCP210-114D1 | 1/8 | 3 | 4 11/16 | 3 15/16 | 6.0 | 6.2 | 7.9 | | P210D1 | Z(ZM)-UCP210-115D1 | C(CM)-UCP210-115D1 | | | | | | | | | P210D1 | _ | C(CM)-UCP210-200D1 | | | | | | | | | P211D1
P211D1 | Z(ZM)-UCP211D1
Z(ZM)-UCP211-200D1 | C(CM)-UCP211D1
C(CM)-UCP211-200D1 | 4 | 77 | 130 | 100 | 3.5 | 3.5 | 4.4 | | P211D1 | Z(ZM)-UCP211-201D1 | C(CM)-UCP211-201D1 | 5/32 | 3 1/32 | 5 ¹ /8 | 3 ¹⁵ / ₁₆ | 7.7 | 7.7 | 9.7 | | P211D1
P211D1 | Z(ZM)-UCP211-202D1
Z(ZM)-UCP211-203D1 | C(CM)-UCP211-202D1
C(CM)-UCP211-203D1 | | | | | | | | | P212D1 | Z(ZM)-UCP212D1 | C(CM)-UCP212D1 | 4 | 89 | 143 | 115 | 4.7 | 5.0 | 6.0 | | P212D1 | Z(ZM)-UCP212-204D1 | C(CM)-UCP212-204D1 | · | 00 | 1.0 | | | 0.0 | 0.0 | | P212D1
P212D1 | Z(ZM)-UCP212-205D1
Z(ZM)-UCP212-206D1 | C(CM)-UCP212-205D1
C(CM)-UCP212-206D1 | 5/32 | 3 1/2 | 5 5/8 | 4 17/32 | 10 | 11 | 13 | | P212D1 | _ | C(CM)-UCP212-207D1 | | | | | | | | | P213D1 | Z(ZM)-UCP213D1 | C(CM)-UCP213D1 | 4 | 91 | 155 | 120 | 5.6 | 5.8 | 7.2 | | P213D1
P213D1 | Z(ZM)-UCP213-208D1
Z(ZM)-UCP213-209D1 | C(CM)-UCP213-208D1
C(CM)-UCP213-209D1 | 5/32 | 3 19/32 | 6 3/32 | 4 ²³ / ₃₂ | 12 | 13 | 16 | | P214D1 | 2(2141)-001 213-2030 1 | | 4 | | 162 | 135 | 6.5 | | 8.3 | | P214D1
P214D1 | _ | C(CM)-UCP214D1
C(CM)-UCP214-210D1 | 4 | _ | 102 | 135 | 0.5 | _ | 0.3 | | P214D1
P214D1 | _ | C(CM)-UCP214-211D1 | 5/32 | _ | 6 3/8 | 5 5/16 | 14 | _ | 18 | | PZ 14D1 | | C(CM)-UCP214-212D1 | | | | | | | | # Pillow blocks units cast housing Set screw type Pressed steel dust cover type Open end Z-UCP...D1 Closed end ZM-UCP...D1 | Shaft
dia. | Unit number(1) | | | | Bolt
size | Bearing
number | | | | | | | | | |---|--|---------------------------------------|---|--|---|--------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|----------------
---------------|------------|---| | mm
inch | | Н | L | S | mm | | | | | | | | | | | 75 2 ¹³ / ₁₆ 2 ⁷ / ₈ | UCP215D1
UCP215-213D1
UCP215-214D1
UCP215-215D1
UCP215-300D1 | 82.6 | 275
10 ¹³ / ₁₆ | J
217
817/32 | 74
229/32 | N 25 31/32 | N ₁ 28 13/32 | H ₁ 28 13/32 | H ₂ 163 613/32 | 80
35/32 | 77.8
3.0630 | 33.3 | M20 | UC215D1
UC215-213D1
UC215-214D1
UC215-215D1
UC215-300D1 | | 80
3 ¹ / ₁₆
3 ¹ / ₈
3 ³ / ₁₆ | UCP216D1
UCP216-301D1
UCP216-302D1
UCP216-303D1 | 3 1/2 | 292
11 ¹ /2 | 232
9 ¹ / ₈ | 78
3 ¹ / ₁₆ | 25
31/32 | 28
1 ³ / ₃₂ | 30
1 ³ / ₁₆ | 175
6 ⁷ /8 | 85
3 ¹¹ / ₃₂ | 82.6
3.2520 | 33.3
1.311 | M20
3/4 | UC216D1
UC216-301D1
UC216-302D1
UC216-303D1 | | 85
3 ¹ / ₄
3 ⁵ / ₁₆
3 ⁷ / ₁₆ | UCP217D1
UCP217-304D1
UCP217-305D1
UCP217-307D1 | 95.2
3 ³ / ₄ | 310
1 2 ⁷ /32 | 247
9 ²³ / ₃₂ | 83
3 ⁹ /32 | 25
31/32 | 28
1 ³ / ₃₂ | 32
1 ¹ / ₄ | 187
7 ³ /8 | 85
3 ¹¹ /32 | 85.7
3.3740 | 34.1
1.343 | M20
3/4 | UC217D1
UC217-304D1
UC217-305D1
UC217-307D1 | | 90
3 ¹ / ₂ | UCP218D1
UCP218-308D1 | 101.6
4 | 327
1 2 7/8 | 262
10 ⁵ /16 | 88
3 ¹⁵ / ₃₂ | 27
1 ¹ /16 | 30
1 ³ / ₁₆ | 33
1 ⁵ / ₁₆ | 200
7 ⁷ /8 | 90
3 ¹⁷ / ₃₂ | 96
3.7795 | 39.7
1.563 | M22
7/8 | UC218D1
UC218-308D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCP...D1 Closed end CM-UCP...D1 | Housing
number | Unit number (1)
pressed steel dust
cover type | Unit number (1)
cast dust cover type | 1 | Nominal o | dimensions | 3 | Mass of unit | | | | | |--------------------------------------|---|--|------------|-----------|---------------------------------------|--------------------------------------|--------------|-------|----------|--|--| | | cover type | | t | | inch | 4 | | kg lb | | | | | | | | max. | A_4 | H_3 | A_5 | UCP | Z(ZM) | C(CM) | | | | P215D1 | _ | C(CM)-UCP215D1 | 4 | _ | 168 | 135 | 7.2 | _ | 9.3 | | | | P215D1
P215D1
P215D1
P215D1 | _ | C(CM)-UCP215-213D1
C(CM)-UCP215-214D1
C(CM)-UCP215-215D1
C(CM)-UCP215-300D1 | 5/32 | _ | 6 5/8 | 5 5/16 | 16 | _ | 21 | | | | P216D1 | _ | C(CM)-UCP216D1 | 4 | _ | 181 | 145 | 8.7 | _ | 11 | | | | P216D1
P216D1
P216D1 | _ | C(CM)-UCP216-301D1
C(CM)-UCP216-302D1
C(CM)-UCP216-303D1 | 5/32 | _ | 7 ¹ /8 | 5 ²³ /32 | 19 | _ | 24 | | | | P217D1 | _ | C(CM)-UCP217D1 | 5 | _ | 191 | 155 | 11 | _ | 13 | | | | P217D1
P217D1
P217D1 | _ | C(CM)-UCP217-304D1
C(CM)-UCP217-305D1
C(CM)-UCP217-307D1 | 13/64 | _ | 7 17/32 | 6 ³ /32 | 24 | _ | 29 | | | | P218D1
P218D1 | _ | C(CM)-UCP218D1
C(CM)-UCP218-308D1 | 5
13/64 | _ | 204
8 ¹ / ₃₂ | 165
6 ¹ / ₂ | 13
29 | _ | 16
35 | | | B 290 B 291 # Square flanged units cast housing Set screw type Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCF...D1 Closed end CM-UCF...D1 | Housing
number | Unit number (¹)
pressed steel dust
cover type | Unit number (1)
cast dust cover type | Nomi | nal dimen | sions | Mass of unit | | | | |--------------------------------------|---|--|-----------|-------------------------------------|---------------------------------------|--------------|------------|------------|--| | | oover type | | t | mm inch | | | kg lb | | | | | | | max. | A_4 | A_5 | UCP | Z(ZM) | C(CM) | | | F204D1
F204D1 | Z(ZM)-UCF201D1
Z(ZM)-UCF201-008D1 | C(CM)-UCF201D1
C(CM)-UCF201-008D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.8
1.8 | | | F204D1
F204D1
F204D1 | Z(ZM)-UCF202D1
Z(ZM)-UCF202-009D1
Z(ZM)-UCF202-010D1 | C(CM)-UCF202D1
C(CM)-UCF202-009D1
C(CM)-UCF202-010D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.8
1.8 | | | F204D1
F204D1 | Z(ZM)-UCF203D1
Z(ZM)-UCF203-011D1 | C(CM)-UCF203D1
C(CM)-UCF203-011D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.8
1.8 | | | F204D1
F204D1 | Z(ZM)-UCF204D1
Z(ZM)-UCF204-012D1 | C(CM)-UCF204D1
C(CM)-UCF204-012D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.7
1.5 | | | F205D1
F205D1 | Z(ZM)-UCF205D1
Z(ZM)-UCF205-013D1 | C(CM)-UCF205D1
C(CM)-UCF205-013D1 | 2 | 40 | 51 | 0.8 | 0.8 | 0.9 | | | F205D1
F205D1
F205D1 | Z(ZM)-UCF205-014D1
Z(ZM)-UCF205-015D1
Z(ZM)-UCF205-100D1 | C(CM)-UCF205-013D1
C(CM)-UCF205-014D1
C(CM)-UCF205-015D1
C(CM)-UCF205-100D1 | 5/64 | 1 ¹⁹ /32 | 2 | 1.8 | 1.8 | 2.0 | | | F206D1
F206D1 | Z(ZM)-UCF206D1
Z(ZM)-UCF206-101D1 | C(CM)-UCF206D1
C(CM)-UCF206-101D1 | 2 | 45 | 56 | 1.1 | 1.1 | 1.3 | | | F206D1
F206D1
F206D1 | Z(ZM)-UCF206-103D1
Z(ZM)-UCF206-103D1 | C(CM)-UCF206-102D1
C(CM)-UCF206-103D1
C(CM)-UCF206-104D1 | 5/64 | 1 ³ /4 | 2 ⁷ /32 | 2.4 | 2.4 | 2.9 | | | F207D1
F207D1 | Z(ZM)-UCF207D1
Z(ZM)-UCF207-104D1 | C(CM)-UCF207D1
C(CM)-UCF207-104D1 | 3 | 49 | 59 | 1.5 | 1.5 | 1.8 | | | F207D1
F207D1
F207D1
F207D1 | Z(ZM)-UCF207-104D1
Z(ZM)-UCF207-105D1
Z(ZM)-UCF207-106D1 | C(CM)-UCF207-104D1
C(CM)-UCF207-105D1
C(CM)-UCF207-106D1
C(CM)-UCF207-107D1 | 1/8 | 1 ¹⁵ /16 | 2 ⁵ /16 | 3.3 | 3.3 | 4.0 | | | F208D1 | Z(ZM)-UCF208D1 | C(CM)-UCF208D1 | 3 | 56 | 66 | 1.7 | 1.8 | 2.2 | | | F208D1
F208D1 | Z(ZM)-UCF208-108D1
Z(ZM)-UCF208-109D1 | C(CM)-UCF208-108D1
C(CM)-UCF208-109D1 | 1/8 | 2 ³ /16 | 2 19/32 | 3.7 | 4.0 | 4.9 | | Macc of unit # Square flanged units cast housing Set screw type Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCF...D1 Closed end CM-UCF...D1 Naminal dimensian | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1) cast dust cover type | Nomi | nal dimen | sions | N | lass of un | it | |--------------------------------------|--|--|-----------|--------------------------------------|--|-----|------------|-------| | | cover type | | | mm inch | | | kg lb | | | | | | t
max. | A_4 | A_5 | UCF | Z(ZM) | C(CM) | | F209D1
F209D1 | Z(ZM)-UCF209D1
Z(ZM)-UCF209-110D1 | C(CM)-UCF209D1
C(CM)-UCF209-110D1 | 3 | 57 | 70 | 2.1 | 2.2 | 2.6 | | F209D1
F209D1 | Z(ZM)-UCF209-111D1
Z(ZM)-UCF209-112D1 | C(CM)-UCF209-111D1
C(CM)-UCF209-112D1 | 1/8 | 2 ¹ / ₄ | 2 ³ /4 | 4.6 | 4.9 | 5.7 | | F210D1
F210D1 | Z(ZM)-UCF210D1
Z(ZM)-UCF210-113D1 | C(CM)-UCF210D1
C(CM)-UCF210-113D1 | 3 | 60 | 72 | 2.5 | 2.5 | 3.0 | | F210D1
F210D1
F210D1 | Z(ZM)-UCF210-114D1
Z(ZM)-UCF210-115D1
— | C(CM)-UCF210-114D1
C(CM)-UCF210-115D1
C(CM)-UCF210-200D1 | 1/8 | 2 3/8 | 2 ²⁷ / ₃₂ | 5.5 | 5.5 | 6.6 | | F211D1
F211D1 | Z(ZM)-UCF211D1
Z(ZM)-UCF211-200D1 | C(CM)-UCF211D1
C(CM)-UCF211-200D1 | 4 | 64 | 75 | 3.3 | 3.4 | 4.0 | | F211D1
F211D1
F211D1
F211D1 | Z(ZM)-UCF211-201D1
Z(ZM)-UCF211-202D1
Z(ZM)-UCF211-203D1 | C(CM)-UCF211-201D1
C(CM)-UCF211-202D1
C(CM)-UCF211-203D1 | 5/32 | 2 1/2 | 2 ¹⁵ /16 | 7.3 | 7.5 | 8.8 | | F212D1
F212D1 | Z(ZM)-UCF212D1
Z(ZM)-UCF212-204D1 | C(CM)-UCF212D1
C(CM)-UCF212-204D1 | 4 | 74 | 86 | 3.9 | 4.1 | 4.8 | | F212D1
F212D1
F212D1
F212D1 | Z(ZM)-UCF212-205D1
Z(ZM)-UCF212-206D1
———————————————————————————————————— | C(CM)-UCF212-205D1
C(CM)-UCF212-206D1
C(CM)-UCF212-207D1 | 5/32 | 2 ²⁹ /32 | 3 3/8 | 8.6 | 9.0 | 11 | | F213D1 | Z(ZM)-UCF213D1 | C(CM)-UCF213D1 | 4 | 76 | 90 | 5.5 | 5.6 | 6.4 | | F213D1
F213D1 | Z(ZM)-UCF213-208D1
Z(ZM)-UCF213-209D1 | C(CM)-UCF213-208D1
C(CM)-UCF213-209D1 | 5/32 | 3 | 3 17/32 | 12 | 12 | 14 | | F214D1
F214D1 | - | C(CM)-UCF214D1
C(CM)-UCF214-210D1 | 4 | _ | 98 | 6.3 | _ | 7.4 | | F214D1
F214D1 | _ | C(CM)-UCF214-211D1
C(CM)-UCF214-212D1 | 5/32 | _ | 3 27/32 | 14 | _ | 16 | B 294 B 295 # Square flanged units cast housing Set screw type | Shaft
dia. | Unit number(1) | | | | Bolt
size | Bearing
number | | | | | | | |---|--|--------------------------------------|---|----------------------------|-------------------------------------|---------------------------|-------------------------------------|--|--------------|----------------------|------------|--| | | | | | | | | | | | | | | | mm
inch | | L | J | S | mm
inch | | | | | | | | | 75 | UCF215D1 | 200 | 159 | 34 | 22 | 56 | 19 | 78.5 | 77.8 | 33.3 | M16 | UC215D1
UC215-213D1 | | 27/8 | UCF215-213D1
UCF215-214D1
UCF215-215D1
UCF215-300D1 | 7 ⁷ /8 | 6 ¹⁷ /64 | 1 11/32 | 7/8 | 2 ⁷ /32 | 3/4 | 3 3/32 | 3.0630 | 1.311 | 5/8 | UC215-213D1
UC215-214D1
UC215-215D1
UC215-300D1 | | 80 31/16 | UCF216D1
UCF216-301D1 | 208 | 165 | 34
 22 | 58 | 23 | 83.3 | 82.6 | 33.3 | M20 | UC216D1
UC216-301D1 | | 3 ¹ / ₈
3 ³ / ₁₆ | UCF216-302D1
UCF216-303D1 | 8 ³ /16 | 6 ¹ /2 | 1 11/32 | 7/8 | 2 9/32 | 29/32 | 3 9/32 | 3.2520 | 1.311 | 3/4 | UC216-303D1
UC216-303D1 | | 85 | UCF217D1 | 220 | 175 | 36 | 24 | 63 | 23 | 87.6 | 85.7 | 34.1 | M20 | UC217D1 | | 3 ¹ / ₄
3 ⁵ / ₁₆
3 ⁷ / ₁₆ | UCF217-304D1
UCF217-305D1
UCF217-307D1 | 821/32 | 6 ⁵⁷ /64 | 1 ²⁷ /64 | 15/16 | 2 15/32 | 29/32 | 3 ²⁹ /64 | 3.3740 | 1.343 | 3/4 | UC217-304D1
UC217-305D1
UC217-307D1 | | 90
3 ¹ / ₂ | UCF218D1
UCF218-308D1 | 235
9 ¹ / ₄ | 187
7 ²³ / ₆₄ | 40
1 ³⁷ /64 | 24
¹⁵ / ₁₆ | 68
2 ¹¹ /16 | 23
²⁹ / ₃₂ | 96.3
3 ⁵¹ / ₆₄ | 96
3.7795 | 39.7
1.563 | M20
3/4 | UC218D1
UC218-308D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | | A_1 A_2 | |--------------------------------|-------------| | Cast dust cover type
en end | | | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | Nomi | nal dimer | nsions | Mass of unit | | | | |----------------------------|---|--|------------------------|-----------|--|--------------|-------|----------|--| | | | | | mm inch | 1 | | kg lb | | | | | | | t max. | A_4 | A_5 | UCF | Z(ZM) | C(CM) | | | F215D1
F215D1 | _ | C(CM)-UCF215D1
C(CM)-UCF215-213D1 | 4 | _ | 102 | 6.6 | _ | 7.9 | | | F215D1
F215D1
F215D1 | _ | C(CM)-UCF215-214D1
C(CM)-UCF215-215D1
C(CM)-UCF215-300D1 | 5/32 | _ | 4 1/32 | 15 | _ | 17 | | | F216D1
F216D1 | _ | C(CM)-UCF216D1
C(CM)-UCF216-301D1 | 4 | _ | 106 | 7.9 | _ | 9.3 | | | F216D1
F216D1 | _ | C(CM)-UCF216-302D1
C(CM)-UCF216-303D1 | 5/32 | _ | 4 ³ /16 | 17 | _ | 21 | | | F217D1
F217D1 | _ | C(CM)-UCF217D1
C(CM)-UCF217-304D1 | 5 | _ | 114 | 9.8 | _ | 12 | | | F217D1
F217D1 | _ | C(CM)-UCF217-305D1
C(CM)-UCF217-307D1 | 13/64 | _ | 4 1/2 | 22 | _ | 26 | | | F218D1
F218D1 | | C(CM)-UCF218D1
C(CM)-UCF218-308D1 | 5
13/ ₆₄ | _ | 122
4 ¹³ / ₁₆ | 12
26 | | 13
29 | | B 296 B 297 # Rhombus flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCFL...D1 Closed end ZM-UCFL...D1 Cast dust cover type Open end C-UCFL...D1 Closed end CM-UCFL...D1 | Shaft
dia. | Unit number(1) | Nominal dimensions | | | | | | | | | | | Bearing
number | |--|--|--|----------------------------------|-------------------------|------------------------|---------------------------|-------------|--------------------------------|--|--------------|----------------------|------------|--| | mm | | | | , | | | inch | T | | D. | | mm | | | inch | | Н | J | A_2 | A_1 | A | N | L | A_0 | В | S | inch | | | 12
1/2 | UCFL201D1
UCFL201-008D1 | 113
4 ⁷ / ₁₆ | 90
3 ³⁵ /64 | 15
19/32 | 11
⁷ /16 | 25.5
1 | 12
15/32 | 60
2 ³ /8 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC201D1
UC201-008D1 | | 15 | UCFL202D1 | 113 | 90 | 15 | 11 | 25.5 | 12 | 60 | 33.3 | 31 | 12.7 | M10 | UC202D1 | | 9/16
5/8 | UCFL202-009D1
UCFL202-010D1 | 4 7/16 | 3 35/64 | 19/32 | 7/16 | 1 | 15/32 | 2 3/8 | 1 5/16 | 1.2205 | 0.500 | 3/8 | UC202-009D1
UC202-010D1 | | 17 | UCFL203D1 | 113 | 90 | 15 | 11 | 25.5 | 12 | 60 | 33.3 | 31 | 12.7 | M10 | UC203D1 | | 11/16 | UCFL203-011D1 | 4 ⁷ /16 | 3 35/64 | 19/32 | 7/16 | 1 | 15/32 | 2 3/8 | 1 5/16 | 1.2205 | 0.500 | 3/8 | UC203-011D1 | | 20
3/4 | UCFL204D1
UCFL204-012D1 | 113
4 ⁷ / ₁₆ | 90
3 ³⁵ /64 | 15
19/ ₃₂ | 11
7/16 | 25.5
1 | 12
15/32 | 60
2 3/8 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC204D1
UC204-012D1 | | 25 | UCFL205D1 | 130 | 99 | 16 | 13 | 27 | 16 | 68 | 35.8 | 34.1 | 14.3 | M14 | UC205D1 | | 7/8 | UCFL205-013D1
UCFL205-014D1
UCFL205-015D1
UCFL205-100D1 | 5 ¹ /8 | 3 ⁵⁷ /64 | 5/8 | 1/2 | 1 ¹ /16 | 5/8 | 2 ¹¹ /16 | 1 ¹³ /32 | 1.3425 | 0.563 | 1/2 | UC205-013D1
UC205-014D1
UC205-015D1
UC205-100D1 | | 30
1 ¹ /16 | UCFL206D1
UCFL206-101D1 | 148 | 117 | 18 | 13 | 31 | 16 | 80 | 40.2 | 38.1 | 15.9 | M14 | UC206D1
UC206-101D1 | | 1 ¹ / ₈
1 ³ / ₁₆
1 ¹ / ₄ | UCFL206-103D1
UCFL206-103D1
UCFL206-104D1 | 5 ¹³ /16 | 4 ³⁹ /64 | 45/64 | 1/2 | 1 ⁷ /32 | 5/8 | 3 5/32 | 1 ³⁷ /64 | 1.5000 | 0.626 | 1/2 | UC206-102D1
UC206-103D1
UC206-104D1 | | 35 | UCFL207D1 | 161 | 130 | 19 | 15 | 34 | 16 | 90 | 44.4 | 42.9 | 17.5 | M14 | UC207D1 | | 1 ¹ / ₄
1 ⁵ / ₁₆
1 ³ / ₈
1 ⁷ / ₁₆ | UCFL207-104D1
UCFL207-105D1
UCFL207-106D1
UCFL207-107D1 | 6 ¹¹ / ₃₂ | 5 ¹ /8 | 3/4 | 19/32 | 1 11/32 | 5/8 | 3 17/32 | 1 ³ /4 | 1.6890 | 0.689 | 1/2 | UC207-104D1
UC207-105D1
UC207-106D1
UC207-107D1 | | 40 | UCFL208D1 | 175 | 144 | 21 | 15 | 36 | 16 | 100 | 51.2 | 49.2 | 19 | M14 | UC208D1 | | 1 ¹ /2
1 ⁹ /16 | UCFL208-108D1
UCFL208-109D1 | 6 ⁷ /8 | 5 ⁴³ /64 | 53/64 | 19/32 | 1 13/32 | 5/8 | 3 ¹⁵ /16 | 2 1/64 | 1.9370 | 0.748 | 1/2 | UC208-108D1
UC208-109D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (¹)
pressed steel dust
cover type | Unit number (¹)
cast dust cover type | | Nomin | nal dimer | nsions | | N | lass of un | it | |--|--|--|-----------|-------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|------------|------------|------------| | | | | | | nm inch | | | | kg lb | | | | | | t
max. | A_4 | A_5 | L_1 | L_2 | UCFL | Z(ZM) | C(CM) | | FL204D1
FL204D1 | Z(ZM)-UCFL201D1
Z(ZM)-UCFL201-008D1 | C(CM)-UCFL201D1
C(CM)-UCFL201-008D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 67
2 ⁵ /8 | 30
1 ³ / ₁₆ | 0.5
1.1 | 0.5
1.1 | 0.6
1.3 | | FL204D1 | Z(ZM)-UCFL202D1 | C(CM)-UCFL202D1 | 2 | 38 | 46 | 67 | 30 | 0.5 | 0.5 | 0.6 | | FL204D1
FL204D1 | Z(ZM)-UCFL202-009D1
Z(ZM)-UCFL202-010D1 | C(CM)-UCFL202-009D1
C(CM)-UCFL202-010D1 | 5/64 | 11/2 | 1 13/16 | 2 5/8 | 1 3/16 | 1.1 | 1.1 | 1.3 | | FL204D1
FL204D1 | Z(ZM)-UCFL203D1
Z(ZM)-UCFL203-011D1 | C(CM)-UCFL203D1
C(CM)-UCFL203-011D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 67
2 ⁵ /8 | 30
1 ³ / ₁₆ | 0.5
1.1 | 0.5 | 0.6
1.3 | | | , | | | , | 40 | | , , | 0.4 | | | | FL204D1
FL204D1 | Z(ZM)-UCFL204D1
Z(ZM)-UCFL204-012D1 | C(CM)-UCFL204D1
C(CM)-UCFL204-012D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 67
2 5/8 | 30
1 ³ /16 | 0.4
0.9 | 0.4 | 0.6
1.3 | | FL205D1 | Z(ZM)-UCFL205D1 | C(CM)-UCFL205D1 | 2 | 40 | 51 | 74 | 34 | 0.6 | 0.6 | 0.8 | | FL205D1
FL205D1
FL205D1
FL205D1 | Z(ZM)-UCFL205-013D1
Z(ZM)-UCFL205-014D1
Z(ZM)-UCFL205-015D1
Z(ZM)-UCFL205-100D1 | C(CM)-UCFL205-013D1
C(CM)-UCFL205-014D1
C(CM)-UCFL205-015D1
C(CM)-UCFL205-100D1 | 5/64 | 1 ¹⁹ /32 | 2 | 2 ²⁹ /32 | 1 11/32 | 1.3 | 1.3 | 1.8 | | FL206D1 | Z(ZM)-UCFL206D1 | C(CM)-UCFL206D1 | 2 | 45 | 56 | 85 | 40 | 0.9 | 0.9 | 1.2 | | FL206D1
FL206D1
FL206D1
FL206D1 | Z(ZM)-UCFL206-101D1
Z(ZM)-UCFL206-102D1
Z(ZM)-UCFL206-103D1 | C(CM)-UCFL206-101D1
C(CM)-UCFL206-102D1
C(CM)-UCFL206-103D1 | 5/64 | 1 ³ /4 | 2 ⁷ /32 | 3 ¹¹ /32 | 1 9/16 | 2.0 | 2.0 | 2.6 | | FL207D1 | Z(ZM)-UCFL207D1 | C(CM)-UCFL207D1 | 3 | 49 | 59 | 97 | 45 | 1.2 | 1.2 | 1.4 | | FL207D1
FL207D1
FL207D1
FL207D1 | Z(ZM)-UCFL207-104D1
Z(ZM)-UCFL207-105D1
Z(ZM)-UCFL207-106D1
— | C(CM)-UCFL207-104D1
C(CM)-UCFL207-105D1
C(CM)-UCFL207-106D1 | 1/8 | 1 ¹⁵ /16 | 2 ⁵ /16 | 3 ¹³ /16 | 1 ²⁵ /32 | 2.6 | 2.6 | 3.1 | | FL208D1 | Z(ZM)-UCFL208D1 | C(CM)-UCFL208D1 | 3 | 56 | 66 | 106 | 50 | 1.5 | 1.5 | 1.9 | | FL208D1
FL208D1 | Z(ZM)-UCFL208-108D1
Z(ZM)-UCFL208-109D1 | C(CM)-UCFL208-108D1
C(CM)-UCFL208-109D1 | 1/8 | 2 ³ /16 | 2 ¹⁹ /32 | 4 ³ /16 | 1 31/32 | 3.3 | 3.3 | 4.2 | # Rhombus flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCFL...D1 Closed end ZM-UCFL...D1 Cast dust cover type Open end C-UCFL...D1 Closed end CM-UCFL...D1 | Shaft
dia. | Unit number(1) | | | | N | ominal d | limensi | ons | | | | Bolt
size | Bearing
number | |--|--|----------------------------|----------------------------|---------------|-------|--------------------------|---------|--------------------------------------|----------------------------|--------|-------|--------------|--| | | | | | | | mm | inch | | | | | | | |
mm
inch | | Н | J | A_2 | A_1 | A | N | L | A_0 | B | S | mm
inch | | | 45 | UCFL209D1 | 188 | 148 | 22 | 16 | 38 | 19 | 108 | 52.2 | 49.2 | 19 | M16 | UC209D1 | | 1 ⁵ /8
1 ¹¹ / ₁₆
1 ³ / ₄ | UCFL209-110D1
UCFL209-111D1
UCFL209-112D1 | 7 13/32 | 5 ⁵³ /64 | 55/64 | 5/8 | 11/2 | 3/4 | 4 ¹ /4 | 2 ¹ /16 | 1.9370 | 0.748 | 5/8 | UC209-110D1
UC209-111D1
UC209-112D1 | | 50 | UCFL210D1
UCFL210-113D1 | 197 | 157 | 22 | 16 | 40 | 19 | 115 | 54.6 | 51.6 | 19 | M16 | UC210D1
UC210-113D1 | | 17/8 | UCFL210-113D1
UCFL210-114D1
UCFL210-115D1
UCFL210-200D1 | 7 3/4 | 6 ³ /16 | 55/64 | 5/8 | 1 9/16 | 3/4 | 4 ¹⁷ /32 | 2 5/32 | 2.0315 | 0.748 | 5/8 | UC210-113D1
UC210-114D1
UC210-115D1
UC210-200D1 | | 55 | UCFL211D1 | 224 | 184 | 25 | 18 | 43 | 19 | 130 | 58.4 | 55.6 | 22.2 | M16 | UC211D1 | | 2
2 ¹ / ₁₆
2 ¹ / ₈
2 ³ / ₁₆ | UCFL211-200D1
UCFL211-201D1
UCFL211-202D1
UCFL211-203D1 | 8 13/16 | 71/4 | 63/64 | 23/32 | 1 11/16 | 3/4 | 5 1/8 | 2 19/64 | 2.1890 | 0.874 | 5/8 | UC211-200D1
UC211-201D1
UC211-202D1
UC211-203D1 | | 60 | UCFL212D1 | 250 | 202 | 29 | 18 | 48 | 23 | 140 | 68.7 | 65.1 | 25.4 | M20 | UC212D1 | | 2 ¹ / ₄
2 ⁵ / ₁₆
2 ³ / ₈
2 ⁷ / ₁₆ | UCFL212-204D1
UCFL212-205D1
UCFL212-206D1
UCFL212-207D1 | 927/32 | 7 61/64 | 1 9/64 | 23/32 | 1 7/8 | 29/32 | 5 ¹ / ₂ | 2 ⁴⁵ /64 | 2.5630 | 1.000 | 3/4 | UC212-204D1
UC212-205D1
UC212-206D1
UC212-207D1 | | 65 | UCFL213D1 | 258 | 210 | 30 | 22 | 50 | 23 | 155 | 69.7 | 65.1 | 25.4 | M20 | UC213D1 | | 2 ¹ / ₂
2 ⁹ / ₁₆ | UCFL213-208D1
UCFL213-209D1 | 10 ⁵ /32 | 817/64 | 1 3/16 | 7/8 | 1 31/32 | 29/32 | 6 ³ /32 | 2 ³ /4 | 2.5630 | 1.000 | 3/4 | UC213-208D1
UC213-209D1 | | 70 | UCFL214D1 | 265 | 216 | 31 | 22 | 54 | 23 | 160 | 75.4 | 74.6 | 30.2 | M20 | UC214D1 | | 2 ⁵ /8
2 ¹¹ / ₁₆
2 ³ / ₄ | UCFL214-210D1
UCFL214-211D1
UCFL214-212D1 | 10 ⁷ /16 | 81/2 | 1 7/32 | 7/8 | 2 ¹ /8 | 29/32 | 6 ⁵ /16 | 2 31/32 | 2.9370 | 1.189 | 3/4 | UC214-210D1
UC214-211D1
UC214-212D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | | Nomin | al dimer | nsions | | N | lass of uni | it | |-------------------------------|---|---|------|--------------------------------------|--|--|---------------------------|------|-------------|-------| | | ,, | | | - | nm inch | | | | kg lb | | | | | | max. | A_4 | A_5 | L_1 | L_2 | UCFL | Z(ZM) | C(CM) | | FL209D1
FL209D1 | Z(ZM)-UCFL209D1
Z(ZM)-UCFL209-110D1 | C(CM)-UCFL209D1
C(CM)-UCFL209-110D1 | 3 | 57 | 70 | 113 | 54 | 1.8 | 1.9 | 2.3 | | FL209D1
FL209D1 | Z(ZM)-UCFL209-112D1
Z(ZM)-UCFL209-112D1 | C(CM)-UCFL209-112D1
C(CM)-UCFL209-112D1 | 1/8 | 2 ¹ / ₄ | 2 ³ /4 | 4 ⁷ /16 | 2 ¹ /8 | 4.0 | 4.2 | 5.1 | | FL210D1
FL210D1 | Z(ZM)-UCFL210D1
Z(ZM)-UCFL210-113D1 | C(CM)-UCFL210D1
C(CM)-UCFL210-113D1 | 3 | 60 | 72 | 120 | 58 | 2.0 | 2.1 | 2.7 | | FL210D1
FL210D1
FL210D1 | Z(ZM)-UCFL210-114D1
Z(ZM)-UCFL210-115D1
— | C(CM)-UCFL210-114D1
C(CM)-UCFL210-115D1
C(CM)-UCFL210-200D1 | 1/8 | 2 3/8 | 2 ²⁷ / ₃₂ | 4 ²³ / ₃₂ | 2 9/32 | 4.4 | 4.6 | 6.0 | | FL211D1
FL211D1 | Z(ZM)-UCFL211D1
Z(ZM)-UCFL211-200D1 | C(CM)-UCFL211D1
C(CM)-UCFL211-200D1 | 4 | 64 | 75 | 133 | 65 | 2.9 | 3.0 | 3.4 | | FL211D1
FL211D1
FL211D1 | Z(ZM)-UCFL211-201D1
Z(ZM)-UCFL211-202D1
Z(ZM)-UCFL211-203D1 | C(CM)-UCFL211-201D1
C(CM)-UCFL211-202D1
C(CM)-UCFL211-203D1 | 5/32 | 2 1/2 | 2 15/16 | 51/4 | 2 9/16 | 6.4 | 6.6 | 7.5 | | FL212D1
FL212D1 | Z(ZM)-UCFL212D1
Z(ZM)-UCFL212-204D1 | C(CM)-UCFL212D1
C(CM)-UCFL212-204D1 | 4 | 74 | 86 | 144 | 70 | 3.8 | 4.0 | 4.6 | | FL212D1
FL212D1
FL212D1 | Z(ZM)-UCFL212-205D1
Z(ZM)-UCFL212-206D1
— | C(CM)-UCFL212-205D1
C(CM)-UCFL212-206D1
C(CM)-UCFL212-207D1 | 5/32 | 2 ²⁹ /32 | 3 3/8 | 5 ²¹ / ₃₂ | 2 ³ /4 | 8.4 | 8.9 | 10 | | FL213D1 | Z(ZM)-UCFL213D1 | C(CM)-UCFL213D1 | 4 | 76 | 90 | 157 | 78 | 4.8 | 4.9 | 5.8 | | FL213D1
FL213D1 | Z(ZM)-UCFL213-208D1
Z(ZM)-UCFL213-209D1 | C(CM)-UCFL213-208D1
C(CM)-UCFL213-209D1 | 5/32 | 3 | 3 17/32 | 6 3/16 | 3 ¹ /16 | 11 | 11 | 15 | | FL214D1
FL214D1 | _ | C(CM)-UCFL214D1
C(CM)-UCFL214-210D1 | 4 | _ | 98 | 164 | 80 | 5.4 | _ | 7.7 | | FL214D1
FL214D1 | _ | C(CM)-UCFL214-211D1
C(CM)-UCFL214-212D1 | 5/32 | _ | 3 ²⁷ /32 | 6 ¹⁵ /32 | 3 5/32 | 12 | _ | 17 | # Rhombus flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCFL...D1 Closed end ZM-UCFL...D1 | Shaft
dia. | Unit number(1) | | | | N | ominal d | imensi | ons | | | | Bolt
size | Bearing
number | |--|---|-----------------------------|----------------------------|----------------------------|-------------------------------------|--|-------------------------------------|---------------------------------------|---|--------------|---------------|------------------------|--| | mm | | | | | | mm | inch | | | | | mm | | | inch | | Н | J | A_2 | A_1 | A | N | L | A_0 | B | S | inch | | | 75 | UCFL215D1 | 275 | 225 | 34 | 22 | 56 | 23 | 165 | 78.5 | 77.8 | 33.3 | M20 | UC215D1 | | 2 ¹³ / ₁₆
2 ⁷ / ₈
2 ¹⁵ / ₁₆
3 | UCFL215-214D1 | 10 ¹³ /16 | 8 ⁵⁵ /64 | 1 11/32 | 7/8 | 2 ⁷ /32 | 29/32 | 6 ¹ /2 | 3 ³ /32 | 3.0630 | 1.311 | 3/4 | UC215-213D1
UC215-214D1
UC215-215D1
UC215-300D1 | | 80 | UCFL216D1 | 290 | 233 | 34 | 22 | 58 | 25 | 180 | 83.3 | 82.6 | 33.3 | M22 | UC216D1 | | 3 ¹ / ₁₆
3 ¹ / ₈
3 ³ / ₁₆ | UCFL216-301D1
UCFL216-302D1
UCFL216-303D1 | 11 ¹³ /32 | 911/64 | 1 11/32 | 7/8 | 2 9/32 | 63/64 | 7 3/32 | 3 9/32 | 3.2520 | 1.311 | 7/8 | UC216-301D1
UC216-302D1
UC216-303D1 | | 85 | UCFL217D1 | 305 | 248 | 36 | 24 | 63 | 25 | 190 | 87.6 | 85.7 | 34.1 | M22 | UC217D1 | | 3 ¹ / ₄
3 ⁵ / ₁₆
3 ⁷ / ₁₆ | UCFL217-304D1
UCFL217-305D1
UCFL217-307D1 | 12 | 9 ⁴⁹ /64 | 1 ²⁷ /64 | 15/16 | 2 ¹⁵ / ₃₂ | 63/64 | 7 15/32 | 3 ²⁹ /64 | 3.3740 | 1.343 | 7/8 | UC217-304D1
UC217-305D1
UC217-307D1 | | 90
3 ¹ / ₂ | UCFL218D1
UCFL218-308D1 | 320
12 ¹⁹ /32 | 265
10 ⁷ /16 | 40
1 ³⁷ /64 | 24
¹⁵ / ₁₆ | 68
2 ¹¹ / ₁₆ | 25
⁶³ / ₆₄ | 205
8 ¹ / ₁₆ | 96.3
3 ⁵¹ / ₆₄ | 96
3.7795 | 39.7
1.563 | M22
⁷ /8 | UC218D1
UC218-308D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCFL...D1 Closed end CM-UCFL...D1 | Housing
number | Unit number (1) pressed steel dust | Unit number (¹)
cast dust cover type | | Nomi | nal dimer | nsions | | N | lass of uni | it | |--|------------------------------------|--|------------|-------|--|--|---------------------------------------|----------|-------------|----------| | | cover type | | | | mm inch | | | | kg lb | | | | | | t max. | A_4 | A_5 | L_1 | L_2 | UCFL | Z(ZM) | C(CM) | | FL215D1 | _ | C(CM)-UCFL215D1 | 4 | _ | 102 | 169 | 82 | 6.0 | _ | 7.1 | | FL215D1
FL215D1
FL215D1
FL215D1 | _ | C(CM)-UCFL215-213D1
C(CM)-UCFL215-214D1
C(CM)-UCFL215-215D1
C(CM)-UCFL215-300D1 | 5/32 | _ | 41/32 | 6 ²¹ / ₃₂ | 3 ⁷ /32 | 13 | _ | 16 | | FL216D1 | _ | C(CM)-UCFL216D1 | 4 | _ | 106 | 183 | 90 | 7.4 | _ | 8.6 | | FL216D1
FL216D1
FL216D1 | _ | C(CM)-UCFL216-301D1
C(CM)-UCFL216-302D1
C(CM)-UCFL216-303D1 | 5/32 | _ | 4 ³ /16 | 7 7/32 | 3 17/32 | 16 | _ | 19 | | FL217D1 | _ | C(CM)-UCFL217D1 | 5 | _ | 114 | 192 | 95 | 8.8 | _ | 10 | | FL217D1
FL217D1
FL217D1 | _ | C(CM)-UCFL217-304D1
C(CM)-UCFL217-305D1
C(CM)-UCFL217-307D1 | 13/64 | _ | 4 1/2 | 7 9/16 | 3 3/4 | 19 | _ | 22 | | FL218D1
FL218D1 | Ξ | C(CM)-UCFL218D1
C(CM)-UCFL218-308D1 | 5
13/64 | _ | 122
4 ¹³ / ₁₆ | 205
8 ¹ /16 | 102
4 ¹ / ₃₂ | 11
24 | _ | 13
29 | # **PLUMMER BLOCKS** | STANDARD TYPE PLUMMER BLOCKS | B306 | |------------------------------|------| | LARGE PLUMMER BLOCKS | B312 | | DUSTPROOF PLUMMER BLOCKS | B316 | | STEPPED-SHAFT TYPE PLUMMER | | | BLOCKS | B318 | # **DESIGN, TYPES AND FEATURES** There are numerous types and sizes of plummer blocks. In this catalog, only the types marked by are shown. SN 5B SN 6B SN 30B SN 31B SN 2B SN 3B SN 2BC SN 3BC **SD 30S** SD 31S SD 5 SD 6 SD 2 SD 3 SD 2C SD 3C $V \cdot C$ These are the most common type. Models SN30 and SN31 are for medium For types SN2C and SN3C, the bore diameters on the two sides are different. Dustproof plummer blocks have a combination of oil seals, labyrinth seals, and oil groove seals, therefore, they are suitable for environments with much dust and other foreign matter. These have the same dimensions as those of types SN5 and SN6. To increase the bearing box strength, no
material is removed from the top or bottom of the base, so mounting holes can be drilled anywhere. These are large and made for heavy loads. The standard ones have double seals and four mounting bolt holes. For types SD2C and SD3C, the bore diameters on the two sides are different. Single-piece plummer blocks (integrated type roller bearing unit)have higher rigidity and precision than split type plummer blocks. SD31TS SD32TS SN 5 SN 6 SN 30 SN 31 SN 2 SN 3 SN 2C SG 5 These are provided with labyrinth seals, so they are suitable for high speed applications. B 304 B 305 SN 5, SN 6 Types Shaft Diameter 20 – 55 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | Dimens
(mr | | | | | | | Mass
(kg) | |---------------------------|----------------------------|----------------|-----------------|-----|----|-------|-----|---------------|-------|-------|-------|-----------------|----------|---------------------|--------------| | d_1 | Bearing Box
Numbers (1) | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | tnominal | S
nominal | approx. | | 20 | SN 505 | 52 | 40 | 130 | 15 | 20 | 67 | 165 | 46 | 22 | 75 | 25 | M 8 | M 12 | 1.1 | | | SN 605 | 62 | 50 | 150 | 15 | 20 | 80 | 185 | 52 | 22 | 90 | 34 | M 8 | M 12 | 1.6 | | 25 | SN 506 | 62 | 50 | 150 | 15 | 20 | 77 | 185 | 52 | 22 | 90 | 30 | M 8 | M 12 | 1.7 | | | SN 606 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 37 | M 10 | M 12 | 1.8 | | 30 | SN 507 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 33 | M 10 | M 12 | 1.9 | | | SN 607 | 80 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 110 | 41 | M 10 | M 12 | 2.6 | | 35 | SN 508 | 80 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 110 | 33 | M 10 | M 12 | 2.6 | | | SN 608 | 90 | 60 | 170 | 15 | 20 | 95 | 205 | 60 | 25 | 115 | 43 | M 10 | M 12 | 2.9 | | 40 | SN 509 | 85 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 112 | 31 | M 10 | M 12 | 2.8 | | | SN 609 | 100 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 28 | 130 | 46 | M 12 | M 16 | 4.1 | | 45 | SN 510 | 90 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 115 | 33 | M 10 | M 12 | 3.0 | | | SN 610 | 110 | 70 | 210 | 18 | 23 | 115 | 255 | 70 | 30 | 135 | 50 | M 12 | M 16 | 4.7 | | 50 | SN 511 | 100 | 70 | 210 | 18 | 23 | 95 | 255 | 70 | 28 | 130 | 33 | M 12 | M 16 | 4.5 | | | SN 611 | 120 | 80 | 230 | 18 | 23 | 120 | 275 | 80 | 30 | 150 | 53 | M 12 | M 16 | 5.8 | | 55 | SN 512 | 110 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 30 | 135 | 38 | M 12 | M 16 | 5.0 | | | SN 612 | 130 | 80 | 230 | 18 | 23 | 125 | 280 | 80 | 30 | 155 | 56 | M 12 | M 16 | 6.5 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". Remarks Threads for plugs are R 1/8. | | | Ap | plicable Parts | | | | Oil | |--------------------------------------|---|--|---|---------------------------------------|--|------------------|--------------| | Self-Align
Numbers | ning Ball Bearing Basic Dynamic Load Ratings $C_{ m r}$ (N) | | r Bearing
sic Dynamic Load
Ratings $C_{ m r}$ (N) | Adapter
Numbers | $\begin{array}{c} \text{Locating Rings} \\ \text{Nominal } \left(\begin{smallmatrix} \text{Outside} \\ \text{Dia.} \end{smallmatrix} \right. \\ \times \text{Width} \left. \right) \end{array}$ | Q'ty | Seals (3) | | 1205 K
2205 K
1305 K
2305 K | 12 400
18 200 | 22205 CKE4
21305 CDKE4
— |
37 500
43 000
 | H 205X
H 305X
H 305X
H 2305X | SR 52× 5
SR 52× 7
SR 62× 8.5
SR 62×10 | 2
1
2
1 | GS 5
GS 5 | | 1206 K
2206 K
1306 K
2306 K | 15 300
21 400 | 22206 CKE4
21306 CDKE4
— |
50 000
55 000
 | H 206X
H 306X
H 306X
H 2306X | SR 62× 7
SR 62×10
SR 72× 9
SR 72×10 | 2
1
2
1 | GS 6
GS 6 | | 1207 K
2207 K
1307 K
2307 K | 21 700
25 300 |
22207 CKE4
21307 CDKE4
 | —
69 000
71 500
— | H 207X
H 307X
H 307X
H 2307X | SR 72× 8
SR 72×10
SR 80×10
SR 80×10 | 2
1
2
1 | GS 7
GS 7 | | 1208 K
2208 K
1308 K
2308 K | 22 400
29 800 |
22208 EAKE4
21308 EAKE4
22308 EAKE4 | 90 500
94 500
136 000 | H 208X
H 308X
H 308X
H 2308X | SR 80× 7.5
SR 80×10
SR 90×10
SR 90×10 | 2
1
2
1 | GS 8
GS 8 | | 1209 K
2209 K
1309 K
2309 K | 23 300
38 500 |
22209 EAKE4
21309 EAKE4
22309 EAKE4 | 94 500
119 000
166 000 | H 209X
H 309X
H 309X
H 2309X | SR 85× 6
SR 85× 8
SR 100×10.5
SR 100×10 | 2
1
2
1 | GS 9
GS 9 | | 1210 K
2210 K
1310 K
2310 K | 23 400
43 500 |
22210 EAKE4
21310 EAKE4
22310 EAKE4 | 99 000
142 000
197 000 | H 210X
H 310X
H 310X
H 2310X | SR 90× 6.5
SR 90×10
SR 110×11.5
SR 110×10 | 2
1
2
1 | GS10
GS10 | | 1211 K
2211 K
1311 K
2311 K | 26 700
51 500 | —
22211 EAKE4
21311 EAKE4
22311 EAKE4 |
119 000
142 000
234 000 | H 211X
H 311X
H 311X
H 2311X | SR 100× 6
SR 100× 8
SR 120×12
SR 120×10 | 2
1
2
1 | GS11
GS11 | | 1212 K
2212 K
1312 K
2312 K | 34 000
57 500 | —
22212 EAKE4
21312 EAKE4
22312 EAKE4 |
142 000
190 000
271 000 | H 212X
H 312X
H 312X
H 2312X | SR 110× 8
SR 110×10
SR 130×12.5
SR 130×10 | 2
1
2
1 | GS12
GS12 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. ⁽³⁾ Applicable to the ZF Type with the same number. SN 31, SN 5, SN 6 Types Shaft Diameter 60 – 100 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | Dimen: | | | | | | | Mass
(kg) | |---------------------------|----------------------------|-----------------|-----------------|------------|----------|----------|------------|------------|------------|----------|------------|-----------------|--------------|---------------------|--------------| | d_1 | Bearing Box
Numbers (1) | $_{\rm H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | t nominal | S
nominal | approx. | | 60 | SN 513 | 120 | 80 | 230 | 18 | 23 | 110 | 275 | 80 | 30 | 150 | 43 | M 12 | M 16 | 5.6 | | | SN 613 | 140 | 95 | 260 | 22 | 27 | 130 | 315 | 90 | 32 | 175 | 58 | M 16 | M 20 | 8.7 | | 65 | SN 515 | 130 | 80 | 230 | 18 | 23 | 115 | 280 | 80 | 30 | 155 | 41 | M 12 | M 16 | 7.0 | | | SN 615 | 160 | 100 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 195 | 65 | M 16 | M 20 | 11.3 | | 70 | SN 516 | 140 | 95 | 260 | 22 | 27 | 120 | 315 | 90 | 32 | 175 | 43 | M 16 | M 20 | 9.0 | | | SN 616 | 170 | 112 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 212 | 68 | M 16 | M 20 | 12.6 | | 75 | SN 517 | 150 | 95 | 260 | 22 | 27 | 125 | 320 | 90 | 32 | 185 | 46 | M 16 | M 20 | 10 | | | SN 617 | 180 | 112 | 320 | 26 | 32 | 155 | 380 | 110 | 40 | 218 | 70 | M 20 | M 24 | 15 | | 80 | SN 518 | 160 | 100 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 195 | 62.4 | M 16 | M 20 | 13 | | | SN 618 | 190 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 225 | 74 | M 20 | M 24 | 19 | | 85 | SN 519 | 170 | 112 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 210 | 53 | M 16 | M 20 | 15 | | | SN 619 | 200 | 125 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 245 | 77 | M 20 | M 24 | 22 | | 90 | SN 520 | 180 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 218 | 70.3 | M 20 | M 24 | 18.5 | | | SN 620 | 215 | 140 | 350 | 26 | 32 | 175 | 410 | 120 | 45 | 270 | 83 | M 20 | M 24 | 25 | | 100 | SN 3122
SN 522 | 180
200 | 112
125 | 320
350 | 26
26 | 32
32 | 155
175 | 380
410 | 110
120 | 40
45 | 218
240 | 66
80 | M 20
M 20 | M 24
M 24 | 18
20 | | | SN 622 | 240 | 150 | 390 | 28 | 36 | 190 | 450 | 130 | 50 | 300 | 90 | M 24 | M 24 | 32 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". Remarks 1. The threads for plugs are R 1/8 for SN 616 and SN 519 or under and R 1/4 for SN 617, SN 520, SN 3122, and over. | Oalf Aliania a Dall Daggia | | pplicable Parts | A -l t | Leasting Divers | | Oil
Seals (3) | |---|---|---|--|---|------------------|------------------| | $\begin{array}{c} \text{Self-Aligning Ball Bearing} \\ \text{Numbers} & \begin{array}{c} \text{Basic Dynamic L} \\ \text{Ratings } C_r \text{ (N)} \end{array} \end{array}$ | | r Bearing
sic Dynamic Load
Ratings $C_{ m r}$ (N) | Adapter
Numbers | Locating Rings Nominal (Outside Awidth) | Q'ty | | | 1213 K 31 000
2213 K 43 500
1313 K 62 500
2313 K 97 000 |
22213 EAKE4
21313 EAKE4
22313 EAKE4 |
177 000
212 000
300 000 | H 213X
H 313X
H 313X
H 2313X | SR 120×10
SR 120×12
SR 140×12.5
SR 140×10 | 2
1
2
1 | GS13
GS13 | | 1215 K 39 000
2215 K 44 500
1315 K 80 000
2315 K 125 000 |
22215 EAKE4
21315 EAKE4
22315 EAKE4 | | H 215X
H 315X
H 315X
H 2315X | SR 130× 8
SR 130×10
SR 160×14
SR 160×10 | 2
1
2
1 | GS15
GS15 | | 1216 K 40 000
2216 K 49 000
1316 K 89 000
2316 K 130 000 |
22216 EAKE4
21316 EAKE4
22316 EAKE4 | | H
216X
H 316X
H 316X
H 2316X | SR 140× 8.5
SR 140×10
SR 170×14.5
SR 170×10 | 2
1
2
1 | GS16
GS16 | | 1217 K 49 500
2217 K 58 500
1317 K 98 500
2317 K 142 000 |
22217 EAKE4
21317 EAKE4
22317 EAKE4 | | H 217X
H 317X
H 317X
H 2317X | SR 150× 9
SR 150×10
SR 180×14.5
SR 180×10 | 2
1
2
1 | GS17
GS17 | | 1218 K 57 500
2218 K 70 500
 | 22218 EAKE4
23218 CKE4
21318 EAKE4
22318 EAKE4 | 289 000
340 000
330 000
535 000 | H 218X
H 318X
H 2318X
H 318X
H 2318X | SR 160×16.2
SR 160×11.2
SR 160×10
SR 190×15.5
SR 190×10 | 2
2
1
2 | GS18
GS18 | | 1219 K 64 000
2219 K 84 000
1319 K 129 000
2319 K 161 000 |
22219 EAKE4
21319 CKE4
22319 EAKE4 |
330 000
345 000
590 000 | H 219X
H 319X
H 319X
H 2319X | SR 170×10.5
SR 170×10
SR 200×16
SR 200×10 | 2
1
2
1 | GS19
GS19 | | 1220 K 69 500
2220 K 94 500
— — — —
1320 K 140 000
2320 K 187 000 | 22220 EAKE4
23220 CKE4
21320 CKE4
22320 EAKE4 | 365 000
420 000
395 000
690 000 | H 220X
H 320X
H 2320X
H 320X
H 2320X | SR 180×18.1
SR 180×12.1
SR 180×10
SR 215×18
SR 215×10 | 2
2
1
2 | GS20
GS20 | | 1222 K 87 000
2222 K 122 000 | 23122 CKE4
 | 385 000
 | H 3122X
H 222X
H 322X
H 2322X | SR 180×10
SR 200×21
SR 200×13.5
SR 200×10 | 1
2
2
1 | GS22
GS22 | | 1322 K 161 000
2322 K 211 000 | 21322 CAKE4
22322 EAKE4 | 450 000
825 000 | H 322X
H 2322X | SR 240×20
SR 240×10 | 2
1 | GS22 | **Notes** (2) The *X* dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. ^{2.} SN 620 and SN 622 are provided with eye bolts. ⁽³⁾ Applicable to the ZF Type with the same number. SN 30, SN 31, SN 5, SN 6 Types Shaft Diameter 110 – 140 mm | Shaft
Diameter | Plummer
Block | | | | | | | Dimen:
(mr | | | | | | | Mass
(kg) | |-------------------|----------------------------|----------------|-----------------|------------|----------|----------|------------|---------------|------------|----------|------------|-----------------|---------------------|---------------------|--------------| | d_1 | Bearing Box
Numbers (1) | $_{ m H8}^{D}$ | H
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | t
nominal | S
nominal | approx. | | 110 | SN 3024 | 180 | 112 | 320 | 26 | 32 | 150 | 380 | 110 | 40 | 218 | 56 | M 20 | M 24 | 16 | | | SN 3124 | 200 | 125 | 350 | 26 | 32 | 165 | 410 | 120 | 45 | 245 | 72 | M 20 | M 24 | 20 | | | SN 524 | 215 | 140 | 350 | 26 | 32 | 185 | 410 | 120 | 45 | 270 | 86 | M 20 | M 24 | 24.5 | | | SN 624 | 260 | 160 | 450 | 33 | 42 | 200 | 530 | 160 | 60 | 320 | 96 | M 24 | M 30 | 48 | | 115 | SN 3026 | 200 | 125 | 350 | 26 | 32 | 160 | 410 | 120 | 45 | 240 | 62 | M 20 | M 24 | 19 | | | SN 3126 | 210 | 140 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 270 | 74 | M 20 | M 24 | 26 | | | SN 526 | 230 | 150 | 380 | 28 | 36 | 190 | 445 | 130 | 50 | 290 | 90 | M 24 | M 24 | 30 | | | SN 626 | 280 | 170 | 470 | 33 | 42 | 210 | 550 | 160 | 60 | 340 | 103 | M 24 | M 30 | 56 | | 125 | SN 3028 | 210 | 140 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 270 | 63 | M 20 | M 24 | 25 | | 125 | SN 3128 | 225 | 150 | 380 | 28 | 36 | 180 | 410 | 130 | 45
50 | 290 | 78 | M 24 | M 24 | 32 | | | SN 528 | 250 | 150 | 420 | 33 | 42 | 205 | 500 | 150 | 50 | 305 | 98 | M 24 | M 30 | 38 | SN 628 | 300 | 180 | 520 | 35 | 45 | 235 | 610 | 170 | 65 | 365 | 112 | M 30 | M 30 | 72 | | 405 | ON 0000 | 005 | 450 | 000 | 00 | 0.0 | 475 | 4.45 | 400 | F.0 | 000 | 0.0 | 1.404 | 1404 | 00 | | 135 | SN 3030
SN 3130 | 225
250 | 150
150 | 380
420 | 28
33 | 36
42 | 175
200 | 445
500 | 130
150 | 50
50 | 290
305 | 66
90 | M 24
M 24 | M 24
M 30 | 29
38 | | | SN 530 | 270 | 160 | 450 | 33 | 42 | 200 | 530 | 160 | 60 | 325 | 106 | M 24 | M 30 | 46 | | | 314 330 | 2.70 | 100 | 450 | 33 | 42 | 220 | 550 | 100 | 00 | 323 | 100 | IVI 24 | 101 30 | 40 | | | SN 630 | 320 | 190 | 560 | 35 | 45 | 245 | 650 | 180 | 65 | 385 | 118 | M 30 | M 30 | 98 | | 140 | SN 3032 | 240 | 150 | 390 | 28 | 36 | 190 | 450 | 130 | 50 | 300 | 70 | M 24 | M 24 | 32 | | | SN 3132 | 270 | 160 | 450 | 33 | 42 | 215 | 530 | 160 | 60 | 325 | 96 | M 24 | M 30 | 48 | | | SN 532 | 290 | 170 | 470 | 33 | 42 | 235 | 550 | 160 | 60 | 345 | 114 | M 24 | M 30 | 50 | | | SN 632 | 340 | 200 | 580 | 42 | 50 | 255 | 680 | 190 | 70 | 405 | 124 | M 30 | M 36 | 115 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". Remarks 1. The threads for plugs are R 1/4. 2. The bearing boxes for SN 524, SN 624, SN 3126, SN 3028, and over are provided with eye bolts. | | | Α | pplicable Parts | | | | Oil
Seals (3) | |------------------------|---------------------------------------|---------------------------|-------------------------|--------------------|--|--------|------------------| | Self-Aligni
Numbers | ng Ball Bearing
Basic Dynamic Load | Spherical Roll
Numbers | Basic Dynamic Load | Adapter
Numbers | Locating Rings Nominal $\begin{pmatrix} \text{Outside} \\ \text{Dia.} \end{pmatrix}$ | Q'ty | Outio () | | | Ratings $C_{\rm r}$ (N) | | Ratings $C_{\rm r}$ (N) | | Vola. | | | | _ | _ | 23024 CDKE4 | 315 000 | H 3024 | SR 180×10 | 1 | GS24 | | _ | _ | 23124 CKE4 | 465 000 | H 3124 | SR 200×10 | 1 | GS24 | | _ | _ | 22224 EAKE4
23224 CKE4 | 550 000
630 000 | H 3124
H 2324 | SR 215×14
SR 215×10 | 2
1 | GS24 | | _ | _ | 22324 EAKE4 | 955 000 | H 2324 | SR 260×10 | 1 | GS24 | | _ | _ | 23026 CDKE4 | | H 3026 | SR 200×10 | 1 | GS26 | | _ | _ | 23126 CKE4 | 505 000 | H 3126 | SR 210×10 | 1 | GS26 | | _ | _ | 22226 EAKE4
23226 CKE4 | 655 000
700 000 | H 3126
H 2326 | SR 230×13
SR 230×10 | 2
1 | GS26 | | _ | _ | 22326 CKE4 | 995 000 | H 2326 | SR 280×10 | 1 | GS26 | | _ | _ | 23028 CDKE4 | | H 3028 | SR 210×10 | 1 | GS 28 | | _ | _ | 23128 CKE4 | 580 000 | H 3128 | SR 225×10 | 1 | GS28 | | _ | _ | 22228 CDKE4
23228 CKE4 | 645 000
835 000 | H 3128
H 2328 | SR 250×15
SR 250×10 | 2
1 | GS28 | | _ | _ | 22328 CKE4 | 1 160 000 | H 2328 | SR 300×10 | 1 | GS 28 | | _ | _ | 23030 CDKE4 | 470 000 | H 3030 | SR 225×10 | 1 | GS30 | | _ | _ | 23130 CKE4 | 725 000 | H 3130 | SR 250×10 | 1 | GS30 | | _ | _ | 22230 CDKE4
23230 CKE4 | 765 000
975 000 | H 3130
H 2330 | SR 270×16.5
SR 270×10 | 2 | GS30 | | _ | _ | | | | | | | | _ | _ | 22330 CAKE4 | 1 220 000 | H 2330 | SR 320×10 | 1 | GS30 | | _ | _ | 23032 CDKE4 | 540 000 | H 3032 | SR 240×10 | 1 | GS32 | | _ | _ | 23132 CKE4 | 855 000 | H 3132 | SR 270×10 | 1 | GS32 | | _ | _ | 22232 CDKE4
23232 CKE4 | 910 000
1 100 000 | H 3132
H 2332 | SR 290×17
SR 290×10 | 2 | GS32 | | _ | _ | 22332 CAKE4 | 1 360 000 | H 2332 | SR 340×10 | 1 | GS32 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. (3) Applicable to the ZF Type with the same number. SD 30 S, SD 31 S, SD 5, SD 6 Types Shaft Diameter 150 – 260 mm To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter". **Remarks** 1. The threads for oil replenishing hole plugs are R 1/4 and those for drain plugs are R 3/8. | g | g_1 | t | s | Mass
(kg) | Applicable Parts Spherical Roller Bearing Adapter Numbers Basic Dynamic Load Numbers | Oil
Seals (²) | |-----------------|-------------------|---------|---------|--------------|--|------------------| | g
H13 | g ₁
H13 | nominal | nominal | approx. | Ratings $C_{\rm r}$ (N) | | | 77 | 67 | M 24 | M 30 | 70 | 23034 CDKE4 640 000 H 3034 | GS 34 | | 98 | 88 | M 24 | M 30 | 75 | 23134 CKE4 940 000 H 3134 | GS 34 | | 96 | 86 | M 24 | M 30 | 100 | 22234 CDKE4 990 000 H 3134 | GS 34 | | 130 | 120 | M 30 | M 30 | 160 | 22334 CAKE4 1 580 000 H 2334 | GS 34 | | 84 | 74 | M 24 | M 30 | 79 | 23036 CDKE4 750 000 H 3036 | GS 36 | | 106 | 96 | M 24 | M 30 | 94 | 23136 CKE4 1 050 000 H 3136 | GS 36 | | 96 | 86 | M 24 | M 30 | 110 | 22236 CDKE4 1 020 000 H 3136 | GS 36 | | 136 | 126 | M 30 | M 36 | 195 | 22336 CAKE4 1 740 000 H 2336 | GS 36 | | 85 | 75 | M 24 | M 30 | 87 | 23038 CAKE4 775 000 H 3038 | GS 38 | | 114 | 104 | M 24 | M 30 | 110 | 23138 CKE4 1 190 000 H 3138 | GS 38 | | 102 | 92 | M 30 | M 30 | 130 | 22238 CAKE4 1 140 000 H 3138 | GS 38 | | 142 | 132 | M 30 | M 36 | 210 | 22338 CAKE4 1 890 000 H 2338 | GS 38 | | 92 | 82 | M 24 | M 30 | 100 | 23040 CAKE4 940 000 H 3040 | GS 40 | | 122 | 112 | M 30 | M 30 | 130 | 23140 CKE4 1 360 000 H 3140 | GS 40 | | 108 | 98 | M 30 | M 30 | 155 | 22240 CAKE4 1 300 000 H 3140 | GS 40 | | 148 | 138 | M 36 | M 36 | 240 | 22340 CAKE4 2 000 000 H 2340 | GS 40 | | 100 | 90 | M 30 | M 30 | 130 | 23044 CAKE4 1 090 000 H 3044 | GS 44 | | 130 | 120 | M 30 | M 36 | 180 | 23144 CKE4 1 570 000 H 3144 | GS 44 | | 118 | 108 | M 30 | M 36 | 205 | 22244 CAKE4 1 570 000 H 3144 | GS 44 | | 155 | 145 | M 36 | M 36 | 315 | 22344 CAKE4 2 350 000 H 2344 | GS 44 | | 102 | 92 | M 30 | M 30 | 160 | 23048 CAKE4 1 160 000 H 3048 | GS 48 | | 138 | 128 | M 30 | M 36 | 210 | 23148 CKE4 1 790 000 H 3148 | GS 48 | | 130 | 120 | M 36 | M 36 | 240 | 22248 CAKE4 1 870 000 H 3148 | GS 48 | | 165 | 155 | M 36 | M 42 | 405 | 22348 CAKE4 2 600 000 H 2348 | GS 48 | | 114 | 104 | M 30 | M 36 | 210 | 23052 CAKE4 1 430 000 H 3052 | GS 52 | | 154 |
144 | M 36 | M 36 | 240 | 23152 CAKE4 2 160 000 H 3152 | GS 52 | | 140 | 130 | M 36 | M 36 | 315 | 22252 CAKE4 2 180 000 H 3152 | GS 52 | | 175 | 165 | M 36 | M 42 | 480 | 22352 CAKE4 3 100 000 H 2352 | GS 52 | | 116 | 106 | M 36 | M 36 | 240 | 23056 CAKE4 1 540 000 H 3056 | GS 56 | | 156 | 146 | M 36 | M 36 | 315 | 23156 CAKE4 2 230 000 H 3156 | GS 56 | | 140 | 130 | M 36 | M 42 | 390 | 22256 CAKE4 2 280 000 H 3156 | GS 56 | | 185 | 175 | M 42 | M 48 | 610 | 22356 CAKE4 3 500 000 H 2356 | GS 56 | **Note** (2) Applicable to the ZF Type with the same number. ^{2.} The plummer block bearing boxes listed above are provided with eye bolts. SD 30 S, SD 31 S, SD 5 Types Shaft Diameter 280 – 450 mm | Shaft | | | | | | | | Dimens | ione | | | | | |------------------------------|------------------------|--------------------------|------------|------------|----------------|----------|----------|------------|----------------|------------|------------|------------|------------| | Diameter | | nmer Block | | | | | | (mn | | | | | | | $\stackrel{ ext{(mm)}}{d_1}$ | ŭ | x Numbers (1) | D | H | J | N | N_1 | A | L | A_1 | H_1 | H_2 | J_1 | | u ₁ | Free-End | Fixed-End | H8 | h13 | J | 11 | 111 | 71 | L | 211 | 111 | 112 | J 1 | | 280 | SD 3060 S | SD 3060 SG | 460 | 280 | 770 | 43 | 59 | 360 | 920 | 350 | 85 | 550 | 210 | | | SD 3160 S
SD 560 | SD 3160 SG
SD 560 G | 500
540 | 300
325 | 830
890 | 50
50 | 67
67 | 390
410 | 990
1 060 | 380
400 | 100
100 | 590
640 | 230
250 | | | | | | | | | | | | | | | | | 300 | SD 3064 S | SD 3064 SG | 480 | 280 | 790 | 43 | 59 | 380 | 940 | 360 | 85 | 560 | 210 | | | SD 3164 S
SD 564 | SD 3164 SG
SD 564 G | 540
580 | 325
355 | 890
930 | 50
57 | 67
77 | 430
440 | 1 060
1 110 | 400
430 | 100
110 | 640
690 | 250
270 | | | | | | | | | | | | | | | | | 320 | SD 3068 S
SD 3168 S | SD 3068 SG
SD 3168 SG | 520
580 | 310
355 | 860
930 | 50
57 | 67
77 | 400
470 | 1 020
1 110 | 370 | 100
110 | 615 | 230
270 | | | 30 3 108 3 | SD 3108 SG | 580 | 355 | 930 | 57 | // | 470 | 1 110 | 450 | 110 | 690 | 270 | | 340 | SD 3072 S | SD 3072 SG | 540 | 325 | 890 | 50 | 67 | 410 | 1 060 | 390 | 100 | 640 | 250 | | | SD 3172 S | SD 3172 SG | 600 | 365 | 960 | 57 | 77 | 470 | 1 140 | 460 | 120 | 710 | 310 | | | | | | | | | | | | | | | | | 360 | SD 3076 S
SD 3176 S | SD 3076 SG
SD 3176 SG | 560
620 | 340
375 | 900
980 | 50
57 | 67
77 | 410
500 | 1 080
1 160 | 390
490 | 100
120 | 665
735 | 260
320 | | | | | | | | | | | | | | | | | 380 | SD 3080 S | SD 3080 SG | 600 | 365 | 960 | 57 | 77 | 430 | 1 140 | 420 | 120 | 710 | 270 | | | SD 3180 S | SD 3180 SG | 650 | 390 | 1 040 | 57 | 77 | 520 | 1 220 | 510 | 125 | 765 | 340 | | 400 | SD 3084 S | SD 3084 SG | 620 | 375 | 980 | 57 | 77 | 430 | 1 160 | 420 | 120 | 735 | 270 | | 400 | SD 3184 S | SD 3184 SG | 700 | 420 | | 57 | 77 | 560 | 1 250 | 550 | 135 | 830 | 380 | | | | | | | | | | | | | | | | | 410
430 | SD 3088 S
SD 3092 S | SD 3088 SG
SD 3092 SG | 650
680 | 390
405 | 1 040
1 040 | 57
57 | 77
77 | 460
470 | 1 220
1 220 | 450
460 | 125
130 | 765
790 | 280
310 | | 450 | SD 3096 S | SD 3096 SG | 700 | 415 | | 57
57 | 77 | 485 | 1 280 | 470 | 130 | 820 | 320 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter". **Remarks** 1. The threads for oil replenishing hole plugs are R 1/4 and those for drain plugs are R 3/8. | ď | ď | t | s | Mass
(kg) | Applicable Parts Spherical Roller Bearing Adapter | Oil
Seals (²) | |-----------------|-------------------|---------|---------|--------------|---|------------------| | g
H13 | g ₁
H13 | nominal | nominal | approx. | Numbers $egin{array}{ll} ext{Basic Dynamic Load} & ext{Numbers} \ ext{Ratings } C_{ ext{r}} \left(ext{N} ight) \end{array}$ | | | 128 | 118 | M 36 | M 36 | 300 | 23060 CAKE4 1 920 000 H 3060 | GS 60 | | 170 | 160 | M 36 | M 42 | 405 | 23160 CAKE4 2 670 000 H 3160 | GS 60 | | 150 | 140 | M 36 | M 42 | 465 | 22260 CAKE4 2 610 000 H 3160 | GS 60 | | 131 | 121 | M 36 | M 36 | 320 | 23064 CAKE4 1 960 000 H 3064 | GS 64 | | 186 | 176 | M 36 | M 42 | 480 | 23164 CAKE4 3 050 000 H 3164 | GS 64 | | 160 | 150 | M 42 | M 48 | 595 | 22264 CAKE4 2 990 000 H 3164 | GS 64 | | 143 | 133 | M 36 | M 42 | 410 | 23068 CAKE4 2 280 000 H 3068 | GS 68 | | 200 | 190 | M 42 | M 48 | 650 | 23168 CAKE4 3 600 000 H 3168 | GS 68 | | 144 | 134 | M 36 | M 42 | 465 | 23072 CAKE4 2 390 000 H 3072 | GS 72 | | 202 | 192 | M 42 | M 48 | 700 | 23172 CAKE4 3 800 000 H 3172 | GS 72 | | 145 | 135 | M 36 | M 42 | 480 | 23076 CAKE4 2 500 000 H 3076 | GS 76 | | 204 | 194 | M 42 | M 48 | 940 | 23176 CAKE4 4 000 000 H 3176 | GS 76 | | 158 | 148 | M 42 | M 48 | 690 | 23080 CAKE4 2 970 000 H 3080 | GS 80 | | 210 | 200 | M 42 | M 48 | 1 040 | 23180 CAKE4 4 150 000 H 3180 | GS 80 | | 160 | 150 | M 42 | M 48 | 770 | 23084 CAKE4 2 910 000 H 3084 | GS 84 | | 234 | 224 | M 48 | M 48 | 1 150 | 23184 CAKE4 5 000 000 H 3184 | GS 84 | | 167 | 157 | M 42 | M 48 | 870 | 23088 CAKE4 3 150 000 H 3088 | GS 88 | | 173 | 163 | M 48 | M 48 | 940 | 23092 CAKE4 3 450 000 H 3092 | GS 92 | | 175 | 165 | M 48 | M 48 | 1 040 | 23096 CAKE4 3 800 000 H 3096 | GS 96 | **Note** (2) Applicable to the ZF Type with the same number. ^{2.} The plummer block bearing boxes listed above are provided with eye bolts. # SG 5, SG 5-0 Types Shaft Diameter 50 – 180 mm | Shaft
Diameter | | ner Block
ing Box | | | | | | | nension
(mm) | S | | | | | | |-------------------|---------------------|----------------------------|----------------|-----------------|-----|----|-------|-----|-----------------|-------|-------|-------|-------|-------|-----------------| | d_1 | Num
Through Type | bers (1)
End Cover Type | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | J_1 | A_2 | g
H13 | | 50 | SG 511 | SG 511-0 | 100 | 70 | 210 | 18 | 23 | 125 | 255 | 70 | 23 | 137 | _ | 112.5 | 29 | | 55 | SG 512 | SG 512-0 | 110 | 80 | 230 | 18 | 23 | 145 | 290 | 80 | 25 | 160 | _ | 135 | 32 | | 60 | SG 513 | SG 513-0 | 120 | 83 | 230 | 18 | 23 | 130 | 290 | 70 | 25 | 155 | _ | 115 | 36 | | | | | | | | | | | | | | | | | | | 65 | SG 515 | SG 515-0 | 130 | 90 | 230 | 18 | 23 | 135 | 290 | 80 | 25 | 168 | _ | 120 | 36 | | 70 | SG 516 | SG 516-0 | 140 | 95 | 270 | 22 | 27 | 165 | 340 | 120 | 30 | 180 | 70 | 155 | 38 | | 75 | SG 517 | SG 517-0 | 150 | 100 | 280 | 22 | 27 | 170 | 350 | 120 | 30 | 190 | 70 | 160 | 41 | | | | | | | | | | | | | | | | | | | 80 | SG 518 | SG 518-0 | 160 | 100 | 290 | 22 | 27 | 180 | 360 | 120 | 35 | 200 | 70 | 170 | 45 | | 90 | SG 520 | SG 520-0 | 180 | 125 | 340 | 22 | 27 | 200 | 410 | 130 | 35 | 240 | 70 | 185 | 51 | | 100 | SG 522 | SG 522-0 | 200 | 140 | 380 | 22 | 27 | 210 | 460 | 130 | 40 | 265 | 70 | 190 | 58 | | | | | | | | | | | | | | | | | | | 110 | SG 524 | SG 524-0 | 215 | 140 | 380 | 22 | 27 | 230 | 460 | 130 | 45 | 275 | 80 | 200 | 63 | | 115 | SG 526 | SG 526-0 | 230 | 150 | 410 | 26 | 32 | 240 | 490 | 160 | 45 | 295 | 80 | 220 | 69 | | 125 | SG 528 | SG 528-0 | 250 | 160 | 435 | 26 | 32 | 245 | 520 | 160 | 50 | 310 | 80 | 220 | 73 | | | | | | | | | | | | | | | | | | | 135 | SG 530 | SG 530-0 | 270 | 160 | 465 | 26 | 32 | 265 | 550 | 170 | 50 | 330 | 100 | 240 | 78 | | 140 | SG 532 | SG 532-0 | 290 | 170 | 490 | 26 | 32 | 285 | 580 | 170 | 50 | 350 | 100 | 250 | 85 | | 150 | SG 534 | SG 534-0 | 310 | 180 | 550 | 33 | 42 | 300 | 640 | 180 | 55 | 380 | 100 | 265 | 91 | | | | | | | | | | | | | | | | | | | 160 | SG 536 | SG 536-0 | 320 | 190 | 600 | 33 | 42 | 325 | 690 | 190 | 55 | 400 | 110 | 285 | 91 | | 170 | SG 538 | SG 538-0 | 340 | 200 | 620 | 42 | 52 | 340 | 730 | 200 | 60 | 420 | 120 | 295 | 97 | | 180 | SG 540 | SG 540-0 | 360 | 210 | 635 | 42 | 52 | 350 | 750 | 210 | 60 | 445 | 130 | 310 | 103 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". **Remarks** 1. The threads for grease nipples are R 1/8 for SG518 and under, and R 1/4 for SG520 and over. | | | | ass | | | Applic | able | Parts | | | Oil | |--------------|---------------------|-----------------|-------------------|-----------|---------|-----------------------------|------|--------|---------------------------------|------|-----------| | | | app | (g)
orox. | Spherical | | • | Α | dapter | Locating Rir | ng | Seals (3) | | t
nominal | S
nominal | Through
Type | End Cover
Type | Numbers | | Dynamic Load $C_{ m r}$ (N) | Nu | ımbers | Nominal (Outside
Dia.×Width) | Q'ty | | | M 12 | M 16 | 8.5 | 7.5 | 22211 EAK | Œ4 ´ | 119 000 | Н | 311 X | SR 100×4 | 1 | GS 11 | | M 16 | M 16 | 15 | 14 | 22212 EAK | Œ4 ´ | 142 000 | Н | 312 X | SR 110×4 | 1 | GS 12 | | M 16 | M 16 | 9.5 | 8.5 | 22213 EAK | Œ4 ´ | 177 000 | Н | 313 X | SR 120×5 | 1 | GS 13 | | | | | | | | | | | | | | | M 16 | M 16 | 12.5 | 11 | 22215 EAK | Œ4 ´ | 190 000 | Н | 315 X | SR 130×5 | 1 | GS 15 | | M 20 | M 20 | 18.5 | 17 | 22216 EAK | Œ4 2 | 212 000 | Н | 316 X | SR 140×5 | 1 | GS 16 | | M 20 | M 20 | 21 | 20 | 22217 EAK | Œ4 2 | 250 000 | Н | 317 X | SR 150×5 | 1 | GS 17 | | | | | | | | | | | | | | | M 20 | M 20 | 25 | 23 | 22218 EAK | Œ4 2 | 289 000 | Н | 318 X | SR 160×5 | 1 | GS 18 | | M 20 | M 20 | 37 | 34 | 22220 EAK | Œ4 3 | 365 000 | Н | 320 X | SR 180×5 | 1 | GS 20 | | M 20 | M 20 | 50 | 45 | 22222 EAK | Œ4 4 | 485 000 | Н | 322 X | SR 200×5 | 1 | GS 22 | | | | | | | | | | | | | | | M 20 | M 20 | 59 | 53 | 22224 EAK | Œ4 5 | 550 000 | Н: | 3124 | SR 215×5 | 1 | GS 24 | | M 24 | M 24 | 67 | 62 | 22226 EAK | Œ4 6 | 655 000 | Н: | 3126 | SR 230×5 | 1 | GS 26 | | M 24 | M 24 | 73 | 68 | 22228 CDk | ΚΕ4 6 | 645
000 | Н: | 3128 | SR 250×5 | 1 | GS 28 | | | | | | | | | | | | | | | M 24 | M 24 | 90 | 80 | 22230 CDk | KE4 7 | 765 000 | Н: | 3130 | SR 270×5 | 1 | GS 30 | | M 24 | M 24 | 105 | 92 | 22232 CDk | KE4 9 | 910 000 | Н: | 3132 | SR 290×5 | 1 | GS 32 | | M 30 | M 30 | 130 | 115 | 22234 CDk | KE4 9 | 990 000 | Н: | 3134 | SR 310×5 | 1 | GS 34 | | | | | | | | | | | | | | | M 30 | M 30 | 155 | 135 | 22236 CDk | (E4 1 (| 020 000 | Н | 3136 | SR 320×5 | 1 | GS 36 | | M 36 | M 36 | 175 | 155 | 22238 CAK | Œ4 1 ´ | 140 000 | Н | 3138 | SR 340×5 | 1 | GS 38 | | M 36 | M 36 | 210 | 180 | 22240 CAK | Œ4 1 3 | 300 000 | Н | 3140 | SR 360×5 | 1 | GS 40 | | | | 1 | | | | | | | | | | **Notes** (2) The X dimension indicates the offset of the bearing center from the center of plummer block bearing box, and it is 1/2 of the locating ring width. B 316 B 317 ^{2.} Bearing boxes larger than SG520 are provided with eye bolts. ⁽³⁾ Applicable to the ZF Type with the same number. SN 2 C, SN 3 C Types Shaft Diameter 25 – 55 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | | Dimens
(mm | | | | | | | | |---------------------------|----------------------------|-------|-------|----------------|-----------------|-----|----|-------|---------------|-----|-------|-------|-------|-----------------|----------|---------------| | d | Bearing Box
Numbers (1) | d_1 | d_2 | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | tnominal | \$
nominal | | 25 | SN 205 C | 30 | 20 | 52 | 40 | 130 | 15 | 20 | 67 | 165 | 46 | 22 | 75 | 25 | M 8 | M 12 | | | SN 305 C | 30 | 20 | 62 | 50 | 150 | 15 | 20 | 80 | 185 | 52 | 22 | 90 | 34 | M 8 | M 12 | | 30 | SN 206 C | 35 | 25 | 62 | 50 | 150 | 15 | 20 | 77 | 185 | 52 | 22 | 90 | 30 | M 8 | M 12 | | | SN 306 C | 35 | 25 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 37 | M 10 | M 12 | | 35 | SN 207 C | 45 | 30 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 33 | M 10 | M 12 | | | SN 307 C | 45 | 30 | 80 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 110 | 41 | M 10 | M 12 | | 40 | SN 208 C | 50 | 35 | 80 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 110 | 33 | M 10 | M 12 | | | SN 308 C | 50 | 35 | 90 | 60 | 170 | 15 | 20 | 95 | 205 | 60 | 25 | 115 | 43 | M 10 | M 12 | | 45 | SN 209 C | 55 | 40 | 85 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 112 | 31 | M 10 | M 12 | | | SN 309 C | 55 | 40 | 100 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 28 | 130 | 46 | M 12 | M 16 | | 50 | SN 210 C | 60 | 45 | 90 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 115 | 33 | M 10 | M 12 | | | SN 310 C | 60 | 45 | 110 | 70 | 210 | 18 | 23 | 115 | 255 | 70 | 30 | 135 | 50 | M 12 | M 16 | | 55 | SN 211 C | 65 | 50 | 100 | 70 | 210 | 18 | 23 | 95 | 255 | 70 | 28 | 130 | 33 | M 12 | M 16 | | | SN 311 C | 65 | 50 | 120 | 80 | 230 | 18 | 23 | 120 | 275 | 80 | 30 | 150 | 53 | M 12 | M 16 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer+locating ring". Remarks The threads for plugs are R 1/8. Locating Ring | Mass | | | | Applicable | e Parts | | | | Oil Se | eals (3) | |---------|--------------|------------------------------------|--------------------------|------------------------------|----------------|------------------|---------------------------------|--------|---------|------------| | (kg) | Self-Alignin | ig Ball Bearing
B. D. L. R. (4) | | r Bearing
B. D. L. R. (4) | Nut | Lock-washer | Locating Ring | Olf- | Side d | Side d_2 | | approx. | Numbers | $C_{\rm r}$ (N) | Numbers | $C_{\rm r}$ (N) | Numbers | Numbers | Nominal (Outside
Dia.×Width) | Q'ty | 0.00 01 | 0.00 02 | | 1.1 | 1205
2205 | 12 200
12 400 |
22205 CE4 |
37 500 | AN 05
AN 05 | AW 05X
AW 05X | SR 52 × 5
SR 52 × 7 | 2
1 | GS 7 | GS 5 | | 1.6 | 1305
2305 | 18 200
24 900 | 21305 CDE4
— | 43 000
— | AN 05
AN 05 | AW 05X
AW 05X | SR 62 × 8.5
SR 62 × 10 | 2
1 | GS 7 | GS 5 | | 1.7 | 1206
2206 | 15 800
15 300 |
22206 CE4 |
50 000 | AN 06
AN 06 | AW 06X
AW 06X | SR 62 × 7
SR 62 × 10 | 2 | GS 8 | GS 6 | | 1.8 | 1306
2306 | 21 400
32 000 | 21306 CDE4
— | 55 000
— | AN 06
AN 06 | AW 06X
AW 06X | SR 72 × 9
SR 72 × 10 | 2
1 | GS 8 | GS 6 | | 1.9 | 1207
2207 | 15 900
21 700 |
22207 CE4 |
69 000 | AN 07
AN 07 | AW 07X
AW 07X | SR 72 × 8
SR 72 × 10 | 2 | GS 10 | GS 7 | | 2.6 | 1307
2307 | 25 300
40 000 | 21307 CDE4
— | 71 500
— | AN 07
AN 07 | AW 07X
AW 07X | SR 80×10
SR 80×10 | 2 | GS 10 | GS 7 | | 2.6 | 1208
2208 | 19 300
22 400 |
22208 EAE4 | —
90 500 | AN 08
AN 08 | X80 WA
X80 WA | SR 80 × 7.5
SR 80 × 10 | 2 | GS 11 | GS 8 | | 2.9 | 1308
2308 | 29 800
45 500 | 21308 EAE4
22308 EAE4 | 94 500
136 000 | AN 08
AN 08 | AW 08X
X80 WA | SR 90×10
SR 90×10 | 2 | GS 11 | GS 8 | | 2.8 | 1209
2209 | 22 000
23 300 |
22209 EAE4 |
94 500 | AN 09
AN 09 | AW 09X
AW 09X | SR 85 × 6
SR 85 × 8 | 2 | GS 12 | GS 9 | | 4.1 | 1309
2309 | 38 500
55 000 | 21309 EAE4
22309 EAE4 | 119 000
166 000 | | AW 09X
AW 09X | SR 100 × 10.5
SR 100 × 10 | 2
1 | GS 12 | GS 9 | | 3.0 | 1210
2210 | 22 800
23 400 |
22210 EAE4 |
99 000 | AN 10
AN 10 | AW 10X
AW 10X | SR 90 × 6.5
SR 90 × 10 | 2 | GS 13 | GS 10 | | 4.7 | 1310
2310 | 43 500
65 000 | 21310 EAE4
22310 EAE4 | 142 000
197 000 | | AW 10X
AW 10X | SR 110 × 11.5
SR 110 × 10 | 2
1 | GS 13 | GS 10 | | 4.5 | 1211
2211 | 26 900
26 700 |
22211 EAE4 |
119 000 | AN 11
AN 11 | AW 11X
AW 11X | SR 100 × 6
SR 100 × 8 | 2 | GS 15 | GS 11 | | 5.8 | 1311
2311 | 51 500
76 500 | 21311 EAE4
22311 EAE4 | 142 000
234 000 | | AW 11X
AW 11X | SR 120 × 12
SR 120 × 10 | 2
1 | GS 15 | GS 11 | **Notes** (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. ⁽³⁾ Applicable to the ZF Type with the same number. (4) B. D. L. R.: Basic Dynamic Load Ratings SN 2 C, SN 3 C Types Shaft Diameter 60 – 90 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | | Dimensi
(mm | | | | | | | | |---------------------------|----------------------------|-------|-------|----------------|-----------------|-----|----|-------|----------------|-----|-------|-------|-------|-----------------|----------|---------------------| | d | Bearing Box
Numbers (1) | d_1 | d_2 | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | tnominal | S
nominal | | 60 | SN 212 C | 70 | 55 | 110 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 30 | 135 | 38 | M 12 | M 16 | | | SN 312 C | 70 | 55 | 130 | 80 | 230 | 18 | 23 | 125 | 280 | 80 | 30 | 155 | 56 | M 12 | M 16 | | 65 | SN 213 C | 75 | 60 | 120 | 80 | 230 | 18 | 23 | 110 | 275 | 80 | 30 | 150 | 43 | M 12 | M 16 | | | SN 313 C | 75 | 60 | 140 | 95 | 260 | 22 | 27 | 130 | 315 | 90 | 32 | 175 | 58 | M 16 | M 20 | | 70 | SN 214 C | 80 | 65 | 125 | 80 | 230 | 18 | 23 | 115 | 275 | 80 | 30 | 155 | 44 | M 12 | M 16 | | | SN 314 C | 80 | 65 | 150 | 95 | 260 | 22 | 27 | 130 | 320 | 90 | 32 | 185 | 61 | M 16 | M 20 | | 75 | SN 215 C | 85 | 70 | 130 | 80 | 230 | 18 | 23 | 115 | 280 | 80 | 30 | 155 | 41 | M 12 | M 16 | | | SN 315 C | 85 | 70 | 160 | 100 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 195 | 65 | M 16 | M 20 | | 80 | SN 216 C | 90 | 75 | 140 | 95 | 260 | 22 | 27 | 120 | 315 | 90 | 32 | 175 | 43 | M 16 | M 20 | | | SN 316 C | 90 | 75 | 170 | 112 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 212 | 68 | M 16 | M 20 | | 85 | SN 217 C | 95 | 80 | 150 | 95 | 260 | 22 | 27 | 125 | 320 | 90 | 32 | 185 | 46 | M 16 | M 20 | | | SN 317 C | 95 | 80 | 180 | 112 | 320 | 26 | 32 | 155 | 380 | 110 | 40 | 218 | 70 | M 20 | M 24 | | 90 | SN 218 C | 100 | 85 | 160 | 100 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 195 | 62.4 | M 16 | M 20 | | | SN 318 C | 105 | 85 | 190 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 225 | 74 | M 20 | M 24 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer+locating ring". Remarks The threads for plugs are R 1/8 for SN316C, SN218C, and under and R 1/4 for SN317C and over. | Mass | | | | Applicable | e Parts | | | | Oil Se | als (3) | |-----------------|-------------------|---|-----------------------------|--|----------------|----------------------------|--|-------------|------------|------------| | (kg)
approx. | Numbers | ng Ball Bearing
B. D. L. R. $^{(4)}$
$C_{ m r}$ (N) | Spherical Rolle
Numbers | er Bearing
B. D. L. R. $^{(4)}$
$C_{ m r}$ (N) | Nut
Numbers | Lock-washer
Numbers | Locating Ring
Nominal (Outside
Dia.×Width) | Q'ty | Side d_1 | Side d_2 | | 5.0 | 1212
2212 | 30 500
34 000 |
22212 EAE4 | —
142 000 | AN 12
AN 12 | AW 12X
AW 12X | SR 110 × 8
SR 110 × 10 | 2 | GS 16 | GS 12 | | 6.5 | 1312
2312 | 57 500
88 500 | 21312 EAE4
22312 EAE4 | 190 000
271 000 | | AW 12X
AW 12X | SR 130 × 12.5
SR 130 × 10 | 2
1 | GS 16 | GS 12 | | 5.6 | 1213
2213 | 31 000
43 500 |
22213 EAE4 |
177 000 | AN 13
AN 13 | AW 13X
AW 13X | SR 120 × 10
SR 120 × 12 | 2 | GS 17 | GS 13 | | 8.7 | 1313
2313 | 62 500
97 000 | 21313 EAE4
22313 EAE4 | 212 000
300 000 | | AW 13X
AW 13X | SR 140 × 12.5
SR 140 × 10 | 2
1 | GS 17 | GS 13 | | 6.2 | 1214
2214 | 35 000
44 000 |
22214 EAE4 | _
180 000 | AN 14
AN 14 | AW 14X
AW 14X | SR 125 × 10
SR 125 × 13 | 2 | GS 18 | GS 15 | | 10 | 1314
2314 | 65 000
111 000 | 21314 EAE4
22314 EAE4 | | | AW 14X
AW 14X | SR 150 ×
13
SR 150 × 10 | 2 | GS 18 | GS 15 | | 7.0 | 1215
2215 | 39 000
44 500 |
22215 EAE4 |
190 000 | AN 15
AN 15 | AW 15X
AW 15X | SR 130 × 8
SR 130 × 10 | 2 | GS 19 | GS 16 | | 11.3 | 1315
2315 | 80 000
125 000 | 21315 EAE4
22315 EAE4 | | | AW 15X
AW 15X | SR 160 × 14
SR 160 × 10 | 2 | GS 19 | GS 16 | | 9.0 | 1216
2216 | 40 000
49 000 |
22216 EAE4 |
212 000 | AN 16
AN 16 | AW 16X
AW 16X | SR 140 × 8.5
SR 140 × 10 | 2 | GS 20 | GS 17 | | 12.6 | 1316
2316 | 89 000
130 000 | 21316 EAE4
22316 EAE4 | | | AW 16X
AW 16X | SR 170 × 14.5
SR 170 × 10 | 2
1 | GS 20 | GS 17 | | 10 | 1217
2217 | 49 500
58 500 |
22217 EAE4 |
250 000 | AN 17
AN 17 | AW 17X
AW 17X | SR 150 × 9
SR 150 × 10 | 2 | GS 21 | GS 18 | | 15 | 1317
2317 | 98 500
142 000 | 21317 EAE4
22317 EAE4 | | | AW 17X
AW 17X | SR 180 × 14.5
SR 180 × 10 | 2 | GS 21 | GS 18 | | 13 | 1218
2218
— | 57 500
70 500
— |
22218 EAE4
23218 CE4 |
289 000
340 000 | | AW 18X
AW 18X
AW 18X | SR 160 × 16.2
SR 160 × 11.2
SR 160 × 10 | 2
2
1 | GS 22 | GS 19 | | 19 | 1318
2318 | 117 000
154 000 | 21318 EAE4
22318 EAE4 | 330 000
535 000 | | AW 18X
AW 18X | SR 190 × 15.5
SR 190 × 10 | 2
1 | GS 23 | GS 19 | **Notes** (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. ⁽³⁾ Applicable to the ZF Type with the same number. (4) B. D. L. R.: Basic Dynamic Load Ratings SN 2 C, SN 3 C Types Shaft Diameter 95 – 160 mm | Shaft
Diameter | Plummer
Block | | | | | | | | Dimensi
(mm | | | | | | | | |-------------------|----------------------------|-------|-------|-----------------|-----------------|-----|----|-------|----------------|-----|-------|-------|-------|-----------------|----------|---------------------| | $d^{(mm)}$ | Bearing Box
Numbers (1) | d_1 | d_2 | $_{\rm H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | tnominal | S
nominal | | 95 | SN 219 C | 110 | 90 | 170 | 112 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 210 | 53 | M 16 | M 20 | | | SN 319 C | 110 | 90 | 200 | 125 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 245 | 77 | M 20 | M 24 | | 100 | SN 220 C | 115 | 95 | 180 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 218 | 70.3 | M 20 | M 24 | | | SN 320 C | 115 | 95 | 215 | 140 | 350 | 26 | 32 | 175 | 410 | 120 | 45 | 270 | 83 | M 20 | M 24 | | 110 | SN 222 C | 125 | 105 | 200 | 125 | 350 | 26 | 32 | 175 | 410 | 120 | 45 | 240 | 80 | M 20 | M 24 | | | SN 322 C | 125 | 105 | 240 | 150 | 390 | 28 | 36 | 190 | 450 | 130 | 50 | 300 | 90 | M 24 | M 24 | | 120 | SN 224 C | 135 | 115 | 215 | 140 | 350 | 26 | 32 | 185 | 410 | 120 | 45 | 270 | 86 | M 20 | M 24 | | | SN 324 C | 135 | 115 | 260 | 160 | 450 | 33 | 42 | 200 | 530 | 160 | 60 | 320 | 96 | M 24 | M 30 | | 130 | SN 226 C | 145 | 125 | 230 | 150 | 380 | 28 | 36 | 190 | 445 | 130 | 50 | 290 | 90 | M 24 | M 24 | | | SN 326 C | 150 | 125 | 280 | 170 | 470 | 33 | 42 | 210 | 550 | 160 | 60 | 340 | 103 | M 24 | M 30 | | 140 | SN 228 C | 155 | 135 | 250 | 150 | 420 | 33 | 42 | 205 | 500 | 150 | 50 | 305 | 98 | M 24 | M 30 | | | SN 328 C | 160 | 135 | 300 | 180 | 520 | 35 | 45 | 235 | 610 | 170 | 65 | 365 | 112 | M 30 | M 30 | | 150 | SN 230 C | 165 | 145 | 270 | 160 | 450 | 33 | 42 | 220 | 530 | 160 | 60 | 325 | 106 | M 24 | M 30 | | | SN 330 C | 170 | 145 | 320 | 190 | 560 | 35 | 45 | 245 | 650 | 180 | 65 | 385 | 118 | M 30 | M 30 | | 160 | SN 232 C | 175 | 150 | 290 | 170 | 470 | 33 | 42 | 235 | 550 | 160 | 60 | 345 | 114 | M 24 | M 30 | | | SN 332 C | 180 | 150 | 340 | 200 | 580 | 42 | 50 | 255 | 680 | 190 | 70 | 405 | 124 | M 30 | M 36 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer+locating ring". **Remarks** 1. The threads for plugs are R 1/8 for SN219C, and R 1/4 for SN319C and SN220C and over. 2. Bearing boxes larger than SN320C and SN224C are provided with eye bolts. | Mass | | | | Applicable | e Parts | | | | Oil Se | als (3) | |---------|-------------------|--------------------------------|-----------------------------|--|----------------|----------------------------|---|-------------|------------|------------| | (kg) | Self-Aligni | ng Ball Bearing | Spherical Ro | ler Bearing | Nut | Lock-washer | Locating Ring | | | | | approx. | Numbers | B. D. L. R. (4) $C_{ m r}$ (N) | Numbers | B. D. L. R. (4)
$C_{ m r}$ (N) | Numbers | Numbers | Nominal (Outside
Dia.×Width) | Q'ty | Side d_1 | Side d_2 | | 15 | 1219
2219 | 64 000
84 000 |
22219 EAE4 | 330 000 | AN 19
AN 19 | AW 19X
AW 19X | SR 170 × 10.5
SR 170 × 10 | 2
1 | GS 24 | GS 20 | | 22 | 1319
2319 | | 21319 CE4
22319 EAE4 | 345 000
590 000 | | AW 19X
AW 19X | SR 200 × 16
SR 200 × 10 | 2 | GS 24 | GS 20 | | 18.5 | 1220
2220
— | 69 500
94 500
— |
22220 EAE4
23220 CE4 | —
365 000
420 000 | | AW 20X
AW 20X
AW 20X | SR 180 × 18.1
SR 180 × 12.1
SR 180 × 10 | 2
2
1 | GS 26 | GS 21 | | 25 | 1320
2320 | | 21320 CE4
22320 EAE4 | 395 000
690 000 | | AW 20X
AW 20X | SR 215 × 18
SR 215 × 10 | 2 | GS 26 | GS 21 | | 20 | 1222
2222
— | 87 000
122 000
— |
22222 EAE4
23222 CE4 | —
485 000
515 000 | | AW 22X
AW 22X
AW 22X | SR 200 × 21
SR 200 × 13.5
SR 200 × 10 | 2
2
1 | GS 28 | GS 23 | | 32 | 1322
2322 | | 21322 CAE4
22322 EAE4 | | | AW 22X
AW 22X | SR 240 × 20
SR 240 × 10 | 2 | GS 28 | GS 23 | | 24.5 | _ | = | 22224 EAE4
23224 CE4 | 550 000
630 000 | | AW 24
AW 24 | SR 215 × 14
SR 215 × 10 | 2 | GS 30 | GS 26 | | 48 | _ | _ | 22324 EAE4 | 955 000 | AN 24 | AW 24 | SR 260 × 10 | 1 | GS 30 | GS 26 | | 30 | _ | | 22226 EAE4
23226 CE4 | 655 000
700 000 | | AW 26
AW 26 | SR 230 × 13
SR 230 × 10 | 2 | GS 33 | GS 28 | | 56 | _ | _ | 22326 CE4 | 995 000 | AN 26 | AW 26 | SR 280×10 | 1 | GS 34 | GS 28 | | 38 | _ | | 22228 CDE4
23228 CE4 | 645 000
835 000 | | AW 28
AW 28 | SR 250 × 15
SR 250 × 10 | 2 | GS 35 | GS 30 | | 72 | _ | _ | 22328 CE4 | 1 160 000 | AN 28 | AW 28 | SR 300 × 10 | 1 | GS 36 | GS 30 | | 46 | _ | | 22230 CDE4
23230 CE4 | 765 000
975 000 | | AW 30
AW 30 | SR 270 × 16.5
SR 270 × 10 | 2 | GS 37 | GS 33 | | 98 | _ | _ | 22330 CAE4 | 1 220 000 | AN 30 | AW 30 | SR 320 × 10 | 1 | GS 38 | GS 33 | | 50 | _ | = | 22232 CDE4
23232 CE4 | 910 000
1 100 000 | | AW 32
AW 32 | SR 290 × 17
SR 290 × 10 | 2 | GS 39 | GS 34 | | 115 | _ | _ | 22332 CAE4 | 1 360 000 | AN 32 | AW 32 | SR 340 × 10 | 1 | GS 40 | GS 34 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. (3) Applicable to the ZF Type with the same number. (4) B. D. L. R.: Basic Dynamic Load Ratings SD 2 C, SD 3 C Types Shaft Diameter 170 – 320 mm | Shaft
Diameter | | ner Block
ing Box | | | | | | C | imensi
(mm | | | | | | | |-----------------------------|-----------------|-----------------------|-------|-------|-----------------|-----------------|-----|----|---------------|------|-------|-------|-------|-------|-------| | $\stackrel{\text{(mm)}}{d}$ | Num
Free-End | bers (1)
Fixed-End | d_1 | d_2 | $_{\rm H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | J_1 | | 170 | SD 234 C | SD 234 CG | 190 | 160 | 310 | 180 | 510 | 36 | 46 | 270 | 620 | 250 | 60 | 360 | 140 | | | SD 334 C | SD 334 CG | 190 | 160 | 360 | 210 | 610 | 36 | 46 | 300 | 740 | 290 | 65 | 420 | 170 | | 180 | SD 236 C | SD 236 CG | 200 | 170 | 320 | 190 | 540 | 36 | 46 | 280 | 650 | 260 | 60 | 380 | 150 | | | | SD 336 CG | 200 | 170 | 380 | 225 | 640 | 43 | 59 | 320 | 780 | 310 | 70 | 450 | 180 | | | | | | | | | | | | | | | | | | | 190 | | SD 238 CG | 210 | 180 | 340 | 200 | 570 | 36 | 46 | 290 | 700 | 280 | 65 | 400 | 160 | | | SD 338 C | SD 338 CG | 210 | 180 | 400 | 240 | 680 | 43 | 59 | 330 | 820 | 320 | 70 | 475 | 190 | | 200 | SD 240 C | SD 240 CG | 220 | 190 | 360 | 210 | 610 | 36 | 46 | 300 | 740 | 290 | 65 | 420 | 170 | | | SD 340 C | SD 340 CG | 220 | 190 | 420 | 250 | 710 | 43 | 59 | 350 | 860 | 340 | 85 | 500 | 200 | | 220 | SD 244 C | SD 244 CG | 240 | 210 | 400 | 240 | 680 | 43 | 59 | 330 | 820 | 320 | 70 | 475 | 190 | | | SD 344 C | SD 344 CG | 240 | 210 | 460 | 280 | 770 | 43 | 59 | 360 | 920 | 350 | 85 | 550 | 210 | | 040 | 00.040.0 | 00.040.00 | 000 | 000 | 440 | 000 | 740 | 40 | F-0 | 0.40 | 000 | 000 | 0.5 | E4E | 000 | | 240 | | SD 248 CG | 260 | 230 | 440 | 260 | 740 | 43 | 59 | 340 | 880 | 330 | 85 | 515 | 200 | | | SD 348 C | SD 348 CG | 260 | 230 | 500 | 300 | 830 | 50 | 67 | 390 | 990 | 380 | 100 | 590 | 230 | | 260 | SD 252 C | SD 252 CG | 280 | 250 | 480 | 280 | 790 | 43 | 59 | 370 | 940 | 360 | 85 | 560 | 210 | | | SD 352 C | SD 352 CG | 280 | 250 | 540 | 325 | 890 | 50 | 67 | 410 | 1 060 | 400 | 100 | 640 | 250 | | 280 | SD 256 C | SD 256 CG | 300 | 260 | 500 | 300 | 830 | 50 | 67 | 390 | 990 | 380 | 100 | 590 | 230 | | | SD 356 C | SD 356 CG | 300 | 260 | 580 | 355 | 930 | 57 | 77 | 440 | 1 110 | 430 | 110 | 690 | 270 | | | | | | | | | | - | | | | | | | | | 300 | SD 260 C | SD 260 CG | 320 | 280 | 540 | 325 | 890 | 50 | 67 | 410 | 1 060 | 400 | 100 | 640 | 250 | | 320 | SD 264 C | SD 264 CG | 340 | 300 | 580 | 355 | 930 | 57 | 77 | 440 | 1 110 | 430 | 110 | 690 | 270 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer or stopper". | | | | | Mass | Applicable Parts | | | | Oil Se | als (²) |
-----------------|-------------------|----------|---------------------|---------|------------------|---|---------|-----------------------|------------|------------| | | | , | | (kg) | Spherical R | oller Bearing | Nut | Lock-washer | | O | | g
H13 | g 1
H13 | tnominal | S
nominal | approx. | Numbers | Basic Dynamic Load Ratings $C_{ m r}$ (N) | Numbers | or Stopper
Numbers | Side d_1 | Side d_2 | | 96 | 86 | M 24 | M 30 | 100 | 22234 CDE | 4 990 000 | AN 34 | AW 34 | GS 42 | GS 36 | | 130 | 120 | M 30 | M 30 | 160 | 22334 CAE | 4 1 580 000 | AN 34 | AW 34 | GS 42 | GS 36 | | 96 | 86 | M 24 | M 30 | 110 | 22236 CDE | 4 1 020 000 | AN 36 | AW 36 | GS 44 | GS 38 | | 136 | 126 | M 30 | M 36 | 195 | 22336 CAE | 4 1 740 000 | AN 36 | AW 36 | GS 44 | GS 38 | | 102 | 92 | M 30 | M 30 | 130 | 22238 CAE | 4 1 140 000 | AN 38 | AW 38 | GS 46 | GS 40 | | 142 | 132 | M 30 | M 36 | 210 | 22338 CAE | 4 1 890 000 | AN 38 | AW 38 | GS 46 | GS 40 | | 108 | 98 | M 30 | M 30 | 155 | 22240 CAE | 4 1 300 000 | AN 40 | AW 40 | GS 48 | GS 42 | | 148 | 138 | M 36 | M 36 | 240 | 22340 CAE | 4 2 000 000 | AN 40 | AW 40 | GS 48 | GS 42 | | 118 | 108 | M 30 | M 36 | 205 | 22244 CAE | 4 1 570 000 | AN 44 | AL 44 | GS 52 | GS 46 | | 155 | 145 | M 36 | M 36 | 315 | 22344 CAE | 4 2 350 000 | AN 44 | AL 44 | GS 52 | GS 46 | | 130 | 120 | M 36 | M 36 | 240 | 22248 CAE | 4 1 870 000 | AN 48 | AL 44 | GS 56 | GS 50 | | 165 | 155 | M 36 | M 42 | 405 | 22348 CAE | 4 2 600 000 | AN 48 | AL 44 | GS 56 | GS 50 | | 140 | 130 | M 36 | M 36 | 315 | 22252 CAE | 4 2 180 000 | AN 52 | AL 52 | GS 60 | GS 54 | | 175 | 165 | M 36 | M 42 | 480 | 22352 CAE | 4 3 100 000 | AN 52 | AL 52 | GS 60 | GS 54 | | 140 | 130 | M 36 | M 42 | 390 | 22256 CAE | 4 2 280 000 | AN 56 | AL 52 | GS 64 | GS 56 | | 185 | 175 | M 42 | M 48 | 610 | 22356 CAE | 4 3 500 000 | AN 56 | AL 52 | GS 64 | GS 56 | | 150 | 140 | M 36 | M 42 | 465 | 22260 CAE | 4 2 610 000 | AN 60 | AL 60 | GS 68 | GS 60 | | 160 | 150 | M 42 | M 48 | 595 | 22264 CAE | 4 2 990 000 | AN 64 | AL 64 | GS 72 | GS 64 | **Note** (2) Applicable to the ZF Type with the same number. **Remarks** 1. The threads for oil replenishing hole plugs are R 1/4 and those for drain plugs are R 3/8. ^{2.} The plummer block bearing boxes listed above are provided with eye bolts. # CYLINDRICAL ROLLER BEARINGS FOR SHEAVES # CYLINDRICAL ROLLER BEARINGS FOR SHEAVES | Open Type | Bore Diameter 50 – 560mm | B328 | |--------------------|--------------------------------|------| | Prelubricated Type | Bore Diameter 40 – 400mm ····· | B332 | # **DESIGN, TYPES, AND FEATURES** Cylindrical Roller Bearings for sheaves are specially designed thin-walled, broad-width, full-complement type double-row cylindrical roller bearings, but they are widely used also for general industrial machines running at low speed and under heavy loads. There are several series as shown in Table 1. Table 1 Series of Cylindrical Roller Bearings for Sheaves | Bearin | g Type | Fixed-End | Free-End | |---------------|-------------------------------------|--------------------|----------------------| | Open Type | Without Snap Ring | RS-48E4
RS-49E4 | RSF-48E4
RSF-49E4 | | Shielded Type | Without Snap Ring
With Snap Ring | RS-50
RS-50NR | _ | Table 3 Units : μm | Nominal | | Clear | ances | | |------------------|------|-------|-------|------| | Bore Dia. d (mm) | С | N | C | 3 | | over incl. | min. | max. | min. | max. | | 30 40 | 15 | 50 | 35 | 70 | | 40 50 | 20 | 55 | 40 | 75 | | 50 65 | 20 | 65 | 45 | 90 | | 65 80 | 25 | 75 | 55 | 105 | | 80 100 | 30 | 80 | 65 | 115 | | 100 120 | 35 | 90 | 80 | 135 | | 120 140 | 40 | 105 | 90 | 155 | | 140 160 | 50 | 115 | 100 | 165 | | 160 180 | 60 | 125 | 110 | 175 | | 180 200 | 65 | 135 | 125 | 195 | | 200 225 | 75 | 150 | 140 | 215 | | 225 250 | 90 | 165 | 155 | 230 | | 250 280 | 100 | 180 | 175 | 255 | | 280 315 | 110 | 195 | 195 | 280 | | 315 355 | 125 | 215 | 215 | 305 | | 355 400 | 140 | 235 | 245 | 340 | | 400 450 | 155 | 275 | 270 | 390 | | 450 500 | 180 | 300 | 300 | 420 | | | | | | | Since all are non-separable type bearings, the inner and outer rings cannot be separated, but the RSF type can be used as a free-end bearing. In this case, the permissible axial displacement is listed in the bearing tables. Since cylindrical roller bearings for sheaves are a double-row, full-complement type, they can withstand heavy shock loads and moments and have sufficient axial load capacity for use in sheaves. Since the shielded type is a kind of bearing unit, the number of parts surrounding the bearing can be reduced, so it allows for a simple compact The surface of these bearings is treated for rust prevention. **TOLERANCES AND** RUNNING ACCURACY...... Table 8.2 (Pages A60 to A63) ### RECOMMENDED FITS AND INTERNAL CLEARANGES When used with outer ring rotation for sheaves or wheels, the fit and radial internal clearance should conform to Table 2. Table 2 Fits and Internal Clearances for Cylindrical Roller Bearings for Sheaves | 0 | perating Conditions | Fitting between
Inner Ring and Shaft | Fitting between Outer
Ring and Housing Bore | Recommended
Internal Clearance | |------------------------|--------------------------------------|---|--|-----------------------------------| | | Thin walled housings and heavy loads | g6 or h6 | P7 | C3 | | Outer Ring
Rotation | Normal to heavy loads | g6 or h6 | N7 | C3 | | | Light or fluctuating loads | g6 or h6 | M7 | CN | The fits listed in Tables 9.2 (Page A84) and 9.4 (Page A85) apply when they are used with inner ring rotation in general applications, and the internal clearance should conform to Table 3. **B 326** B 327 RS-48 · RS-49 Types RSF-48 · RSF-49 Types Bore Diameter 50 - 220 mm Free-End Bearing RSF | | Boundary [| | S | (| Basic Loa | nd Ratings | gf} | Limiting Speeds
(min ⁻¹) | | |-----|------------|----|------------------|-------------|-------------------|------------|----------|---|-------| | d | D | В | r
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | C_{0r} | Grease | Oil | | 50 | 72 | 22 | 0.6 | 48 000 | 75 500 | 4 900 | 7 700 | 2 000 | 4 000 | | 60 | 85 | 25 | 1 | 68 500 | 118 000 | 6 950 | 12 000 | 1 600 | 3 200 | | 65 | 90 | 25 | 1 | 70 500 | 125 000 | 7 150 | 12 700 | 1 600 | 3 200 | | 70 | 100 | 30 | 1 | 102 000 | 168 000 | 10 400 | 17 200 | 1 400 | 2 800 | | 80 | 110 | 30 | 1 | 109 000 | 191 000 | 11 100 | 19 500 | 1 300 | 2 600 | | 90 | 125 | 35 | 1.1 | 147 000 | 268 000 | 15 000 | 27 400 | 1 100 | 2 200 | | 100 | 125 | 25 | 1 | 87 500 | 189 000 | 8 900 | 19 300 | 1 100 | 2 200 | | | 140 | 40 | 1.1 | 194 000 | 400 000 | 19 800 | 41 000 | 1 000 | 2 000 | | 105 | 130 | 25 | 1 | 89 000 | 196 000 | 9 100 | 19 900 | 1 000 | 2 000 | | | 145 | 40 | 1.1 | 199 000 | 420 000 | 20 300 | 43 000 | 950 | 1 900 | | 110 | 140 | 30 | 1 | 114 000 | 260 000 | 11 700 | 26 500 | 950 | 1 900 | | | 150 | 40 | 1.1 | 202 000 | 430 000 | 20 600 | 44 000 | 900 | 1 800 | | 120 | 150 | 30 | 1 | 119 000 | 283 000 | 12 200 | 28 900 | 900 | 1 800 | | | 165 | 45 | 1.1 | 226 000 | 480 000 | 23 100 | 49 000 | 800 | 1 600 | | 130 | 165 | 35 | 1.1 | 162 000 | 390 000 | 16 500 | 39 500 | 800 | 1 600 | | | 180 | 50 | 1.5 | 262 000 | 555 000 | 26 700 | 56 500 | 750 | 1 500 | | 140 | 175 | 35 | 1.1 | 167 000 | 415 000 | 17 000 | 42 500 | 750 | 1 500 | | | 190 | 50 | 1.5 | 272 000 | 595 000 | 27 700 | 60 500 | 710 | 1 400 | | 150 | 190 | 40 | 1.1 | 235 000 | 575 000 | 23 900 | 58 500 | 670 | 1 400 | | | 210 | 60 | 2 | 390 000 | 865 000 | 40 000 | 88 500 | 670 | 1 300 | | 160 | 200 | 40 | 1.1 | 243 000 | 615 000 | 24 800 | 63 000 | 630 | 1 300 | | | 220 | 60 | 2 | 410 000 | 930 000 | 41 500 | 95 000 | 600 | 1 200 | | 170 | 215 | 45 | 1.1 | 265 000 | 650 000 | 27 000 | 66 500 | 600 | 1 200 | | | 230 | 60 | 2 | 415 000 | 975 000 | 42 500 | 99 500 | 600 | 1 200 | | 180 | 225 | 45 | 1.1 | 272 000 | 685 000 | 27 800 | 70 000 | 560 | 1 100 | | | 250 | 69 | 2 | 495 000 | 1 130 000 | 50 500 | 115 000 | 530 | 1 100 | | 190 | 240 | 50 | 1.5 | 315 000 | 785 000 | 32 000 | 80 000 | 530 | 1 100 | | | 260 | 69 | 2 | 510 000 | 1 180 000 | 52 000 | 120 000 | 500 | 1 000 | | 200 | 250 | 50 | 1.5 | 320 000 | 825 000 | 33 000 | 84 000 | 500 | 1 000 | | | 280 | 80 | 2.1 | 665 000 | 1 500 000 | 68 000 | 153 000 | 480 | 950 | | 220 | 270 | 50 | 1.5 | 340 000 | 905 000 | 34 500 | 92 500 | 450 | 900 | | | 300 | 80 | 2.1 | 695 000 | 1 620 000 | 70 500 | 165 000 | 430 | 850 | Remarks Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. | Bearing N | umbers(1) | | nsions
im) | | butment and
Dimensions (n | nm) | Mass
(kg) | |-------------------|------------------|-------------------|-------------------|-----------------|------------------------------|----------------------------------|--------------| | Fixed-End Bearing | Free-End Bearing | $d_{ m OH}^{(2)}$ | Axial
Disp.(3) | $d_{ m a}$ min. | $D_{ m a}$ max. | $\pmb{\gamma}_{\mathrm{a}}$ max. | approx. | | RS-4910E4 | RSF-4910E4 | 2.5 | 1.5 | 54 | 68 | 0.6 | 0.30 | | RS-4912E4 | RSF-4912E4 | 2.5 | 1.5 | 65 | 80 | 1 | 0.46 | | RS-4913E4 | RSF-4913E4 | 2.5 | 2 | 70 | 85 | 1 | 0.50 | | RS-4914E4 | RSF-4914E4 | 3 | 2 | 75 | 95 | 1 | 0.79 | | RS-4916E4 | RSF-4916E4 | 3 | 2 | 85 | 105 | 1 | 0.89 | | RS-4918E4 | RSF-4918E4 | 3 | 2 | 96.5 | 118.5 | 1 | 1.35 | | RS-4820E4 | RSF-4820E4 | 2.5 | 1.5 | 105 | 120 | 1 | 0.74 | | RS-4920E4 | RSF-4920E4 | 3 | 2 | 106.5 | 133.5 | 1 | 1.97 | | RS-4821E4 | RSF-4821E4 | 2.5 | 1.5 | 110 | 125 | 1 | 0.77 | | RS-4921E4 | RSF-4921E4 | 3 | 2 | 111.5 | 138.5 | 1 | 2.05 | | RS-4822E4 | RSF-4822E4 | 3 | 2 | 115 | 135 | 1 | 1.09 | | RS-4922E4 | RSF-4922E4 | 3 | | 116.5 | 143.5 | 1 | 2.15 | | RS-4824E4 | RSF-4824E4 | 3 | 2 | 125 | 145 | 1 | 1.28 | |
RS-4924E4 | RSF-4924E4 | 4 | | 126.5 | 158.5 | 1 | 2.95 | | RS-4826E4 | RSF-4826E4 | 3 | 2 | 136.5 | 158.5 | 1 | 1.9 | | RS-4926E4 | RSF-4926E4 | 5 | 3.5 | 138 | 172 | 1.5 | 3.95 | | RS-4828E4 | RSF-4828E4 | 3 | 2 | 146.5 | 168.5 | 1 | 2.03 | | RS-4928E4 | RSF-4928E4 | 5 | 3.5 | 148 | 182 | 1.5 | 4.25 | | RS-4830E4 | RSF-4830E4 | 3 | 2 | 156.5 | 183.5 | 1 2 | 2.85 | | RS-4930E4 | RSF-4930E4 | 5 | 3.5 | 159 | 201 | | 6.65 | | RS-4832E4 | RSF-4832E4 | 3 | 2 | 166.5 | 193.5 | 1 2 | 3.05 | | RS-4932E4 | RSF-4932E4 | 5 | 3.5 | 169 | 211 | | 7.0 | | RS-4834E4 | RSF-4834E4 | 4 | 3 | 176.5 | 208.5 | 1 2 | 4.1 | | RS-4934E4 | RSF-4934E4 | 4 | 3.5 | 179 | 221 | | 7.35 | | RS-4836E4 | RSF-4836E4 | 4 | 3 | 186.5 | 218.5 | 1 | 4.3 | | RS-4936E4 | RSF-4936E4 | 6 | 4.5 | 189 | 241 | 2 | 10.7 | | RS-4838E4 | RSF-4838E4 | 5 | 3.5 | 198 | 232 | 1.5 | 5.65 | | RS-4938E4 | RSF-4938E4 | 6 | 4.5 | 199 | 251 | 2 | 11.1 | | RS-4840E4 | RSF-4840E4 | 5 | 3.5 | 208 | 242 | 1.5 | 5.95 | | RS-4940E4 | RSF-4940E4 | 7 | 5 | 211 | 269 | 2 | 15.7 | | RS-4844E4 | RSF-4844E4 | 5 | 3.5 | 228 | 262 | 1.5 | 6.45 | | RS-4944E4 | RSF-4944E4 | 7 | 5 | 231 | 289 | 2 | 17 | **Notes** (1) The suffix E4 indicates that the outer ring is provided with oil holes and oil groove. - (2) d_{OH} represents the oil hole diameter in the outer ring. - (3) Permissible axial displacement for free-end bearings. RS-48 · RS-49 Types RSF-48 · RSF-49 Types Bore Diameter 240 - 560 mm Fixed-End Bearing RS Free-End Bearing RSF | | | Dimension | S | (| Basic Lo | ad Ratings
{k | :gf} | Limiting Speeds
(min ⁻¹) | | |-----|-----|-----------|-----------|-------------|-------------------|------------------|-------------------|---|-----| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 240 | 300 | 60 | 2 | 495 000 | 1 340 000 | 50 500 | 137 000 | 430 | 850 | | | 320 | 80 | 2.1 | 725 000 | 1 770 000 | 74 000 | 181 000 | 400 | 800 | | 260 | 320 | 60 | 2 | 515 000 | 1 450 000 | 52 500 | 148 000 | 380 | 750 | | | 360 | 100 | 2.1 | 1 050 000 | 2 530 000 | 107 000 | 258 000 | 360 | 710 | | 280 | 350 | 69 | 2 | 610 000 | 1 690 000 | 62 500 | 173 000 | 340 | 710 | | | 380 | 100 | 2.1 | 1 090 000 | 2 720 000 | 111 000 | 277 000 | 340 | 670 | | 300 | 380 | 80 | 2.1 | 805 000 | 2 160 000 | 82 000 | 220 000 | 320 | 630 | | | 420 | 118 | 3 | 1 460 000 | 3 400 000 | 149 000 | 350 000 | 300 | 600 | | 320 | 400 | 80 | 2.1 | 835 000 | 2 310 000 | 85 000 | 236 000 | 300 | 600 | | | 440 | 118 | 3 | 1 500 000 | 3 600 000 | 153 000 | 365 000 | 280 | 560 | | 340 | 420 | 80 | 2.1 | 855 000 | 2 430 000 | 87 500 | 248 000 | 280 | 560 | | | 460 | 118 | 3 | 1 560 000 | 3 900 000 | 159 000 | 395 000 | 260 | 530 | | 360 | 440 | 80 | 2.1 | 885 000 | 2 580 000 | 90 000 | 264 000 | 260 | 530 | | | 480 | 118 | 3 | 1 600 000 | 4 050 000 | 163 000 | 415 000 | 260 | 500 | | 380 | 480 | 100 | 2.1 | 1 260 000 | 3 600 000 | 128 000 | 365 000 | 240 | 500 | | | 520 | 140 | 4 | 2 040 000 | 5 200 000 | 209 000 | 530 000 | 240 | 450 | | 400 | 500 | 100 | 2.1 | 1 290 000 | 3 750 000 | 132 000 | 385 000 | 240 | 480 | | | 540 | 140 | 4 | 2 100 000 | 5 450 000 | 214 000 | 555 000 | 220 | 450 | | 420 | 520 | 100 | 2.1 | 1 320 000 | 3 950 000 | 135 000 | 405 000 | 220 | 450 | | | 560 | 140 | 4 | 2 150 000 | 5 700 000 | 219 000 | 580 000 | 200 | 430 | | 440 | 540 | 100 | 2.1 | 1 350 000 | 4 150 000 | 138 000 | 420 000 | 200 | 430 | | | 600 | 160 | 4 | 2 840 000 | 7 350 000 | 289 000 | 750 000 | 190 | 380 | | 460 | 580 | 118 | 3 | 1 730 000 | 5 150 000 | 177 000 | 525 000 | 190 | 380 | | | 620 | 160 | 4 | 2 870 000 | 7 500 000 | 293 000 | 765 000 | 190 | 380 | | 480 | 600 | 118 | 3 | 1 760 000 | 5 300 000 | 180 000 | 545 000 | 190 | 380 | | | 650 | 170 | 5 | 3 200 000 | 8 500 000 | 325 000 | 865 000 | 180 | 360 | | 500 | 620 | 118 | 3 | 1 810 000 | 5 600 000 | 184 000 | 570 000 | 180 | 360 | | | 670 | 170 | 5 | 3 300 000 | 8 900 000 | 335 000 | 910 000 | 170 | 340 | | 530 | 710 | 180 | 5 | 3 400 000 | 9 200 000 | 350 000 | 935 000 | 160 | 320 | | 560 | 750 | 190 | 5 | 3 800 000 | 10 100 000 | 385 000 | 1 030 000 | 150 | 300 | | Bearing N | lumbers(1) | | nsions
im) | | Abutment and
Dimensions (r | mm) | Mass
(kg) | |-------------------|------------------|-------------------|-------------------|-----------------|--|-------------------------------|--------------| | Fixed-End Bearing | Free-End Bearing | $d_{ m OH}^{(2)}$ | Axial
Disp.(3) | $d_{ m a}$ min. | $\begin{array}{c} D_{\rm a} \\ {\rm max.} \end{array}$ | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | RS-4848E4 | RSF-4848E4 | 5 | 3.5 | 249 | 291 | 2 | 10.3 | | RS-4948E4 | RSF-4948E4 | 7 | 5 | 251 | 309 | 2 | 18.4 | | RS-4852E4 | RSF-4852E4 | 5 | 3.5 | 269 | 311 | 2 | 11 | | RS-4952E4 | RSF-4952E4 | 8 | 6 | 271 | 349 | 2 | 32 | | RS-4856E4 | RSF-4856E4 | 6 | 4.5 | 289 | 341 | 2 | 16 | | RS-4956E4 | RSF-4956E4 | 8 | 6 | 291 | 369 | 2 | 34 | | RS-4860E4 | RSF-4860E4 | 6 | 5 | 311 | 369 | 2 | 23 | | RS-4960E4 | RSF-4960E4 | 9 | 7 | 313 | 407 | 2.5 | 52 | | RS-4864E4 | RSF-4864E4 | 6 | 5 | 331 | 389 | 2 | 24.3 | | RS-4964E4 | RSF-4964E4 | 9 | 7 | 333 | 427 | 2.5 | 55 | | RS-4868E4 | RSF-4868E4 | 6 | 5 | 351 | 409 | 2 | 25.6 | | RS-4968E4 | RSF-4968E4 | 9 | 7 | 353 | 447 | 2.5 | 58 | | RS-4872E4 | RSF-4872E4 | 6 | 5 | 371 | 429 | 2 | 27 | | RS-4972E4 | RSF-4972E4 | 9 | 7 | 373 | 467 | 2.5 | 61 | | RS-4876E4 | RSF-4876E4 | 8 | 6 | 391 | 469 | 2 | 45.5 | | RS-4976E4 | RSF-4976E4 | 11 | 8 | 396 | 504 | 3 | 90.5 | | RS-4880E4 | RSF-4880E4 | 8 | 6 | 411 | 489 | 2 | 47.5 | | RS-4980E4 | RSF-4980E4 | 11 | 8 | 416 | 524 | 3 | 94.5 | | RS-4884E4 | RSF-4884E4 | 8 | 6 | 431 | 509 | 2 | 49.5 | | RS-4984E4 | RSF-4984E4 | 11 | 8 | 436 | 544 | 3 | 98.5 | | RS-4888E4 | RSF-4888E4 | 8 | 6 | 451 | 529 | 2 | 51.5 | | RS-4988E4 | RSF-4988E4 | 11 | 8 | 456 | 584 | 3 | 136 | | RS-4892E4 | RSF-4892E4 | 9 | 7 | 473 | 567 | 2.5 | 77.5 | | RS-4992E4 | RSF-4992E4 | 11 | 8 | 476 | 604 | 3 | 142 | | RS-4896E4 | RSF-4896E4 | 9 | 7 | 493 | 587 | 2.5 | 80.5 | | RS-4996E4 | RSF-4996E4 | 12 | 9 | 500 | 630 | 4 | 167 | | RS-48/500E4 | RSF-48/500E4 | 9 | 7 | 513 | 607 | 2.5 | 83.5 | | RS-49/500E4 | RSF-49/500E4 | 12 | 9 | 520 | 650 | 4 | 173 | | RS-49/530E4 | RSF-49/530E4 | 12 | 11 | 550 | 690 | 4 | 206 | | RS-49/560E4 | RSF-49/560E4 | 12 | 11 | 580 | 730 | 4 | 231 | **Notes** (1) The suffix E4 indicates that the outer ring is provided with oil holes and oil groove. - (2) d_{OH} represents the oil hole diameter in the outer ring. - (3) Permissible axial displacement for free-end bearings. # RS-50 Type (Prelubricated) Bore Diameter 40 – 400 mm Without Locating Ring With Locating Ring | | Е | Boundary I | Dimensior | 1S | | (| Basic Load I | • | gf} | Limiting
Speeds | |-----|-----|------------|-----------|-----------------------|------------------|-------------|-------------------|-------------|-------------------|--------------------------------| | d | D | В | С | $C_{ m x}^{(1)}$ min. | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | (min ⁻¹)
Grease | | 40 | 68 | 38 | 37 | 0.4 | 0.6 | 79 500 | 116 000 | 8 100 | 11 800 | 2 400 | | 45 | 75 | 40 | 39 | 0.4 | 0.6 | 95 500 | 144 000 | 9 750 | 14 700 | 2 200 | | 50 | 80 | 40 | 39 | 0.4 | 0.6 | 100 000 | 158 000 | 10 200 | 16 100 | 2 000 | | 55 | 90 | 46 | 45 | 0.6 | 0.6 | 118 000 | 193 000 | 12 100 | 19 700 | 1 800 | | 60 | 95 | 46 | 45 | 0.6 | 0.6 | 123 000 | 208 000 | 12 600 | 21 200 | 1 700 | | 65 | 100 | 46 | 45 | 0.6 | 0.6 | 128 000 | 224 000 | 13 100 | 22 800 | 1 600 | | 70 | 110 | 54 | 53 | 0.6 | 0.6 | 171 000 | 285 000 | 17 500 | 29 000 | 1 400 | | 75 | 115 | 54 | 53 | 0.6 | 0.6 | 179 000 | 305 000 | 18 200 | 31 500 | 1 400 | | 80 | 125 | 60 | 59 | 0.6 | 0.6 | 251 000 | 430 000 | 25 600 | 43 500 | 1 200 | | 85 | 130 | 60 | 59 | 0.6 | 0.6 | 256 000 | 445 000 | 26 200 | 45 500 | 1 200 | | 90 | 140 | 67 | 66 | 1 | 0.6 | 305 000 | 540 000 | 31 000 | 55 000 | 1 100 | | 95 | 145 | 67 | 66 | 1 | 0.6 | 310 000 | 565 000 | 32 000 | 57 500 | 1 100 | | 100 | 150 | 67 | 66 | 1 | 0.6 | 320 000 | 585 000 | 32 500 | 59 500 | 1 000 | | 110 | 170 | 80 | 79 | 1.1 | 1 | 385 000 | 695 000 | 39 000 | 71 000 | 900 | | 120 | 180 | 80 | 79 | 1.1 | 1 | 400 000 | 750 000 | 40 500 | 76 500 | 850 | | 130 | 200 | 95 | 94 | 1.1 | 1 | 535 000 | 1 000 000 | 54 500 | 102 000 | 750 | | 140 | 210 | 95 | 94 | 1.1 | 1 | 550 000 | 1 040 000 | 56 000 | 106 000 | 710 | | 150 | 225 | 100 | 99 | 1.3 | 1 | 620 000 | 1 210 000 | 63 500 | 124 000 | 670 | | 160 | 240 | 109 | 108 | 1.3 | 1.1 | 695 000 | 1 370 000 | 71 000 | 140 000 | 630 | | 170 | 260 | 122 | 121 | 1.3 | 1.1 | 860 000 | 1 680 000 | 88 000 | 171 000 | 600 | | 180 | 280 | 136 | 135 | 1.3 | 1.1 | 980 000 | 1 910 000 | 100 000 | 195 000 | 530 | | 190 | 290 | 136 | 135 | 1.3 | 1.1 | 1 120 000 | 2 230 000 | 114 000 | 227 000 | 500 | | 200 | 310 | 150 | 149 | 1.3 | 1.1 | 1 310 000 | 2 650 000 | 133 000 | 270 000 | 480 | | 220 | 340 | 160 | 159 | 1.5 | 1.1 | 1 510 000 | 3 100 000 | 154 000 | 320 000 | 430 | | 240 | 360 | 160 | 159 | 1.5 | 1.1 | 1 570 000 | 3 350 000 | 160 000 | 340 000 | 400 | | 260 | 400 | 190 | 189 | 2 | 1.5 | 2 130 000 | 4 500 000 | 217 000 | 460 000 | 360 | | 280 | 420 | 190 | 189 | 2 | 1.5 | 2 170 000 | 4 700 000 | 221 000 | 480 000 | 340 | | 300 | 460 | 218 | 216 | 2 | 1.5 | 2 670 000 | 5 850 000 | 272 000 | 600 000 | 300 | | 320 | 480 | 218 | 216 | 2 | 1.5 | 2 720 000 | 6 100 000 | 277 000 | 620 000 | 300 | | 340 | 520 | 243 | 241 | 2.1 | 2 | 3 350 000 | 7 550 000 | 345 000 | 770 000 | 260 | | 360 | 540 | 243 | 241 | 2.1 | 2 | 3 450 000 | 7 850 000 | 350 000 | 800 000 | 260 | | 380 | 560 | 243 | 241 | 2.1 | 2 | 3 550 000 | 8 400 000 | 365 000 | 855 000 | 240 | | 400 | 600 | 272 | 270 | 2.1 | 2 | 4 250 000 | 9 950 000 | 435 000 | 1 010 000 | 220 | Remarks 1. Good quality grease is prepacked
in bearings. 2. Grease can be supplied through oil holes in the inner rings. | Bearing N | Numbers | | | ing Ring
ions (mm) | | Oil Holes
(mm) | | ent and
isions (mm) | Mass
(kg) | |-------------------------------|---------------------|---------------|--------------|-----------------------|-------------------|-------------------|-------------------|---------------------------------|-------------------| | Without Locating Ring | With Locating Ring | C_1 | S | D_2 | f | $d_{ m OH}$ | $d_{ m a}$ min. | $D_{\mathbf{x}} \\ \text{min.}$ | approx. | | RS-5008 | RS-5008NR | 28 | 4.5 | 71.8 | 2 | 2.5 | 43.5 | 77.5 | 0.56 | | RS-5009 | RS-5009NR | 30 | 4.5 | 78.8 | 2 | 2.5 | 48.5 | 84.5 | 0.70 | | RS-5010 | RS-5010NR | 30 | 4.5 | 83.8 | 2 | 2.5 | 53.5 | 89.5 | 0.76 | | RS-5011 | RS-5011NR | 34 | 5.5 | 94.8 | 2.5 | 3 | 60 | 101 | 1.17 | | RS-5012 | RS-5012NR | 34 | 5.5 | 99.8 | 2.5 | 3 | 65 | 106 | 1.25 | | RS-5013 | RS-5013NR | 34 | 5.5 | 104.8 | 2.5 | 3 | 70 | 111 | 1.32 | | RS-5014 | RS-5014NR | 42 | 5.5 | 114.5 | 2.5 | 3 | 75 | 121 | 1.87 | | RS-5015 | RS-5015NR | 42 | 5.5 | 119.5 | 2.5 | 3 | 80 | 126 | 2.0 | | RS-5016 | RS-5016NR | 48 | 5.5 | 129.5 | 2.5 | 3 | 85 | 136 | 2.65 | | RS-5017 | RS-5017NR | 48 | 5.5 | 134.5 | 2.5 | 3 | 90 | 141 | 2.75 | | RS-5018 | RS-5018NR | 54 | 6 | 145.4 | 2.5 | 4 | 96 | 153.5 | 3.75 | | RS-5019 | RS-5019NR | 54 | 6 | 150.4 | 2.5 | 4 | 101 | 158.5 | 3.95 | | RS-5020 | RS-5020NR | 54 | 6 | 155.4 | 2.5 | 4 | 106 | 163.5 | 4.05 | | RS-5022 | RS-5022NR | 65 | 7 | 175.4 | 2.5 | 5 | 116.5 | 183.5 | 6.1 | | RS-5024 | RS-5024NR | 65 | 7 | 188 | 3 | 5 | 126.5 | 197 | 7.0 | | RS-5026 | RS-5026NR | 77 | 8.5 | 207 | 3 | 5 | 136.5 | 217 | 10.6 | | RS-5028 | RS-5028NR | 77 | 8.5 | 217 | 3 | 5 | 146.5 | 227 | 11.3 | | RS-5030 | RS-5030NR | 81 | 9 | 232 | 3 | 6 | 157 | 242 | 13.7 | | RS-5032 | RS-5032NR | 89 | 9.5 | 247 | 3 | 6 | 167 | 257 | 16.8 | | RS-5034 | RS-5034NR | 99 | 11 | 270 | 4 | 6 | 177 | 285 | 22.2 | | RS-5036 | RS-5036NR | 110 | 12.5 | 294 | 5 | 6 | 187 | 318 | 30 | | RS-5038 | RS-5038NR | 110 | 12.5 | 304 | 5 | 6 | 197 | 328 | 32 | | RS-5040 | RS-5040NR | 120 | 14.5 | 324 | 5 | 6 | 207 | 352 | 41 | | RS-5044 | RS-5044NR | 130 | 14.5 | 356 | 6 | 7 | 228.5 | 382 | 53 | | RS-5048 | RS-5048NR | 130 | 14.5 | 376 | 6 | 7 | 248.5 | 402 | 57 | | RS-5052 | RS-5052NR | 154 | 17.5 | 416 | 7 | 8 | 270 | 444 | 86 | | RS-5056 | RS-5056NR | 154 | 17.5 | 436 | 7 | 8 | 290 | 472 | 92 | | RS-5060
RS-5064
RS-5068 | RS-5060NR
—
— | 178
—
— | 19
—
— | 476
—
— | 7
— | 8
8
10 | 310
330
352 | 512
—
— | 130
135
185 | | RS-5072
RS-5076
RS-5080 | = | = | = | = | _
_
_ | 10
10
10 | 372
392
412 | _
_
_ | | **Remarks** 3. Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. ^{4.} For shield with outside diameter larger than 180mm, the above figure is different actual shape. For detail drawing, please contact NSK. # **ROLL-NECK BEARINGS** FOUR-ROW **TAPERED ROLLER BEARINGS** FOUR-ROW CYLINDRICAL ROLLER BEARINGS Bore Diameter 100 – 939.800mm B338 Bore Diameter 100 – 920mm B340 # **DESIGN, TYPES, AND FEATURES** Four-row tapered roller bearings and four-row cylindrical roller bearings used for rolling-mill roll necks are easy to service and check, and are designed to have the highest load rating possible for the limited space around roll necks. Also, they are designed for high speed to satisfy the demand for fast rolling. In addition to the open type (KV) four-row tapered roller bearings listed in this catalog, sealed-clean type four-row tapered roller bearings are also available. Please refer to "Large-Size Rolling Bearings" catalog (CAT. No. E125) or "Extra-Capacity Sealed-CleanTM Roll Neck Bearings" catalog (CAT. No. E1225) for more detailed information. ### **TOLERANCES AND RUNNING ACCURACY** | METRIC DESIGN FOUR-ROW TAPERED ROLLER BEARINGS | Table 8.3 (Pages A64 to A67) | |--|------------------------------| | INCH DESIGN FOUR-ROW TAPERED ROLLER BEARINGS | Table 8.4 (Pages A68 to A69) | | FOUR-ROW
CYLINDRICAL ROLLER BEARINGS | Table 8.2 (Pages A60 to A63) | ### RECOMMENDED FITS ### FOUR-ROW TAPERED ROLLER BEARINGS (CYLINDRICAL BORES) Tables 1 and 2 apply to metric series bearings and Tables 3 and 4 to inch design. Table 1 Fits of Metric Design Four-Row Tapered Roller Bearings with Roll Necks Units: µm | • | Nominal Bore
Diameter
d (mm) | | Bore Dia. | ane Mean
Deviation
d_{mp} | Tole | rance | Clear | ance | Wear
Limits | |---|------------------------------------|-------------------|-------------|--|-------------------------|-------------------------|-------------------|-------------------|-------------------| | | over | incl. | high | low | high | low | min. | max. | Ref. | | | 80
120
180 | 120
180
250 | 0
0
0 | -20
-25
-30 | - 120
- 150
- 175 | - 150
- 175
- 200 | 100
125
145 | 150
175
200 | 300
350
400 | | | 250
315
400 | 315
400
500 | 0
0
0 | -35
-40
-45 | -210
-240
-245 | -250
-300
-300 | 175
200
200 | 250
300
300 | 500
600
600 | | | 500
630 | 630
800 | 0 | - 50
- 75 | - 250
- 325 | -300
-400 | 200
250 | 300
400 | 600
800 | **B** 334 B 335 Table 2 Fits of Metric Design Four-Row Tapered Roller Bearings with Chock Units: µm | Diar | l Outside
neter
mm) | Outside D | lane Mean
ia. Deviation
$D_{ m mp}$ | | nce for
K Bore
neter | Clea | rance | Wear Limits of
Chock | |---------------------------------|---------------------------------|------------------|---|--------------------------------------|---------------------------------|----------------------------|--------------------------------|---------------------------------| | over | incl. | high | low | high | low | min. | max. | Ref. | | 120
150
180
250
315 | 150
180
250
315
400 | 0
0
0
0 | - 18
- 25
- 30
- 35
- 40 | + 57
+100
+120
+115
+110 | +25
+50
+50
+50
+50 | 25
50
50
50
50 | 75
125
150
150
150 | 150
250
300
300
300 | | 400
500
630
800 | 500
630
800
1 000 | 0
0
0
0 | - 45
- 50
- 75
- 100 | +105
+100
+150
+150 | +50
+50
+75
+75 | 50
50
75
75 | 150
150
225
250 | 300
300
450
500 | Table 3 Fits of Inch Design Four-Row Tapered Roller Bearings with Roll Necks Units: µm | N | Bore Diameter
Deviation ∆ds | | Tolerance for Roll
Neck Diameter | | Clearance | | Wear
Limits of | | | | |---|---|--|---|--------------------------------------|------------------|---|---|-------------------|---------------------------------|-----------------------------------| | (mm) | r
1/25.4 | incl
(mm) | 1/25.4 | high | low | high | low | min. | max. | Roll Neck
Ref. | | 152.400
203.200
304.800
609.600
914.400 | 6.0000
8.0000
12.0000
24.0000
36.0000 | 203.200
304.800
609.600
914.400 | 8.0000
12.0000
24.0000
36.0000 | + 25
+ 25
+ 51
+ 76
+102 | 0
0
0
0 | - 150
- 175
- 200
- 250
- 300 | - 175
- 200
- 250
- 325
- 400 | 175
200
250 | 200
225
301
401
502 | 400
450
600
800
1 000 | Table 4 Fits of Inch Design Four-Row Tapered Roller Bearings with Chocks Units: µm | Nominal Outside Diameter D | | | | | Outside Dia.
Deviation △Ds | | Tolerance for Chock
Bore Diameter | | rance | Wear
Limits of | |------------------------------|------------|-----------|---------|--------|-------------------------------|--------|--------------------------------------|---------|--------|-------------------| | ove | over incl. | | hiah | low | hiah | low | min. | max. | Chock | | | (mm) | 1/25.4 | (mm) | 1/25.4 | iligii | 10 00 | Illgii | IUW | 111111. | IIIax. | Ref. | | _ | _ | 304.800 | 12.0000 | + 25 | 0 | + 75 | + 50 | 25 | 75 | 150 | | 304.800 | 12.0000 | 609.600 | 24.0000 | + 51 | 0 | +150 | +100 | | 150 | 300 | | 609.600 | 24.0000 | 914.400 | 36.0000 | + 76 | 0 | +225 | +150 | 74 | 225 | 450 | | 914.400 | 36.0000 | 1 219.200 | 48.0000 | +102 | 0 | +300 | +200 | | 300 | 600 | | 1 219.200 | 48.0000 | 1 524.000 | 60.0000 | +127 | 0 | +375 | +250 | 123 | 375 | 750 | ### FOUR-ROW CYLINDRICAL ROLLER BEARINGS (CYLINDRICAL BORES) When they are used on backup rolls of four stage rolling mills, the tolerances for roll neck diameters are shown in Table 5. For the fitting between the bearing and chock bore, we recommend G7. For the fitting of four-row cylindrical roller bearings on the roll necks of other rolling mills, Table 9.2 (Page A84) and Table 9.4 (Page A85) usually apply. Table 5 Recommended Backup Roll Neck Tolerances Units: µm | Nominal Bo | • | Tolerances for
Roll Neck Diameter | | | | | |------------|-------|--------------------------------------|-------|--|--|--| | over | incl. | high | low | | | | | 280 | 355 | +0.165 | +0.13 | | | | | 355 | 400 | +0.19 | +0.15 | | | | | 400 | 450 | +0.22 | +0.17 | | | | | 450 | 500 | +0.25 | +0.19 | | | | | 500 | 560 | +0.28 | +0.21 | | | | | 560 | 630 | +0.32 | +0.25 | | | | | 630 | 710 | +0.35 | +0.27 | | | | | 710 | 800 | +0.39 | +0.31 | | | | | 800 | 900 | +0.44 | +0.35 | | | | | 900 | 1 000 | +0.48 | +0.39 | | | | ### **INTERNAL CLEARANCES** ### **FOUR-ROW TAPERED ROLLER BEARINGS** The radial internal clearances in four-row tapered roller bearings (cylindrical bores) used on rolling mill roll
necks with a loose fit are C2 or often smaller than C2. The NSK standard clearances for four-row tapered roller bearings for roll necks are shown in Table 6. Depending on the operating conditions, special radial clearance selection may become necessary, please contact NSK in such a case. The internal clearance in four-row tapered roller bearings is peadjusted for individual bearing sets, therefore it is necessary to use each part of a given set by observing mating marks when assembling them. ### FOUR-ROW CYLINDRICAL ROLLER BEARINGS Please contact NSK regarding internal clearance. Table 6 Standard Radial Internal Clearances in Four-Row Tapered Roller Bearings (Cylindrical Bores) Units: µm | Nominal Bo | | Radial Internal Clearance | | | | |------------|-------|---------------------------|------|--|--| | over | incl. | min. | max. | | | | 80 | 120 | 25 | 45 | | | | 120 | 180 | 30 | 50 | | | | 180 | 250 | 40 | 60 | | | | 250 | 315 | 50 | 70 | | | | 315 | 400 | 60 | 80 | | | | 400 | 500 | 70 | 90 | | | | 500 | 630 | 80 | 100 | | | | 630 | 800 | 100 | 120 | | | | 800 | 1 000 | 120 | 140 | | | B 336 B 337 ### Bore Diameter 100 - 939.800 mm | D : N . | Abuti | ment and Fill
(mn | | ons | Mass
(kg) | 2.4 | |-----------------|------------------|----------------------|---------------------------|----------------------|--------------|-----------------------| | Bearing Numbers | d_{a} | D_{a} | ${m \gamma}_{\rm a}$ max. | $ m \emph{Y}_b$ max. | approx. | Reference Numbers | | 100 KV 895 | 109 | 130 | 2 | 1.5 | 4.9 | _ | | 120 KV 895 | 131 | 158 | 2 | 2 | 8.5 | _ | | 135 KV 1802 | 145 | 169 | 1.5 | 2 | 11.1 | _ | | 150 KV 895 | 162 | 196 | 2 | 2 | 17 | — | | *165 KV 2252 | 178 | 209 | 3.3 | 0.8 | 20.2 | 46791D -720-721D | | *177 KV 2452 | 192 | 228 | 3.3 | 1.5 | 27.9 | 67791D -720-721D | | *190 KV 2651 | 204 | 246 | 3.3 | 1.5 | 32.8 | 67885D -820-820D | | *206 KV 2854 | 218 | 261 | 3.3 | 0.8 | 35.2 | 67986D -920-921D | | *228 KV 4051 | 264 | 367 | 3.3 | 3.3 | 152 | EE 529091D -157-158XD | | 240 KV 895 | 257 | 315 | 2.5 | 2.5 | 68.5 | | | *244 KV 3251 | 260 | 306 | 3.3 | 1.5 | 44.6 | LM 247748D -710-710D | | *254 KV 3551 | 272 | 335 | 3.3 | 1.5 | 85.6 | M 249748DW -710-710D | | *266 KV 3552 | 281 | 335 | 3.3 | 1.5 | 60.6 | LM 451349D -310-310D | | *279 KV 3951 | 302 | 363 | 6.4 | 1.5 | 100 | EE 135111D -155-156XD | | *304 KV 4353 | 329 | 407 | 4.8 | 3.3 | 133 | M 757448DW -410-410D | | *343 KV 4555 | 362 | 430 | 3.3 | 1.5 | 114 | LM 761649DW -610-610D | | *368 KV 5251 | 396 | 487 | 6.4 | 3.3 | 274 | HM 265049D -010-010D | | *384 KV 5452 | 417 | 510 | 6.4 | 3.3 | 309 | HM 266449D -410-410D | | *406 KV 5455 | 430 | 512 | 6.4 | 1.5 | 186 | LM 767749DW -710-710D | | *415 KV 5951 | 451 | 550 | 6.4 | 3.3 | 395 | M 268749D -710-710D | | *457 KV 5952 | 487 | 566 | 3.3 | 1.5 | 201 | L 770849DW -810-810D | | *479 KV 6751 | 520 | 635 | 6.4 | 3.3 | 595 | M 272749DW -710-710D | | *482 KV 6152 | 508 | 582 | 6.4 | 3.3 | 242 | LM 272249DW -210-210D | | 500 KV 895 | 544 | 657 | 5 | 5 | 654 | — | | *509 KV 6551 | 536 | 619 | 6.4 | 1.5 | 312 | | | *558 KV 7352 | 588 | 697 | 6.4 | 3.3 | 457 | LM 377449DW -410-410D | | *571 KV 8151 | 622 | 755 | 6.4 | 3.3 | 1 020 | M 278749DW -710-710D | | *609 KV 7851 A | 644 | 745 | 6.4 | 3.3 | 454 | EE 649241DW -310-311D | | 635 KV 9001 | 695 | 840 | 5 | 4 | 1 380 | — | | *685 KV 8751 | 730 | 833 | 6.4 | 3.3 | 543 | EE 655271DW -345-346D | | *711 KV 9151 | 770 | 870 | 6.4 | 3.3 | 549 | EE 755281DW -360-361D | | *749 KV 9951 | 804 | 940 | 6.4 | 3.3 | 1 310 | LM 283649DW -610-610D | | *762 KV 1051 | 828 | 996 | 12.7 | 5 | 2 100 | — | | *840 KV 1151 | 910 | 1 095 | 7 | 7 | 2 900 | | | *939 KV 1351 | 1 035 | 1 245 | 12.7 | 4.8 | 4 380 | LM 287849DW -810-810D | Note (*) Bearings marked * are inch design. Remarks 1. For four-row tapered roller bearings not listed above, please contact NSK. 2. Four-row tapered roller bearings are designed for specific applications, when using them, please contact NSK. B 338 B 339 # Bore Diameter 100 - 330 mm Figure 1 Figure 2 | | | Воц | ı ndary D
(mr | imensions
n) | | | 1) | Basic Load Rati | i ngs
{kg | ıf} | |-----|------------|------------|-------------------------|-----------------|----------------|----------------------------|--------------------|------------------------|---------------------|--------------------| | d | D | B, B_2 | C_2 | $F_{ m w}$ | ${m r}_1$ min. | $\emph{\textbf{r}}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | | 100 | 140 | 104 | 104 | 111 | 1.5 | 1.1 | 345 000 | 820 000 | 35 000 | 84 000 | | 145 | 225 | 156 | 156 | 169 | 2 | 2 | 835 000 | 1 820 000 | 85 000 | 185 000 | | 150 | 220
230 | 150
156 | 150
156 | 168
174 | 2
2 | 2 2 | 770 000
825 000 | 1 700 000
1 810 000 | 78 500
84 500 | 174 000
185 000 | | 160 | 230
230 | 130
168 | 130
168 | 178
180 | 2
2 | 2 2 | 665 000
895 000 | 1 340 000
2 200 000 | 68 000
91 500 | 136 000
225 000 | | 170 | 250 | 168 | 168 | 192 | 2.1 | 2.1 | 1 040 000 | 2 320 000 | 106 000 | 237 000 | | | 255 | 180 | 180 | 193 | 2.1 | 2.1 | 1 130 000 | 2 500 000 | 115 000 | 255 000 | | 180 | 250 | 156 | 156 | 200 | 2 | 2 | 880 000 | 2 230 000 | 89 500 | 227 000 | | | 260 | 168 | 168 | 202 | 2.1 | 2.1 | 990 000 | 2 300 000 | 101 000 | 235 000 | | 190 | 260 | 168 | 168 | 212 | 2 | 2 | 980 000 | 2 600 000 | 100 000 | 265 000 | | | 270 | 200 | 200 | 212 | 2.1 | 2.1 | 1 260 000 | 3 100 000 | 128 000 | 315 000 | | 200 | 280 | 200 | 200 | 224 | 2.1 | 2.1 | 1 210 000 | 3 200 000 | 123 000 | 325 000 | | | 290 | 192 | 192 | 226 | 2.1 | 2.1 | 1 220 000 | 3 000 000 | 124 000 | 305 000 | | 220 | 310 | 192 | 192 | 247 | 2.1 | 2.1 | 1 320 000 | 3 450 000 | 134 000 | 350 000 | | | 310 | 225 | 225 | 245 | 2.1 | 2.1 | 1 500 000 | 3 900 000 | 153 000 | 395 000 | | | 320 | 210 | 210 | 248 | 2.1 | 2.1 | 1 530 000 | 3 650 000 | 156 000 | 375 000 | | 230 | 330 | 206 | 206 | 260 | 2.1 | 2.1 | 1 510 000 | 3 900 000 | 154 000 | 395 000 | | | 340 | 260 | 260 | 261 | 3 | 3 | 2 050 000 | 5 100 000 | 209 000 | 520 000 | | 240 | 330 | 220 | 220 | 270 | 3 | 3 | 1 520 000 | 4 400 000 | 155 000 | 445 000 | | 250 | 350 | 220 | 220 | 278 | 3 | 3 | 1 660 000 | 4 200 000 | 169 000 | 430 000 | | 260 | 370 | 220 | 220 | 292 | 3 | 3 | 1 760 000 | 4 450 000 | 179 000 | 455 000 | | | 380 | 280 | 280 | 294 | 3 | 3 | 2 420 000 | 6 250 000 | 247 000 | 635 000 | | 270 | 380 | 230 | 230 | 298 | 2.1 | 2.1 | 2 000 000 | 5 050 000 | 204 000 | 515 000 | | 280 | 390 | 220 | 220 | 312 | 3 | 3 | 1 820 000 | 4 800 000 | 186 000 | 490 000 | | 300 | 400 | 300 | 300 | 328 | 2 | 2 | 2 330 000 | 6 900 000 | 238 000 | 700 000 | | | 420 | 240 | 240 | 332 | 3 | 3 | 2 280 000 | 5 750 000 | 233 000 | 585 000 | | 310 | 430 | 240 | 240 | 344.5 | 3 | 3 | 2 240 000 | 5 950 000 | 228 000 | 605 000 | | 320 | 450 | 240 | 240 | 355 | 3 | 3 | 2 320 000 | 5 750 000 | 237 000 | 585 000 | | 330 | 460 | 340 | 340 | 365 | 4 | 4 | 3 050 000 | 8 650 000 | 310 000 | 880 000 | | Bearing Numbers | Mass
(kg)
approx. | Figures | Reference
Bearing
Numbers | |-----------------|-------------------------|---------|---------------------------------| | 100 RV 1401 | 4 | 2 | | | 145 RV 2201 | 23 | 1 | 313924A | | 150 RV 2201 | 20 | 1 | — | | 150 RV 2302 | 23 | 1 | 313891A | | 160 RV 2301 | 16 | 1 | = | | 160 RV 2302 | 22 | 1 | | | 170 RV 2501 | 27 | 1 | = | | 170 RV 2503 | 31 | 1 | | | 180 RV 2501 | 23 | 1 | — | | 180 RV 2601 | 29 | 1 | 313812 | | 190 RV 2601 | 26 | 1 | — | | 190 RV 2701 | 36 | 1 | 314199B | | 200 RV 2801 | 38 | 1 | — | | 200 RV 2901 | 42 | 1 | 313811 | | 220 RV 3101 | 46 | 1 | _ | | 220 RV 3102 | 52 | 1 | _ | | 220 RV 3201 | 56 | 1 | _ | | 230 RV 3301 | 58 | 1 | 313824 | | 230 RV 3401 | 81 | 1 | — | | 240 RV 3301 | 57 | 1 | 313921 | | 250 RV 3501 | 64 | 1 | — | | 260 RV 3701 | 76 | 1 | 313823 | | 260 RV 3801 | 107 | 1 | — | | 270 RV 3801 | 83 | 1 | — | | 280 RV 3901 | 80 | 1 | 313822 | | 300 RV 4021 | 103 | 2 | _ | | 300 RV 4201 | 101 | 1 | | | 310 RV 4301 | 107 | 1 | = | | 320 RV 4502 | 116 | 1 | | | 330 RV 4601 | 174 | 1 | | Remarks 1. For four-row cylindrical roller bearings not listed above, please contact NSK. B 340 B 341 ^{2.} Four-row cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. # Bore Diameter 370 - 920 mm Figure 1 Figure 2 Figure 3 Figure 4 | | | | | | | | 5 | | | | |-------------------|-------------------------|-------------------|-------------------|------------------------|-----------------|-----------------|--|--|-------------------------------------|-------------------------------------| | | | Bo | undary D
mr) | imensions
n) | | | (1 | Basic Load
N) | | gf} | | d | D | B, B_2 | C_2 | $F_{ m w}$ | ${m r}_1$ min. | ${m r}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | | 370
380
390 | 540
540
550 | 400
400
400 | 400
400
400 | 415
424
434 | 4
5
5 | 4
5
5 | 4 500 000
4 300 000
4 400 000 | 12 000 000
12 000 000
12 400 000 | 440 000 | 1 230 000
1 220 000
1 260 000 | | 400
430
440 | 560
591
620 | 410
420
450 | 410
420
450 | 445
476
490 | 5
4
4 | 2
4
4 | 5 600 000
4 450 000
6 350 000 | 16 500 000
13 400 000
19 000 000 | 455 000 | 1 680 000
1 370 000
1 940 000 | | 450
460
480 | 630
670
680 | 450
500
500 | 450
500
500 | 500
522
534 | 4
6
5 | 4
6
5 | 5 950 000
7 650 000
7 700 000 | 17 500 000
22 700 000
23 100 000 | 780 000 | 1 780 000
2 320 000
2 360 000 | | 500 | 690
700
720 | 510
515
530 | 510
515
530 | 552
554
560 | 5
5
6 | 5
5
6 | 7 750 000
7 800 000
8 550 000 | 24 600 000
23 800 000
25 300 000 | 800 000 | 2 500 000
2 430 000
2 580 000 | |
520
530
570 | 735
780
815 | 535
570
594 | 535
570
594 | 574.5
601
628 | 5
6
6 | 5
6
6 | 8 900 000
10 100 000
11 700 000 | 26 300 000
29 200 000
33 500 000 | 910 000
1 030 000
1 190 000 | | | 610
650
690 | 870
920
980 | 660
690
715 | 660
690
715 | 680
723
767.5 | 6
7.5
7.5 | 6
7.5
7.5 | 13 200 000
14 200 000
15 300 000 | 41 500 000
45 000 000
48 000 000 | 1 340 000
1 450 000
1 560 000 | 4 600 000 | | 700 | 930
980 | 620
700 | 620
700 | 763
774 | 6
6 | 6
6 | 11 100 000
15 300 000 | 38 000 000
49 000 000 | 1 130 000
1 560 000 | | | 725
760
800 | 1 000
1 080
1 080 | 700
805
750 | 700
790
750 | 796
845
880 | 6
6
6 | 6
6
6 | 15 600 000
19 000 000
16 000 000 | 51 000 000
61 000 000
56 500 000 | 1 590 000
1 940 000
1 630 000 | 6 200 000 | | 820 | 1 160
1 100 | 840
745 | 840
720 | 911
892 | 7.5
6 | 7.5
3 | 21 900 000
16 900 000 | 71 500 000
58 500 000 | 2 230 000
1 720 000 | | | 850 | 1 180 | 850 | 850 | 940 | 7.5 | 7.5 | 21 100 000 | 72 000 000 | 2 150 000 | 7 350 000 | | 860 | 1 130
1 160 | 670
735 | 670
710 | 934
940 | 6
7.5 | 6
4 | 15 700 000
17 500 000 | 56 500 000
60 000 000 | 1 600 000
1 780 000 | | | 900
920 | 1 230
1 280 | 895
865 | 870
850 | 985
1 015 | 7.5
7.5 | 7.5
7.5 | 22 100 000
24 000 000 | 76 000 000
80 000 000 | 2 250 000
2 450 000 | | | Remarks | 1. | For four-row c | vlindrical | roller | bearings | not listed | above. | please c | ontact NSK. | |---------|----|----------------|------------|--------|----------|------------|--------|----------|-----------------| | Homan | | 101100110110 | ymmamour | 101101 | bournigo | not notou | abovo, | piodoc o | ontaot i toi t. | ^{2.} Four-row cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. | Bearing Numbers | Mass
(kg) | Figures | Reference
Bearing
Numbers | |-----------------|--------------|---------|---------------------------------| | 370 RV 5401 | 311 | 1 | _ | | 380 RV 5401 | 280 | 1(1) | _ | | 390 RV 5521 | 303 | 2(1) | _ | | 400 RV 5611 | 315 | 3 | 313015 | | 430 RV 5921 | 347 | 2 | — | | 440 RV 6221 | 430 | 2 | — | | 450 RV 6321 | 440 | 2 | _ | | 460 RV 6721 | 596 | 2(1) | _ | | 480 RV 6811 | 610 | 3 | _ | | 500 RV 6921 | 580 | 2(1) | _ | | 500 RV 7021 | 622 | 2(1) | _ | | 500 RV 7211 | 782 | 3 | _ | | 520 RV 7331 | 750 | 4 | _ | | 530 RV 7811 | 960 | 3 | _ | | 570 RV 8111 | 960 | 3 | _ | | 610 RV 8711 | 1 330 | 3 | _ | | 650 RV 9211 | 1 520 | 3 | _ | | 690 RV 9831 | 1 790 | 4 | _ | | 700 RV 9311 | 1 200 | 3 | _ | | 700 RV 9821 | 1 720 | 2(¹) | _ | | 725 RV 1011 | 1 670 | 3 | _ | | 760 RV 1032 | 2 430 | 4 | _ | | 800 RV 1032 | 2 050 | 4 | _ | | 820 RV 1121 | 2 900 | 2(¹) | _ | | 820 RV 1132 | 2 000 | 4 | | | 850 RV 1111 | 2 850 | 3 | _ | | 860 RV 1132 | 1 780 | 4 | _ | | 860 RV 1133 | 2 200 | 4 | | | 900 RV 1211 | 3 200 | 3 | _ | | 920 RV 1211 | 3 510 | 3 | | **Note** (1) Oil holes and oil grooves are provided at the center of outer rings. # **Axle Bearings Traction Motor Bearings Gear Unit Bearings** # **Railway Rolling Stock Bearings** Railway rolling stock bearings are important components of rolling stocks that require high The main bearings consist of axle bearings that are mounted at both ends of axle and support the entire weight of the rolling stock. Additionally, there are railway traction motor bearings that are used for the motor that drives the axle; and gear unit bearings that transfer the power from the motor to the axle. NSK has designed and manufactured specific bearings for these very applications. # **Types and Features** ### **Axle Bearings** - Axle bearings consist of the following types of bearings to meet operator demands for high-speed capability of rolling stock, weight reductions, and minimal maintenance and inspection requirements: - Cylindrical roller bearings with a thrust collar (oil bath lubrication, grease lubrication) Tapered roller bearings (oil bath lubrication) - > RCC Bearings (sealed-clean rotating end cap cylindrical roller bearings) (grease - > RCT bearings (sealed-clean rotating end cap tapered roller bearings) (grease lubrication) - NSK has been approved by AAR (Association of American Railroads). ### **Traction Motor Bearings** - Bearings for inverter controlled AC motors are speciality designed to meet high-speed specifications and requirements for ensuring dimensional stability. NSK recommends longlife grease for these bearings. - NSK offers the following bearings as a measure against electric erosion, which occurs when electric current is allowed to flow through the motor bearings: - > Ceramic-insulated bearings (ceramic-coated bearings) and PPS-insulated bearings - High capacity bearings also available for locomotive-type large traction motors ### **Gear Unit Bearings** - · These bearings are designed to meet high-speed specifications and offer excellent seizure - A reinforced cage has been adopted for these bearings. # Specified catalogs - Bearings for Railway Rolling Stock CAT, No. E1156 - Axle Bearings for Railway Rolling Stock (Cylindrical Roller Bearings) CAT. No. E1239 - Axle Bearings for Railway Rolling Stock (Spherical Roller Bearings) CAT. No. E1240 - Bearings for Traction Motors CAT. No. E1241 **B** 344 B 345 # STEEL BALLS AND ROLLERS | STEEL BALLS | | |--------------------------|--------------------------------------| | FOR BALL BEARINGS | Nominal Diameter 0.3 – 114.3mm B34 | | CYLINDRICAL ROLLERS | | | FOR ROLLER BEARINGS | Nominal Diameter 3 – 80mm····· B35 | | LONG CYLINDRICAL ROLLERS | | | FOR ROLLER BEARINGS | Nominal Diameter 5.5 – 15mm····· B35 | | NEEDLE ROLLERS | | | FOR BOLLER REARINGS | Nominal Diameter 1 – 5mm B35 | # Nominal Size, Basic Diameters, and Mass | Nominal Size | Basic Diameter $D_{ m w}$ (mm) | Mass (kg)
per
10000 pcs
approx. | Nominal Size | Basic Diameter $D_{ m w}$ (mm) | Mass (kg)
per
1000 pcs
approx. | Nominal Size | Basic Diameter $D_{ m w}$ (mm) | Mass (kg)
per
10 pcs
approx. | |-------------------------|--------------------------------|--|--|----------------------------------|---|---------------------|--------------------------------|---------------------------------------| | 0.3 mm | 0.30000 | 0.0011 | 3/8 | 9.52500 | 3.523 | 30 mm | 30.00000 | 1.101 | | 0.4 mm | 0.40000 | 0.0026 | 10 mm | 10.00000 | 4.076 | 1 3/16 | 30.16250 | 1.119 | | 0.5 mm | 0.50000 | 0.0051 | 13/32 | 10.31875 | 4.479 | 1 1/4 | 31.75000 | 1.305 | | 0.6 mm | 0.60000 | 0.0088 | 11 mm | 11.00000 | 5.425 | 32 mm | 32.00000 | 1.336 | | 0.025 | 0.63500 | 0.0104 | 7/16 | 11.11250 | 5.594 | 1 ⁵ /16 | 33.33750 | 1.510 | | 0.7 mm | 0.70000 | 0.0140 | 11.5 mm | 11.50000 | 6.199 | 34 mm | 34.00000 | 1.602 | | 1/32 | 0.79375 | 0.0204 | 15/32 | 11.90625 | 6.880 | 1 ³ /8 | 34.92500 | 1.736 | | 0.8 mm | 0.80000 | 0.0209 | 12 mm | 12.00000 | 7.044 | 35 mm | 35.00000 | 1.748 | | 1 mm | 1.00000 | 0.0408 | 1/2 | 12.70000 | 8.350 | 36 mm | 36.00000 | 1.902 | | 3/64 | 1.19062 | 0.0688 | 13 mm | 13.00000 | 8.955 | 1 ⁷ /16 | 36.51250 | 1.984 | | 1.2 mm | 1.20000 | 0.0704 | 17/32 | 13.49375 | 10.02 | 38 mm | 38.00000 | 2.237 | | 1.5 mm | 1.50000 | 0.1376 | 14 mm | 14.00000 | 11.19 | 1 ¹ /2 | 38.10000 | 2.254 | | 1/16 | 1.58750 | 0.1631 | 9/16 | 14.28750 | 11.89 | 1 9/16 | 39.68750 | 2.548 | | 5/64 | 1.98438 | 0.3185 | 15 mm | 15.00000 | 13.76 | 40 mm | 40.00000 | 2.609 | | 2 mm | 2.00000 | 0.3261 | 19/32 | 15.08125 | 13.98 | 1 5/8 | 41.27500 | 2.866 | | 3/32 | 2.38125 | 0.5504 | 5/8 | 15.87500 | 16.31 | 1 11/16 | 42.86250 | 3.210 | | 2.5 mm | 2.50000 | 0.6369 | 16 mm | 16.00000 | 16.70 | 1 3/4 | 44.45000 | 3.580 | | 7/64 | 2.77812 | 0.8740 | 21/32 | 16.66875 | 18.88 | 45 mm | 45.00000 | 3.714 | | 3 mm | 3.00000 | 1.101 | 17 mm | 17.00000 | 20.03 | 1 ¹³ /16 | 46.03750 | 3.977 | | 1/8 | 3.17500 | 1.305 | 11/16 | 17.46250 | 21.71 | 1 ⁷ /8 | 47.62500 | 4.403 | | 3.5 mm | 3.50000 | 1.748 | 18 mm | 18.00000 | 23.77 | 1 ¹⁵ /16 | 49.21250 | 4.858 | | 9/64 | 3.57188 | 1.858 | 23/32 | 18.25625 | 24.80 | 50 mm | 50.00000 | 5.095 | | 5/32 | 3.96875 | 2.548 | 19 mm | 19.00000 | 27.96 | 2 | 50.80000 | 5.344 | | 4 mm | 4.00000 | 2.609 | 3/4 | 19.05000 | 28.18 | 2 1/8 | 53.97500 | 6.410 | | 4.5 mm | 4.50000 | 3.714 | 25/32 | 19.84375 | 31.85 | 55 mm | 55.00000 | 6.782 | | 3/16 | 4.76250 | 4.403 | 20 mm | 20.00000 | 32.61 | 2 1/4 | 57.15000 | 7.609 | | 5 mm | 5.00000 | 5.095 | 13/16 | 20.63750 | 35.83 | 60 mm | 60.00000 | 8.805 | | 5.5 mm | 5.50000 | 6.782 | 21 mm | 21.00000 | 37.75 | 2 3/8 | 60.32500 | 8.948 | | 7/32 | 5.55625 | 7.016 | 27/32 | 21.43125 | 40.12 | 2 1/2 | 63.50000 | 10.44 | | 15/64 | 5.95312 | 8.600 | 22 mm | 22.00000 | 43.40 | 65 mm | 65.00000 | 11.19 | | 6 mm | 6.00000 | 8.805 | 7/8 | 22.22500 | 44.75 | 2 ⁵ /8 | 66.67500 | 12.08 | | 1/4 | 6.35000 | 10.44 | 23 mm | 23.00000 | 49.60 | 2 ³ /4 | 69.85000 | 13.89 | | 6.5 mm | 6.50000 | 11.19 | 29/32 | 23.01875 | 49.72 | 2 ⁷ /8 | 73.02500 | 15.87 | | 17/64 | 6.74688 | 12.52 | 15/16 | 23.81250 | 55.04 | 3 | 76.20000 | 18.04 | | 7 mm | 7.00000 | 13.98 | 24 mm | 24.00000 | 56.35 | 3 1/4 | 82.55000 | 22.93 | | 9/32 | 7.14375 | 14.86 | 31/32 | 24.60625 | 60.73 | 3 1/2 | 88.90000 | 28.64 | | 7.5 mm
5/16
8 mm | 7.50000
7.93750
8.00000 | 17.20
20.38
20.87 | 25 mm
1
26 mm | 25.00000
25.40000
26.00000 | 63.69
66.80
71.64 | 3 ^{3/4} 4 | 95.25000
101.60000 | 35.23
42.75 | | 8.5 mm
11/32
9 mm | 8.50000
8.73125
9.00000 | 25.03
27.13
29.72 | 1 ¹ /16
28 mm
1 ¹ /8 | 26.98750
28.00000
28.57500 | 80.12
89.48
95.11 | | | | # Application, Nominal Size, Tolerances, Roughness, and Gauges Units : µm | |
Tolerances(1) | | | | Gauges | | | | |-------|------------------------------|-----------------|---|---|-------------------|---|--|--| | Class | Variation
in Dia.
max. | Sphericity max. | $\begin{array}{c} \text{Roughness} \\ R_a \\ \text{max.} \end{array}$ | Diameter
Difference
per Lot
max. | Gauge
Interval | Gauge | | | | G 3 | 0.08 | 0.08 | 0.010 | 0.13 | 0.5 | - 5, ·····, - 0.5, 0, + 0.5, ·····, + 5 | | | | G 5 | 0.13 | 0.13 | 0.014 | 0.25 | 1 | - 5, ·····, - 1 , 0, + 1 , ·····, + 5 | | | | G 10 | 0.25 | 0.25 | 0.020 | 0.5 | 1 | - 9, ·····, - 1 , 0, + 1 , ·····, + 9 | | | | G 16 | 0.4 | 0.4 | 0.025 | 0.8 | 2 | -10,, - 2 , 0, + 2 ,, +10 | | | | G 20 | 0.5 | 0.5 | 0.032 | 1 | 2 | -10,, - 2 , 0, + 2 ,, +10 | | | | G 24 | 0.6 | 0.6 | 0.040 | 1.2 | 2 | -12, ·····, - 2 , 0, + 2 , ·····, +12 | | | | G 28 | 0.7 | 0.7 | 0.050 | 1.4 | 2 | -12, ·····, - 2 , 0, + 2 , ·····, +12 | | | | G 40 | 1 | 1 | 0.060 | 2 | 4 | -16, ·····, - 4 , 0, + 4 , ·····, +16 | | | | G 60 | 1.5 | 1.5 | 0.080 | 3 | 6 | -18, ·····, - 6 , 0, + 6 , ·····, +18 | | | | G100 | 2.5 | 2.5 | 0.100 | 5 | 10 | -40, ·····, -10 , 0, +10 , ·····, +40 | | | | G200 | 5 | 5 | 0.150 | 10 | 15 | −60, ······, −15 , 0, +15 , ······, +60 | | | Note (1) The values do not take into account surface defects; hence measurement shall be taken outside such defects. # Hardness | | Hardness | | | | | |---------------|----------|------------|--|--|--| | Nominal Size | HV | HRC | | | | | 0.3 mm ~ 3 mm | 772~900 | (63~67)(1) | | | | | 1/8 ~ 30 mm | _ | 62~67 | | | | | 1 3/16 ~ 4 | _ | 61~67 | | | | Note (1) Values in () are converted values for reference. Remarks A column blue letter of Nominal Size is inch dimensions. ### **Tolerances for Cylindrical Roller Chamfers** Units: mm | min. max. 0.1 0.3 0.2 0.5 0.3 0.8 0.5 1.2 0.6 1.5 0.7 1.7 1 2.2(1) | | Units : mm | |---|---------------------------------|------------| | 0.2 0.5
0.3 0.8
0.5 1.2
0.6 1.5
0.7 1.7 | min. | max. | | 1.5 | 0.2
0.3
0.5
0.6
0.7 | 0.5
0.8 | Note (1) If $D_{\rm W}$ exceeds 40 mm, r (max.) is 2.7 mm. | - 1 | ln | ite | mr | |-----|-----|-----|-------| | C | ,,, | ιιs | 11111 | 0.31 0.465 0.44 0.68 0.60 0.85 0.81 1.1 1.04 1.57 1.33 2.04 1.66 2.38 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 | Inits | mn | |-------|----| | | | | | | | | OTILS . IIIII | |--------------|------------|------------|-----------|-------------------------------------| | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r
min. | Mass (kg)
per 100 pcs
approx. | | 3 × 3 | 3 | 3 | 0.1 | 0.016 | | 3 × 5 | 3 | 5 | 0.1 | 0.027 | | 3.5× 5 | 3.5 | 5 | 0.2 | 0.037 | | 4 × 4 | 4 | 4 | 0.2 | 0.039 | | 4 × 6 | 4 | 6 | 0.2 | 0.058 | | 4 × 8 | 4 | 8 | 0.2 | 0.078 | | 4.5× 4.5 | 4.5 | 4.5 | 0.2 | 0.055 | | 4.5× 6 | 4.5 | 6 | 0.2 | 0.073 | | 5 × 5 | 5 | 5 | 0.2 | 0.075 | | 5 × 8 | 5 | 8 | 0.2 | 0.121 | | 5 ×10 | 5 | 10 | 0.2 | 0.152 | | 5.5× 5.5 | 5.5 | 5.5 | 0.2 | 0.10 | | 5.5× 8 | 5.5 | 8 | 0.2 | 0.146 | | 6 × 6 | 6 | 6 | 0.2 | 0.13 | | 6 × 8 | 6 | 8 | 0.2 | 0.178 | | 6 ×12 | 6 | 12 | 0.2 | 0.261 | | 6.5× 6.5 | 6.5 | 6.5 | 0.3 | 0.166 | | 6.5× 9 | 6.5 | 9 | 0.3 | 0.23 | | 7 × 7 | 7 | 7 | 0.3 | 0.206 | | 7 ×10 | 7 | 10 | 0.3 | 0.296 | | 7 ×14 | 7 | 14 | 0.3 | 0.415 | | 7.5× 7.5 | 7.5 | 7.5 | 0.3 | 0.254 | | 7.5×11 | 7.5 | 11 | 0.3 | 0.375 | 8 × 8 8 ×12 9 × 9 9 ×14 10 ×10 10 ×14 11 ×11 11 ×15 12 ×12 12 ×18 13 ×13 13 ×20 14 ×14 14 ×20 8 9 10 10 11 11 12 12 13 13 14 14 8 12 9 14 10 14 11 15 12 18 13 20 14 20 | 15 × 15 15 15 22 0.5 3.0 16 × 16 16 16 0.5 2.48 16 × 24 16 24 0.5 3.75 17 × 17 17 17 0.5 2.97 17 × 24 17 24 0.5 4.2 18 × 18 18 18 0.5 3.55 19 × 19 19 19 0.6 4.16 19 × 28 19 28 0.6 6.1 20 × 20 20 20 0.6 4.85 20 × 30 20 30 0.6 5.6 21 × 21 21 21 0.6 6.4 21 × 30 21 30 0.6 8.0 22 × 22 22 22 0.6 6.4 23 × 23 23 23 23 0.6 7.3 23 × 34 23 24 0.6 11.2 24 × 24 24 24 26 0.7 9.5 25 × 25 25 25 0.7 9.5 | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r
min. | Mass (kg)
per 100 pc:
approx. | |---|---|--|--|---|---| | | 15 × 22
16 × 16
16 × 24
17 × 17
17 × 24
18 × 18
18 × 26
19 × 19
19 × 28
20 × 30
21 × 21
21 × 30
22 × 22
22 × 34
23 × 34
24 × 24
24 × 36
25 × 25
25 × 36
26 × 40
28 × 28
28 × 44
30 × 30
30 × 48
32 × 52
34 × 34
30 × 30
30 × 48
32 × 52
34 × 34
36 × 58
37 × 52
38 × 36
39 × 48
30 × 30
30 × 48
31 × 55
32 × 52
34 × 34
34 × 55
36 × 36
36 × 58
38 × 38
38 × 62
40 × 40 | 16
16
17
17
18
19
20
21
21
22
23
24
25
26
28
30
30
32
34
36
36
38
40 | 16
24
17
24
18
26
19
28
20
30
21
30
22
34
23
34
24
36
25
36
26
40
48
32
34
34
48
35
36
48
36
48
36
48
36
48
36
48
36
48
36
48
36
48
36
48
36
48
36
36
48
36
36
48
36
48
36
36
36
36
36
36
36
36
36
36
36
36
36 | 0.5
0.5
0.5
0.5
0.5
0.6
0.6
0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
1
1
1
1
1 | 3.0
2.48
3.75
2.97
4.2
3.55
5.1
4.16
6.1
4.85
7.3
5.6
8.0
6.4
10
7.4
11.2
8.4
12.6
9.5
13.7
10.7
10.7
10.7
10.3
21
10.3
21
21
21
21
21
21
21
21
21
21
21
21
21 | Units: mm | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r
min. | Mass (kg)
per 100 pcs
approx. | |-----------------------|------------|------------|-----------|-------------------------------------| | 42 × 42 | 42 | 42 | 1 | 45 | | 45 × 45 | 45 | 45 | 1 | 55.5 | | 48 × 48 | 48 | 48 | 1 | 67 | | 50 × 50 | 50 | 50 | 1 | 76 | | 52 × 52 | 52 | 52 | 1.5 | 85 | | 54 × 54 | 54 | 54 | 1.5 | 95.5 | | 56 × 56 | 56 | 56 | 1.5 | 107 | | 60 × 60 | 60 | 60 | 1.5 | 131 | | 64 × 64 | 64 | 64 | 1.5 | 159 | | 68 × 68 | 68 | 68 | 1.5 | 191 | | 75 × 75 | 75 | 75 | 2 | 256 | | 80 × 80 | 80 | 80 | 2 | 310 | ### **Accuracy of Cylindrical Rollers** Units : µm | Class | |) _w
m) | Out-of-
Roundness
(1) | Single Plane Mean
Roller Diameter
Variation(2) | Lot Diameter
Variation(1) | Len | gth Deviation $^{(3)}$ $\Delta L_{ m Ws}$ | Roller Gauge
Lot Length
Variation | End Face
Runout | |-------|------|----------------------|-----------------------------|--|------------------------------|------|---|---|--------------------| | | over | incl. | ΔR max. | $V\!D_{ m Wmp}$ max. | $V\!D_{ m WL}$ max. | high | low(4) | $VL_{ m WL}$ max. | $S_{ m W}$ max. | | 1 | 3 | 18 | 0.5 | 0.8 | 1 | +10 | -[(IT9)-10] | 5 | 3 | | 1A | 3 | 30 | 0.7 | 1 | 1.5 | +10 | -[(IT9)-10] | 7 | 5 | | 2 | 3 | 50 | 1 | 1.5 | 2 | +10 | -[(IT9)-10] | 10 | 6 | | 2A | 10 | 80 | 1.3 | 2 | 2.5 | +10 | -[(IT9)-10] | 13 | 8 | | 3 | 18 | 80 | 1.5 | 3 | 3 | +10 | -[(IT9)-10] | 15 | 10 | | 5 | 30 | 80 | 2.5 | 4 | 5 | +10 | -[(IT9)-10] | 25 | 15 | - (1) Applicable to roller center (length direction). - (2) Applicable to cylindrical outside surface. - $\binom{3}{4}$ To find the IT9 standard tolerance according to the $L_{\rm W}$ size classification, refer to the IT9 column of the
Appendix Table 11 - (4) The value for low of length deviation is subtracted 10 μm from the value of the standard tolerance for each roller length. B 350 B 351 Remarks The figure shows an example of a flat-end long cylindrical roller. 1.08 1.38 | | | | | Units : mm | |---|------------------|------------------------------|---------------------------------|--------------------------------------| | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r $(^1)$ min. | Mass (kg)
per 100 pcs
approx. | | 5.5×18 | 5.5 | 18 | 0.2 | 0.333 | | 5.5×22.4 | 5.5 | 22.4 | 0.2 | 0.414 | | 5.5×28 | 5.5 | 28 | 0.2 | 0.518 | | 6 ×20
6 ×25
6 ×31.5
6 ×40
6 ×50 | 6
6
6
6 | 20
25
31.5
40
50 | 0.2
0.2
0.2
0.2
0.2 | 0.44
0.55
0.693
0.88
1.1 | | 6.5×20 | 6.5 | 20 | 0.3 | 0.516 | | 6.5×25 | 6.5 | 25 | 0.3 | 0.645 | | 6.5×31.5 | 6.5 | 31.5 | 0.3 | 0.813 | | 7 ×22.4 | 7 | 22.4 | 0.3 | 0.671 | | 7 ×28 | 7 | 28 | 0.3 | 0.838 | | 7 ×35.5 | 7 | 35.5 | 0.3 | 1.06 | | 7 ×45 | 7 | 45 | 0.3 | 1.35 | | 7 ×56 | 7 | 56 | 0.3 | 1.68 | 31.5 40 | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r (1)
min. | Mass (kg)
per 100 pcs
approx. | |--------------|------------|------------|---------------|-------------------------------------| | 8 ×25 | 8888888 | 25 | 0.3 | 0.978 | | 8 ×31.5 | | 31.5 | 0.3 | 1.23 | | 8 ×40 | | 40 | 0.3 | 1.56 | | 8 ×50 | | 50 | 0.3 | 1.96 | | 8 ×63 | | 63 | 0.3 | 2.46 | | 9 ×28 | 9999 | 28 | 0.3 | 1.39 | | 9 ×35.5 | | 35.5 | 0.3 | 1.76 | | 9 ×45 | | 45 | 0.3 | 2.23 | | 9 ×56 | | 56 | 0.3 | 2.77 | | 10×31.5 | 10 | 31.5 | 0.3 | 1.93 | | 10×40 | 10 | 40 | 0.3 | 2.44 | | 10×50 | 10 | 50 | 0.3 | 3.06 | | 10×63 | 10 | 63 | 0.3 | 3.85 | | 12×40 | 12 | 40 | 0.3 | 3.52 | | 12×50 | 12 | 50 | 0.3 | 4.4 | | 12×63 | 12 | 63 | 0.3 | 5.54 | | 15×45 | 15 | 45 | 0.5 | 6.16 | | 15×56 | 15 | 56 | 0.5 | 7.68 | | 15×71 | 15 | 71 | 0.5 | 9.74 | | 15×90 | 15 | 90 | 0.5 | 12.4 | Units: mm Note (1) Only for flat-end rollers. 7.5 7.5 7.5×31.5 7.5×40 # **Tolerances for Long Cylindrical Roller Chamfers** | | Units : mm | |-------------------|-------------------| | min. | max. | | 0.2
0.3
0.5 | 0.5
0.8
1.2 | # **Accuracy of Long Cylindrical Rollers** Units: um | Class | Out-of-
Roundness
(¹)
ΔR
max. | Single Plane Mean Roller Diameter Variation ${}^{(3)}$ VD_{Wmp} max. | Roller Gauge Lot Diameter Variation $\binom{1}{V}$ VD_{WL} max. | Length Deviation(2) $ extstyle eta L_{ ext{Ws}}$ | |-------|---|---|--|--| | 3 | 1.5 | 3 | 3 | h12 | | 5 | 2 | 5 | 5 | h12 | - $\begin{array}{ll} \text{(1)} & \text{Applicable to roller center (length direction).} \\ \text{(2)} & \text{Classified by } L_{\text{W}}. \text{ Refer to Tolerauce for Length Doviation.} \\ \text{(3)} & \text{Applicable to cylindrical outside surface.} \end{array}$ ### **Tolerance for Length Deviation** Units: mm | Length | | h12 | | h13 | | |--------|-------|----------|-------|------|--------| | over | incl. | high low | | high | low | | 3 | 6 | _ | | 0 | - 0.18 | | 6 | 10 | _ | | 0 | -0.22 | | 10 | 18 | _ | | 0 | -0.27 | | 18 | 30 | 0 | -0.21 | 0 | -0.33 | | 30 | 50 | 0 | -0.25 | 0 | -0.39 | | 50 | 80 | 0 - 0.30 | | - | _ | | 80 | 120 | 0 - 0.35 | | - | _ | B 352 B 353 Spherical-end Type Units: mm Units: mm | | | | | OTHES . IIIIII | | | | | Offics . IIIII | |--|---|--|--|---|--|--|--|--
---| | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r (1)
min. | Mass (kg)
per 1000 pcs
approx. | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r $(^1)$ min. | Mass (kg)
per 1000 pcs
approx. | | 1 × 5.8
1 × 7.8
1 × 7.8
1 × 7.8
1 × 9.8
1.5× 6.8
1.5× 7.8
1.5× 13.8
2 × 7.8
1.5× 13.8
2 × 13.8
2 × 13.8
2 × 15.8
2 15.8
3 × 15.8
3 × 15.8
3 × 15.8
3 × 21.8
3 21.8 | 1111111111 QQQ QQQQQ QXQQQQQQQQQQQQQQQQ | 5.67.9.5.67.9.1.3.67.9.1.3.57. | 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 0.035
0.042
0.042
0.060
0.080
0.105
0.1360
0.190
0.165
0.240
0.295
0.385
0.485
0.3750
0.525
0.680
0.7555
0.680
0.7555
0.835
0.485
0.7555
0.835
0.8370
0.870
0.870
0.870
0.870
0.870
0.885
0.885
1.05
1.20
1.35 | 3.5×19.8
3.5×21.8
3.5×25.8
3.5×25.8
3.5×27.8
3.5×31.8
3.5×31.8
4 ×15.8
4 ×15.8
4 ×21.8
4 ×21.8
4 ×27.8
4 ×27.8
4 ×27.8
4 ×31.8
4 ×31.8
4 ×31.8
4 ×31.8
4 ×31.8
4 ×31.8
4 ×31.8
4 ×31.8
4 ×31.8
5 ×31.8
4 ×31.8
5 ×31.8 | 55 55 55 55 55 55 55 55 55 55 55 55 55 | 19.8
23.5
25.7
29.1
29.1
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.3
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7 | 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 1.505
1.895
1.2240
1.555
1.910
2.240
1.555
1.222
2.333
3.392
2.247
9.005
1.555
1.00
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005 | Note (1) Only for flat-end rollers. B 354 **Remarks** 1. The figure shows a spherical-end type and a flat-end type. 2. The radius R of the spherical-end type is bounded by the following range: Minimum: $D_{\rm w}/2$ Maximum: $L_{\rm w}/2$ Flat-end Type ### **Tolerances for Needle Roller Chamfers** | | |
| O mico i mini | |------|-------|------|---------------| | D | w | r | r | | over | incl. | min. | max. | | _ | 1 | 0.1 | 0.4 | | 1 | 3 | 0.1 | 0.6 | | 3 | 5 | 0.1 | 0.9 | Remarks Only for flat-end needle rollers. # **Accuracy of Needle Rollers** Units: µm | | | | | Omito : pini | |-------|--|--|--|--| | Class | Single Plane Mean Roller Diameter Variation $^{(1)}$ VD_{WP} max. | Out-of-
Roundness (1) ΔR max. | Roller Gauge Lot Diameter Variation $^{(1)}$ $VD_{ m WL}$ max. | Length Deviation(2) $ extstyle eta L_{ m W_S}$ | | 2 | 1 | 1 | 2 | h13 | | 3 | 1.5 | 1.5 | 3 | h13 | | 5 | 2 | 2.5 | 5 | h13 | Remarks The actual diameter at any place along the entire length should not exceed the following figures compared to the actual maximum diameter at the roller center (length direction). > Class2: 0.5µm Class3: 0.8µm Class5: 1.0µm # ACCESSORIES FOR ROLLING BEARINGS | ADAPTERS
For rolling bearings | Shaft Diameter 17 – 470mm····· | B35 | |--|--------------------------------|-----| | WITHDRAWAL SLEEVES
For rolling bearings | Shaft Diameter 35 – 480mm | B36 | | NUTS FOR ROLLING BEARINGS | | B37 | | STOPPERS FOR ROLLING BEARI | NGS | B37 | | LOCK-WASHERS FOR BOLLING | RFARINGS | B37 | B 356 B 357 - NSK Shaft Diameter 45 – 60 mm Shaft Diameter 17 – 40 mm | Shaft | Nominal
Bearing | | | Dimen: | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |-------|------------------------|--|----------------------|----------------------|------------------|------------------|--------------------------------------|---|----------------------|----------------------|---------------------|----------------------------------| | d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 17 | 20
20
20
20 | 1204K + H 204X
2204K + H 304X
1304K + H 304X
2304K + H2304X | 24
28
28
31 | 32
32
32
32 | 7
7
7
7 | _
_
_
_ | A 204X
A 304X
A 304X
A2304X | 14
14
14
14 | 39
39
39
39 | 23
24
24
24 | 5
5
8
5 | 0.045
0.045
0.045
0.050 | | 20 | 25
25
25 | 1205K + H 205X
2205K + H 305X
1305K + H 305X | 26
29
29 | 38
38
38 | 8
8
8 | _ | A 205X
A 305X
A 305X | 15
15
15 | 45
45
45 | 28
29
29 | 5
5
6 | 0.065
0.075
0.075 | | | 25
25 | 21305C DKE4 + H 305X
2305K + H2305X | 29
35 | 38
38 | 8 | _ | A 305X
A2305X | 15
15 | 45
45 | 29
29 | 6
5 | 0.075
0.090 | | 25 | 30
30
30 | 1206K + H 206X
2206K + H 306X
1306K + H 306X | 27
31
31 | 45
45
45 | 8
8
8 | _ | A 206X
A 306X
A 306X | 15
15
15 | 50
50
50 | 33
34
34 | 5
5
6 | 0.10
0.11
0.11 | | | 30
30 | 21306C DKE4 + H 306X
2306K + H2306X | 31
38 | 45
45 | 8 | _ | A 306X
A2306X | 15
15 | 50
50 | 34
35 | 6
5 | 0.11
0.125 | | 30 | 35
35
35 | 1207K + H 207X
2207K + H 307X
1307K + H 307X | 29
35
35 | 52
52
52 | 9
9
9 | _ | A 207X
A 307X
A 307X | 17
17
17 | 58
58
58 | 38
39
39 | 5
5
7 | 0.125
0.145
0.145 | | | 35
35 | 21307C DKE4 + H 307X
2307K + H2307X | 35
43 | 52
52 | 9
9 | _ | A 307X
A2307X | 17
17 | 58
58 | 39
40 | 7
5 | 0.145
0.16 | | 35 | 40
40
40 | 1208K + H 208X
2208K + H 308X
1308K + H 308X | 31
36
36 | 58
58
58 | 10
10
10 | _ | A 208X
A 308X
A 308X | 17
17
17 | 65
65
65 | 44
44
44 | 5
5
5 | 0.175
0.19
0.19 | | | 40
40
40 | 21308E AKE4 + H 308X
2308K + H2308X
22308E AKE4 + H2308X | 36
46
46 | 58
58
58 | 10
10
10 | _ | A 308X
A 2308X
A 2308X | 17
17
17 | 65
65
65 | 44
45
45 | 5
5
5 | 0.19
0.225
0.225 | | 40 | 45
45
45 | 1209K + H 209X
2209K + H 309X
1309K + H 309X | 33
39
39 | 65
65
65 | 11
11
11 | _ | A 209X
A 309X
A 309X | 17
17
17 | 72
72
72 | 49
49
49 | 5
8
5 | 0.225
0.26
0.26 | | | 45
45
45 | 21309E AKE4 + H 309X
2309K + H2309X
22309E AKE4 + H2309X | 39
50
50 | 65
65
65 | 11
11
11 | _
_
_ | A 309X
A2309X
A2309X | 17
17
17 | 72
72
72 | 49
50
50 | 5
5
5 | 0.26
0.30
0.30 | | Shaft | Nominal
Bearing | Nacciael Newsbarr | | Dimen: | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |---------------|----------------------|---|----------------------|----------------------|----------------------|-------------|--------------------------------------|---|----------------------|----------------------|---------------------|------------------------------| | mameter d_1 | Bore Dia. (mm) | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop ext{min.}$ | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 45 | 50
50
50 | 1210K + H 210X
2210K + H 310X
1310K + H 310X | 35
42
42 | 70
70
70 | 12
12
12 | _ | A 210X
A 310X
A 310X | 19
19
19 | 76
76
76 | 53
54
54 | 5
10
5 | 0.275
0.30
0.30 | | | 50
50
50 | 21310E AKE4 + H 310X
2310K + H2310X
22310E AKE4 + H2310X | 42
55
55 | 70
70
70 | 12
12
12 | _ | A 310X
A2310X
A2310X | 19
19
19 | 76
76
76 | 54
56
56 | 5
5
5 | 0.30
0.35
0.35 | | 50 | 55
55
55 | 1211K + H 211X
2211K + H 311X
22211E AKE4 + H 311X | 37
45
45 | 75
75
75 | 12
12
12 | _ | A 211X
A 311X
A 311X | 19
19
19 | 85
85
85 | 60
60
60 | 6
11
11 | 0.305
0.35
0.35 | | | 55
55
55
55 | 1311K + H 311X
21311E AKE4 + H 311X
2311K + H2311X
22311E AKE4 + H2311X | 45
45
59
59 | 75
75
75
75 | 12
12
12
12 | | A 311X
A 311X
A2311X
A2311X | 19
19
19
19 | 85
85
85
85 | 60
60
61
61 | 6
6
6 | 0.35
0.35
0.40
0.40 | | 55 | 60
60
60 | 1212K + H 212X
2212K + H 312X
22212E AKE4 + H 312X | 38
47
47 | 80
80
80 | 13
13
13 | _ | A 212X
A 312X
A 312X | 20
20
20 | 90
90
90 | 64
65
65 | 5
9
9 | 0.365
0.40
0.40 | | | 60
60
60 | 1312K + H 312X
21312E AKE4 + H 312X
2312K + H2312X
22312E AKE4 + H2312X | 47
47
62
62 | 80
80
80
80 | 13
13
13
13 | _ | A 312X
A 312X
A2312X
A2312X | 20
20
20
20 | 90
90
90
90 | 65
65
66
66 | 5
5
5
5 | 0.40
0.40
0.45
0.45 | | 60 | 65
65
65 | 1213K + H 213X
2213K + H 313X
22213E AKE4 + H 313X | 40
50
50 | 85
85
85 | 14
14
14 | _ | A 213X
A 313X
A 313X | 21
21
21 | 96
96
96 | 70
70
70 | 5
8
8 | 0.40
0.45
0.45 | | | 65
65
65
65 | 1313K + H 313X
21313E AKE4 + H 313X
2313K + H2313X
22313E AKE4 + H2313X | 50
50
65
65 | 85
85
85
85 | 14
14
14
14 | | A 313X
A 313X
A2313X
A2313X | 21
21
21
21 | 96
96
96
96 | 70
70
72
72 | 5
5
5
5 | 0.45
0.45
0.55
0.55 | | | 70
70
70 | 22214E AKE4 + H 314X
21314E AKE4 + H 314X
22314E AKE4 + H2314X | 52
52
68 | 92
92
92 | 14
14
14 | _
_
_ | A 314X
A 314X
A2314X | 21
21
21 | 96
96
96 | 70
70
72 | 8
5
5 | 0.65
0.65
0.80 | Remarks The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. **Remarks** The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. Shaft Diameter 85 - 115 mm NSK Shaft Diameter 65 - 80 mm | Shaft | Nominal
Bearing | | | Dimen: | | | Adapter | Abu | tment D | | ons | Mass
(kg) | |----------|--------------------|---|----------|------------|----------|-------|--------------------|----------|-------------------|-----------------|----------|--------------| | Diameter | Bore Dia. | Nominal Numbers | D | | | D | Sleeve | | K | | b | (Kg) | | d_1 | $d^{(mm)}$ | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | A min. | n
min. | $d_{ m e}$ min. | min. | approx. | | 65 | 75 | 1215K + H 215X | 43 | 98 | 15 | _ | A 215X | 23 | 110 | 80 | 5 | 0.70 | | | 75
75 | 2215K + H 315X
22215E AKE4 + H 315X | 55
55 | 98
98 | 15
15 | _ | A 315X
A 315X | 23
23 | 110
110 | 80
80 | 12
12 | 0.85
0.85 | | | 75 | 1315K + H 315X | 55 | 98 | 15 | _ | A 315X | 23 | 110 | 80 | 5 | 0.85 | | | 75 | 21315E AKE4 + H 315X | 55 | 98
98 | 15
15 | _ | A 315X | 23 | 110
110
110 | 80 | 5 | 0.85
1.05 | | | 75
75 | 2315K +
H2315X
22315E AKE4 + H2315X | 73
73 | 98 | 15 | _ | A 2315X
A 2315X | 23 | 110 | 82
82 | 5
5 | 1.05 | | 70 | 80 | 1216K + H 216X | 46 | 105 | 17 | _ | A 216X | 25 | 120 | 85 | 5 | 0.85 | | | 80
80 | 2216K + H 316X
22216E AKE4 + H 316X | 59
59 | 105
105 | 17
17 | _ | A 316X
A 316X | 25
25 | 120
120 | 86
86 | 12
12 | 1.05
1.05 | | | 80 | 1316K + H 316X | 59 | 105 | 17 | _ | A 316X | 25 | 120 | 86 | 5 | 1.05 | | | 80 | 21316E AKE4 + H 316X | 59 | 105 | 17 | _ | A 316X | 25 | 120 | 86 | 5 | 1.05 | | | 80
80 | 2316K + H2316X
22316E AKE4 + H2316X | 78
78 | 105
105 | 17
17 | _ | A 2316X
A 2316X | 25
25 | 120
120 | 87
87 | 5
5 | 1.3 | | 75 | 85 | 1217K + H 217X | 50 | 110 | 18 | _ | A 217X | 27 | 128 | 90 | 6 | 1.0 | | | 85
85 | 2217K + H 317X
22217E AKE4 + H 317X | 63
63 | 110
110 | 18
18 | _ | A 317X
A 317X | 27
27 | 128
128 | 91
91 | 12
12 | 1.2
1.2 | | | 85 | 1317K + H 317X | 63 | 110 | 18 | | A 317X | 27 | 128 | 91 | 6 | 1.2 | | | 85 | 21317E AKE4 + H 317X | 63 | 110 | 18 | _ | A 317X | 27 | 128 | 91 | 6 | 1.2 | | | 85
85 | 2317K + H2317X
22317E AKE4 + H2317X | 82
82 | 110
110 | 18
18 | _ | A 2317X
A 2317X | 27
27 | 128
128 | 94
94 | 6
6 | 1.45
1.45 | | 80 | 90 | 1218K + H 218X | 52 | 120 | 18 | _ | A 218X | 28 | 139 | 95 | 6 | 1.15 | | | 90
90 | 2218K + H 318X
22218E AKE4 + H 318X | 65
65 | 120
120 | 18
18 | _ | A 318X
A 318X | 28
28 | 139
139 | 96
96 | 10
10 | 1.4
1.4 | | | | | | | | | | | | | | | | | 90
90 | 1318K + H 318X
21318E AKE4 + H 318X | 65
65 | 120
120 | 18
18 | _ | A 318X
A 318X | 28
28 | 139
139 | 96
96 | 6
6 | 1.4
1.4 | | | 90 | 2318K + H2318X | 86 | 120 | 18 | _ | A2318X | 28 | 139 | 99 | 6 | 1.7 | | | 90
90 | 23218C KE4 + H2318X
22318E AKE4 + H2318X | 86
86 | 120
120 | 18
18 | _ | A 2318X
A 2318X | 28
28 | 139
139 | 99
99 | 6 | 1.7
1.7 | | | 90 | 22318E ANE4 + 12318X | 80 | 120 | 10 | _ | AZJIOX | 28 | 139 | 99 | О | 1./ | | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | | Dimen:
(mr | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |-------------------|---------------------------------|---|----------------------|--------------------------|----------------------|-------|--------------------------------------|---|--------------------------|--------------------------|----------------------|----------------------------| | d_1 | (mm) | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $b \atop ext{min.}$ | approx. | | 85 | 95
95
95 | 1219K + H 219X
2219K + H 319X
22219E AKE4 + H 319X | 55
68
68 | 125
125
125 | 19
19
19 | _ | A 219X
A 319X
A 319X | 29
29
29 | 145
145
145 | 101
102
102 | 7
9
9 | 1.35
1.55
1.55 | | | 95
95
95
95 | 1319K + H 319X
21319C KE4 + H 319X
2319K + H2319X
22319E AKE4 + H2319X | 68
68
90
90 | 125
125
125
125 | 19
19
19
19 | | A 319X
A 319X
A2319X
A2319X | 29
29
29
29 | 145
145
145
145 | 102
102
105
105 | 7
7
7
7 | 1.55
1.55
1.9
1.9 | | 90 | 100
100
100 | 1220K + H 220X
2220K + H 320X
22220E AKE4 + H 320X | 58
71
71 | 130
130
130 | 20
20
20 | = | A 220X
A 320X
A 320X | 30
30
30 | 150
150
150 | 106
107
107 | 7
8
8 | 1.45
1.7
1.7 | | | 100
100
100 | 1320K + H 320X
21320C KE4 + H 320X
2320K + H2320X | 71
71
97 | 130
130
130 | 20
20
20 | _ | A 320X
A 320X
A2320X | 30
30
30 | 150
150
150 | 107
107
110 | 7
7
7 | 1.7
1.7
2.15 | | | 100
100 | 23220C KE4 + H2320X
22320E AKE4 + H2320X | 97
97 | 130
130 | 20
20 | _ | A 2320X
A 2320X | 30
30 | 150
150 | 110
110 | 7
7 | 2.15
2.15 | | 100 | 110
110
110 | 23122C KE4 + H3122X
1222K + H 222X
2222K + H 322X | 81
63
77 | 145
145
145 | 21
21
21 | _ | A3122X
A 222X
A 322X | 32
32
32 | 170
170
170 | 117
116
117 | 7
7
6 | 2.25
1.95
2.3 | | | 110
110
110 | 22222E AKE4 + H 322X
1322K + H 322X
2322K + H2322X | 77
77
105 | 145
145
145 | 21
21
21 | _ | A 322X
A 322X
A2322X | 32
32
32 | 170
170
170 | 117
117
121 | 6
9
7 | 2.3
2.3
2.75 | | | 110
110 | 23222C KE4 + H2322X
22322E AKE4 + H2322X | 105
105 | 145
145 | 21
21 | _ | A 2322X
A 2322X | 32
32 | 170
170 | 121
121 | 17
7 | 2.75
2.75 | | 110 | 120
120
120 | 23024C DKE4 + H3024
23124C KE4 + H3124
22224E AKE4 + H3124 | 72
88
88 | 145
155
155 | 22
22
22 | _ | A 3024
A 3124
A 3124 | 33
33
33 | 180
180
180 | 127
128
128 | 7
7
11 | 1.95
2.65
2.65 | | | 120
120 | 23224C KE4 + H2324
22324E AKE4 + H2324 | 112
112 | 155
155 | 22
22 | _ | A 2324
A 2324 | 33
33 | 180
180 | 131
131 | 17
7 | 3.2
3.2 | | 115 | 130
130
130 | 23026C DKE4 + H3026
23126C KE4 + H3126
22226E AKE4 + H3126 | 80
92
92 | 155
165
165 | 23
23
23 | _ | A 3026
A 3126
A 3126 | 34
34
34 | 190
190
190 | 137
138
138 | 8
8
8 | 2.85
3.65
3.65 | | | 130
130 | 23226C KE4 + H2326
22326C KE4 + H2326 | 121
121 | 165
165 | 23
23 | _ | A 2326
A 2326 | 34
34 | 190
190 | 142
142 | 21
8 | 4.6
4.6 | Remarks The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. Shaft Diameter 180 – 260 mm Shaft Diameter 125 – 170 mm | Shaft | Nominal
Bearing | | | Dimen
(mr | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |---------------------|--------------------|--|-------------------|-------------------|----------------|-------|----------------------------|---|----------------------|-------------------|---------------------|----------------------| | Diameter (mm) d_1 | Bore Dia. (mm) | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop ext{min.}$ | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 125 | 140
140
140 | 23028C DKE4 + H3028
23128C KE4 + H3128
22228C DKE4 + H3128 | 82
97
97 | 165
180
180 | 24
24
24 | _ | A 3028
A 3128
A 3128 | 36
36
36 | 205
205
205 | 147
149
149 | 8
8
8 | 3.15
4.35
4.35 | | | 140
140 | 23228C KE4 + H2328
22328C KE4 + H2328 | 131
131 | 180
180 | 24
24 | _ | A 2328
A 2328 | 36
36 | 205
205 | 152
152 | 22
8 | 5.55
5.55 | | 135 | 150
150
150 | 23030C DKE4 + H3030
23130C KE4 + H3130
22230C DKE4 + H3130 | 87
111
111 | 180
195
195 | 26
26
26 | _ | A 3030
A 3130
A 3130 | 37
37
37 | 220
220
220 | 158
160
160 | 8
8
15 | 3.9
5.5
5.5 | | | 150
150 | 23230C KE4 + H2330
22330C AKE4 + H2330 | 139
139 | 195
195 | 26
26 | _ | A 2330
A 2330 | 37
37 | 220
220 | 163
163 | 20
8 | 6.6
6.6 | | 140 | 160
160
160 | 23932C AKE4 + H3932
23032C DKE4 + H3032
23132C KE4 + H3132 | 78
93
119 | 190
190
210 | 28
28
28 | _ | A 3932
A 3032
A 3132 | 39
39
39 | 205
230
230 | 168
168
170 | 8
8
8 | 4.64
5.2
7.65 | | | 160
160
160 | 22232C DKE4 + H3132
23232C KE4 + H2332
22332C AKE4 + H2332 | 119
147
147 | 210
210
210 | 28
28
28 | _ | A 3132
A 2332
A 2332 | 39
39
39 | 230
230
230 | 170
174
174 | 14
18
8 | 7.65
9.15
9.15 | | 150 | 170
170
170 | 23934B CAKE4 + H3934
23034C DKE4 + H3034
23134C KE4 + H3134 | 79
101
122 | 200
200
220 | 29
29
29 | _ | A 3934
A 3034
A 3134 | 40
40
40 | 215
250
250 | 179
179
180 | 8
8
8 | 5.07
6.0
8.4 | | | 170
170
170 | 22234C DKE4 + H3134
23234C KE4 + H2334
22334C AKE4 + H2334 | 122
154
154 | 220
220
220 | 29
29
29 | _ | A 3134
A 2334
A 2334 | 40
40
40 | 250
250
250 | 180
185
185 | 10
18
8 | 8.4
10
10 | | 160 | 180
180
180 | 23936C AKE4 + H3936
23036C DKE4 + H3036
23136C KE4 + H3136 | 87
109
131 | 210
210
230 | 30
30
30 | _ | A 3936
A 3036
A 3136 | 41
41
41 | 230
260
260 | 189
189
191 | 8
8
8 | 5.87
6.85
9.5 | | | 180
180
180 | 22236C DKE4 + H3136
23236C KE4 + H2336
22336C AKE4 + H2336 | 131
161
161 | 230
230
230 | 30
30 | _ | A 3136
A 2336
A 2336 | 41
41
41 | 260
260
260 | 191
195
195 | 18
22
8 | 9.5
11.5
11.5 | | 170 | 190
190
190 | 23938C AKE4 + H3938
23038C AKE4 + H3038
23138C KE4 +
H3138 | 89
112
141 | 220
220
240 | 31
31
31 | _ | A 3938
A 3038
A 3138 | 43
43
43 | 240
270
270 | 199
199
202 | 9
9
9 | 6.35
7.45
11 | | | 190
190
190 | 22238C AKE4 + H3138
23238C KE4 + H2338
22338C AKE4 + H2338 | 141
169
169 | 240
240
240 | 31
31
31 | = | A 3138
A 2338
A 2338 | 43
43
43 | 270
270
270 | 202
206
206 | 21
21
9 | 11
12.5
12.5 | | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | | Dimen:
(mr | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |-------------------|---------------------------------|---|-------------------|-------------------|----------------|-------|----------------------------|---|---------------------|-------------------|---------------------|------------------| | d_1 | (mm) | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 180 | 200
200
200 | 23940C AKE4 + H3940
23040C AKE4 + H3040
23140C KE4 + H3140 | 98
120
150 | 240
240
250 | 32
32
32 | = | A 3940
A 3040
A 3140 | 46
46
46 | 260
280
280 | 210
210
212 | 10
10
10 | 8.0
9.2
12 | | | 200
200
200 | 22240C AKE4 + H3140
23240C KE4 + H2340
22340C AKE4 + H2340 | 150
176
176 | 250
250
250 | 32
32
32 | = | A 3140
A 2340
A 2340 | 46
46
46 | 280
280
280 | 212
216
216 | 24
20
10 | 12
14
14 | | 200 | 220 | 23944C AKE4 + H3944 | 96 | 260 | 30 | 41 | A 3944 | 55 | 280 | 231 | 10 | 8.32 | | | 220 | 23044C AKE4 + H3044 | 128 | 260 | 30 | 41 | A 3044 | 55 | 320 | 231 | 12 | 10.5 | | | 220 | 23144C KE4 + H3144 | 158 | 280 | 32 | 44 | A 3144 | 55 | 320 | 233 | 10 | 14.5 | | | 220 | 22244C AKE4 + H3144 | 158 | 280 | 32 | 44 | A 3144 | 55 | 320 | 233 | 22 | 14.5 | | | 220 | 23244C KE4 + H2344 | 183 | 280 | 32 | 44 | A 2344 | 55 | 320 | 236 | 11 | 16.5 | | | 220 | 22344C AKE4 + H2344 | 183 | 280 | 32 | 44 | A 2344 | 55 | 320 | 236 | 10 | 16.5 | | 220 | 240 | 23948C AKE4 + H3948 | 101 | 290 | 34 | 46 | A 3948 | 60 | 300 | 251 | 11 | 11.2 | | | 240 | 23048C AKE4 + H3048 | 133 | 290 | 34 | 46 | A 3048 | 60 | 340 | 251 | 11 | 13 | | | 240 | 23148C KE4 + H3148 | 169 | 300 | 34 | 46 | A 3148 | 60 | 340 | 254 | 11 | 17.5 | | | 240 | 22248C AKE4 + H3148 | 169 | 300 | 34 | 46 | A 3148 | 60 | 340 | 254 | 19 | 17.5 | | | 240 | 23248C AKE4 + H2348 | 196 | 300 | 34 | 46 | A 2348 | 60 | 340 | 257 | 6 | 19.5 | | | 240 | 22348C AKE4 + H2348 | 196 | 300 | 34 | 46 | A 2348 | 60 | 340 | 257 | 11 | 19.5 | | 240 | 260 | 23952C AKE4 + H3952 | 116 | 310 | 34 | 46 | A 3952 | 60 | 330 | 272 | 11 | 13.4 | | | 260 | 23052C AKE4 + H3052 | 147 | 310 | 34 | 46 | A 3052 | 60 | 370 | 272 | 13 | 15.5 | | | 260 | 23152C AKE4 + H3152 | 187 | 330 | 36 | 49 | A 3152 | 60 | 370 | 276 | 11 | 22 | | | 260 | 22252C AKE4 + H3152 | 187 | 330 | 36 | 49 | A 3152 | 60 | 370 | 276 | 25 | 22 | | | 260 | 23252C AKE4 + H2352 | 208 | 330 | 36 | 49 | A 2352 | 60 | 370 | 278 | 2 | 24 | | | 260 | 22352C AKE4 + H2352 | 208 | 330 | 36 | 49 | A 2352 | 60 | 370 | 278 | 11 | 24 | | 260 | 280 | 23956C AKE4 + H3956 | 121 | 330 | 38 | 50 | A 3956 | 65 | 350 | 292 | 12 | 15.5 | | | 280 | 23056C AKE4 + H3056 | 152 | 330 | 38 | 50 | A 3056 | 65 | 390 | 292 | 12 | 17.5 | | | 280 | 23156C AKE4 + H3156 | 192 | 350 | 38 | 51 | A 3156 | 65 | 390 | 296 | 12 | 24.5 | | | 280 | 22256C AKE4 + H3156 | 192 | 350 | 38 | 51 | A 3156 | 65 | 390 | 296 | 28 | 24.5 | | | 280 | 23256C AKE4 + H2356 | 221 | 350 | 38 | 51 | A 2356 | 65 | 390 | 299 | 11 | 28 | | | 280 | 22356C AKE4 + H2356 | 221 | 350 | 38 | 51 | A 2356 | 65 | 390 | 299 | 12 | 28 | Shaft Diameter 430 - 470 mm NSK ## Shaft Diameter 280 - 410 mm | Shaft | Nominal
Bearing
Bore Dia. | Nominal Numbers | | Dimen: | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |-------|---------------------------------|----------------------------|-------|--------|-------|-------|-------------------|---|----------------------|-----------------|----------------------|--------------| | d_1 | (mm)
d | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop ext{min.}$ | $d_{ m e}$ min. | $b \atop ext{min.}$ | approx. | | 280 | 300 | 23960C AKE4 + H3960 | 140 | 360 | 42 | 54 | A3960 | 69 | 380 | 313 | 12 | 20.7 | | | 300 | 23060C AKE4 + H3060 | 168 | 360 | 42 | 54 | A3060 | 69 | 430 | 313 | 12 | 23 | | | 300 | 23160C AKE4 + H3160 | 208 | 380 | 40 | 53 | A3160 | 69 | 430 | 317 | 12 | 30 | | | 300 | 22260C AKE4 + H3160 | 208 | 380 | 40 | 53 | A3160 | 69 | 430 | 317 | 32 | 30 | | | 300 | 23260C AKE4 + H3260 | 240 | 380 | 40 | 53 | A3260 | 69 | 430 | 321 | 12 | 34 | | 300 | 320 | 23964C AKE4 + H3964 | 140 | 380 | 42 | 55 | A3964 | 72 | 400 | 334 | 13 | 21.8 | | | 320 | 23064C AKE4 + H3064 | 171 | 380 | 42 | 55 | A3064 | 72 | 450 | 334 | 13 | 24.5 | | | 320 | 23164C AKE4 + H3164 | 226 | 400 | 42 | 56 | A3164 | 72 | 450 | 339 | 13 | 35 | | | 320 | 22264C AKE4 + H3164 | 226 | 400 | 42 | 56 | A3164 | 72 | 450 | 339 | 39 | 35 | | | 320 | 23264C AKE4 + H3264 | 258 | 400 | 42 | 56 | A3264 | 72 | 450 | 343 | 13 | 39.5 | | 320 | 340 | 23968C AKE4 + H3968 | 144 | 400 | 45 | 58 | A3968 | 75 | 430 | 354 | 14 | 24.6 | | | 340 | 23068C AKE4 + H3068 | 187 | 400 | 45 | 58 | A3068 | 75 | 490 | 355 | 14 | 28.5 | | | 340 | 23168C AKE4 + H3168 | 254 | 440 | 55 | 72 | A3168 | 75 | 490 | 360 | 14 | 49.5 | | | 340 | 23268C AKE4 + H3268 | 288 | 440 | 55 | 72 | A3268 | 75 | 490 | 364 | 14 | 54.5 | | 340 | 360 | 23972C AKE4 + H3972 | 144 | 420 | 45 | 58 | A3972 | 75 | 450 | 374 | 14 | 25.7 | | | 360 | 23072C AKE4 + H3072 | 188 | 420 | 45 | 58 | A3072 | 75 | 510 | 375 | 14 | 30.5 | | | 360 | 23172C AKE4 + H3172 | 259 | 460 | 58 | 75 | A3172 | 75 | 510 | 380 | 14 | 54 | | | 360 | 23272C AKE4 + H3272 | 299 | 460 | 58 | 75 | A3272 | 75 | 510 | 385 | 14 | 60.5 | | 360 | 380 | 23976C AKE4 + H3976 | 164 | 450 | 48 | 62 | A3976 | 82 | 480 | 396 | 15 | 31.9 | | | 380 | 23076C AKE4 + H3076 | 193 | 450 | 48 | 62 | A3076 | 82 | 540 | 396 | 15 | 36 | | | 380 | 23176C AKE4 + H3176 | 264 | 490 | 60 | 77 | A3176 | 82 | 540 | 401 | 15 | 61.5 | | | 380 | 23276C AKE4 + H3276 | 310 | 490 | 60 | 77 | A3276 | 82 | 540 | 405 | 15 | 69.5 | | 380 | 400 | 23980C AKE4 + H3980 | 168 | 470 | 52 | 66 | A3980 | 86 | 500 | 417 | 15 | 35.2 | | | 400 | 23080C AKE4 + H3080 | 210 | 470 | 52 | 66 | A3080 | 86 | 580 | 417 | 15 | 41.5 | | | 400 | 23180C AKE4 + H3180 | 272 | 520 | 62 | 82 | A3180 | 86 | 580 | 421 | 15 | 70.5 | | | 400 | 23280C AKE4 + H3280 | 328 | 520 | 62 | 82 | A3280 | 86 | 580 | 427 | 15 | 81 | | 400 | 420 | 23984C AKE4 + H3984 | 168 | 490 | 52 | 66 | A3984 | 86 | 520 | 437 | 16 | 36.6 | | | 420 | 23084C AKE4 + H3084 | 212 | 490 | 52 | 66 | A3084 | 86 | 600 | 437 | 16 | 43.5 | | | 420 | 23184C AKE4 + H3184 | 304 | 540 | 70 | 90 | A3184 | 86 | 600 | 443 | 16 | 84 | | | 420 | 23284C AKE4 + H3284 | 352 | 540 | 70 | 90 | A3284 | 86 | 600 | 448 | 16 | 94 | | 410 | 440 | 23988C AKE4 + H3988 | 189 | 520 | 60 | 77 | A3988 | 99 | 550 | 458 | 17 | 58.6 | | | 440 | 23088C AKE4 + H3088 | 228 | 520 | 60 | 77 | A3088 | 99 | 620 | 458 | 17 | 65 | | | 440 | 23188C AKE4 + H3188 | 307 | 560 | 70 | 90 | A3188 | 99 | 620 | 464 | 17 | 104 | | | 440 | 23288C AKE4 + H3288 | 361 | 560 | 70 | 90 | A3288 | 99 | 620 | 469 | 17 | 118 | | Shaft
Diameter | Nominal
Bearing
Bore Dia | Nominal Numbers | | Dimen
(mr | | | Adapter
Sleeve | Abu | tment D
(mi | | ons | Mass
(kg) | |-------------------|--------------------------------|----------------------------|-------|--------------|-------|-------|-------------------|--------------------------------------|----------------------|-----------------|----------------------|--------------| | d_1 | (mm) | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\stackrel{A}{\operatorname{min}}$. | $K \atop ext{min.}$ | $d_{ m e}$ min. | $b \atop ext{min.}$ | approx. | | 430 | 460 | 23992C AKE4 + H3992 | 189 | 540 | 60 | 77 | A3992 | 99 | 570 | 478 | 17 | 62 | | | 460 | 23092C AKE4 + H3092 | 234 | 540 | 60 | 77 | A3092 | 99 | 650 | 478 | 17 | 69.5 | | | 460 | 23192C AKE4 + H3192 | 326 | 580 | 75 | 95 | A3192 | 99 | 650 | 485 | 17 | 116 | | | 460 | 23292C AKE4 + H3292 | 382 | 580 | 75 | 95 | A3292 | 99 | 650 | 491 | 17 | 132 | | 450 | 480 | 23996C AKE4 + H3996 | 200 | 560 | 60 | 77 | A3996 | 99 | 600 | 499 | 18 | 67.5 | | | 480 | 23096C AKE4 + H3096 | 237 | 560 | 60 | 77 | A3096 | 99 | 690 | 499 | 18 | 73.5 | | | 480 | 23196C AKE4 + H3196 | 335 | 620 | 75 | 95 | A3196 | 99 | 690 | 505 | 18 | 133 | | | 480 | 23296C AKE4 + H3296 | 397 | 620 | 75 | 95 | A3296 | 99 | 690 | 512 | 18 | 152 | | 470 | 500 | 239/500C AKE4 + H39/500 | 208 | 580 | 68 | 85 | A 39/500 | 109 | 620 | 519 | 18 | 74.6 | | | 500 | 230/500C AKE4 + H30/500 | 247 | 580 | 68 | 85 | A 30/500 | 109 | 700 | 519 | 18 | 82 | | | 500 | 231/500C AKE4 + H31/500 | 356 | 630 | 80 | 100 | A 31/500 | 109 | 700 | 527 | 18 | 143 | | | 500 | 232/500C AKE4 + H32/500 | 428 | 630 | 80 | 100 | A 32/500 | 109 | 700 | 534 | 18 | 166 | NSK Shaft Diameter 35 – 85 mm Shaft Diameter 90 – 135 mm |
Shaft | Nominal
Bearing | Managard Managhana | Screw Thread | D | imensions
(mm) | | Mass
(kg) | |-----------------------|------------------------|--|--|----------------------|-------------------|----------------------|-------------------------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 35
40 | 40
40
45
45 | 21308EAKE4 + AH 308
22308EAKE4 + AH 2308
21309EAKE4 + AH 309
22309EAKE4 + AH 2309 | M 45 × 1.5
M 45 × 1.5
M 50 × 1.5
M 50 × 1.5 | 29
40
31
44 | 6
7
6
7 | 32
43
34
47 | 0.09
0.13
0.11
0.165 | | 45 | 50 | 21310EAKE4 + AHX 310 | M 55 × 2 | 35 | 7 | 38 | 0.16 | | | 50 | 22310EAKE4 + AHX 2310 | M 55 × 2 | 50 | 9 | 53 | 0.235 | | 50 | 55 | 22211EAKE4 + AHX 311 | M 60 × 2 | 37 | 7 | 40 | 0.19 | | | 55 | 21311EAKE4 + AHX 311 | M 60 × 2 | 37 | 7 | 40 | 0.19 | | | 55 | 22311EAKE4 + AHX 2311 | M 60 × 2 | 54 | 10 | 57 | 0.285 | | 55 | 60 | 22212EAKE4 + AHX 312 | M 65 × 2 | 40 | 8 | 43 | 0.215 | | | 60 | 21312EAKE4 + AHX 312 | M 65 × 2 | 40 | 8 | 43 | 0.215 | | | 60 | 22312EAKE4 + AHX 2312 | M 65 × 2 | 58 | 11 | 61 | 0.34 | | 60 | 65 | 22213EAKE4 + AH 313 | M 75 × 2 | 42 | 8 | 45 | 0.255 | | | 65 | 21313EAKE4 + AH 313 | M 75 × 2 | 42 | 8 | 45 | 0.255 | | | 65 | 22313EAKE4 + AH 2313 | M 75 × 2 | 61 | 12 | 64 | 0.395 | | 65 | 70 | 22214EAKE4 + AH 314 | M 80 × 2 | 43 | 8 | 47 | 0.28 | | | 70 | 21314EAKE4 + AH 314 | M 80 × 2 | 43 | 8 | 47 | 0.28 | | | 70 | 22314EAKE4 + AHX 2314 | M 80 × 2 | 64 | 12 | 68 | 0.53 | | 70 | 75 | 22215EAKE4 + AH 315 | M 85 × 2 | 45 | 8 | 49 | 0.315 | | | 75 | 21315EAKE4 + AH 315 | M 85 × 2 | 45 | 8 | 49 | 0.315 | | | 75 | 22315EAKE4 + AHX 2315 | M 85 × 2 | 68 | 12 | 72 | 0.605 | | 75 | 80 | 22216EAKE4 + AH 316 | M 90 × 2 | 48 | 8 | 52 | 0.365 | | | 80 | 21316EAKE4 + AH 316 | M 90 × 2 | 48 | 8 | 52 | 0.365 | | | 80 | 22316EAKE4 + AHX 2316 | M 90 × 2 | 71 | 12 | 75 | 0.665 | | 80 | 85 | 22217EAKE4 + AHX 317 | M 95 × 2 | 52 | 9 | 56 | 0.48 | | | 85 | 21317EAKE4 + AHX 317 | M 95 × 2 | 52 | 9 | 56 | 0.48 | | | 85 | 22317EAKE4 + AHX 2317 | M 95 × 2 | 74 | 13 | 78 | 0.745 | | 85 | 90 | 22218EAKE4 + AHX 318 | M 100 × 2 | 53 | 9 | 57 | 0.52 | | | 90 | 21318EAKE4 + AHX 318 | M 100 × 2 | 53 | 9 | 57 | 0.52 | | | 90 | 23218CKE4 + AHX 3218 | M 100 × 2 | 63 | 10 | 67 | 0.58 | | | 90 | 22318EAKE4 + AHX 2318 | M 100 × 2 | 79 | 14 | 83 | 0.845 | | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | | Mass
(kg) | |-----------------------|------------------------|-------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 90 | 95 | 22219EAKE4 + AHX 319 | M 105 × 2 | 57 | 10 | 61 | 0.595 | | | 95 | 21319CKE4 + AHX 319 | M 105 × 2 | 57 | 10 | 61 | 0.595 | | | 95 | 22319EAKE4 + AHX 2319 | M 105 × 2 | 85 | 16 | 89 | 0.89 | | 95 | 100 | 21320CKE4 + AHX 3120 | M 110 × 2 | 64 | 11 | 68 | 0.70 | | | 100 | 22220EAKE4 + AHX 320 | M 110 × 2 | 59 | 10 | 63 | 0.66 | | | 100 | 21320CKE4 + AHX 320 | M 110 × 2 | 59 | 10 | 63 | 0.66 | | | 100 | 23220CKE4 + AHX 3220 | M 110 × 2 | 73 | 11 | 77 | 0.77 | | | 100 | 22320EAKE4 + AHX 2320 | M 110 × 2 | 90 | 16 | 94 | 1.0 | | 105 | 110 | 23122CKE4 + AHX 3122 | M 120 × 2 | 68 | 11 | 72 | 0.76 | | | 110 | 22222EAKE4 + AHX 3122 | M 120 × 2 | 68 | 11 | 72 | 0.76 | | | 110 | 24122CK30E4 + AH 24122 | M 115 × 2 | 82 | 13 | 91 | 0.73 | | | 110 | 23222CKE4 + AHX 3222 | M 125 × 2 | 82 | 11 | 86 | 1.04 | | | 110 | 22322EAKE4 + AHX 2322 | M 125 × 2 | 98 | 16 | 102 | 1.35 | | 115 | 120 | 23024C DKE4 + AHX 3024 | M 130 × 2 | 60 | 13 | 64 | 0.75 | | | 120 | 24024C K30E4 + AH 24024 | M 125 × 2 | 73 | 13 | 82 | 0.70 | | | 120 | 23124C KE4 + AHX 3124 | M 130 × 2 | 75 | 12 | 79 | 0.95 | | | 120 | 22224EAKE4 + AHX 3124 | M 130 × 2 | 75 | 12 | 79 | 0.95 | | | 120 | 24124CK30E4 + AH 24124 | M 130 × 2 | 93 | 13 | 102 | 1.02 | | | 120 | 23224CKE4 + AHX 3224 | M 135 × 2 | 90 | 13 | 94 | 1.3 | | | 120 | 22324EAKE4 + AHX 2324 | M 135 × 2 | 105 | 17 | 109 | 1.6 | | 125 | 130 | 23026C DKE4 + AHX 3026 | M 140 × 2 | 67 | 14 | 71 | 0.95 | | | 130 | 24026C K30E4 + AH 24026 | M 135 × 2 | 83 | 14 | 93 | 0.89 | | | 130 | 23126C KE4 + AHX 3126 | M 140 × 2 | 78 | 12 | 82 | 1.08 | | | 130 | 22226EAKE4 + AHX 3126 | M 140 × 2 | 78 | 12 | 82 | 1.08 | | | 130 | 24126CK30E4 + AH 24126 | M 140 × 2 | 94 | 14 | 104 | 1.14 | | | 130 | 23226CKE4 + AHX 3226 | M 145 × 2 | 98 | 15 | 102 | 1.58 | | | 130 | 22326CKE4 + AHX 2326 | M 145 × 2 | 115 | 19 | 119 | 1.97 | | 135 | 140 | 23028C DKE4 + AHX 3028 | M 150 × 2 | 68 | 14 | 73 | 1.01 | | | 140 | 24028C K30E4 + AH 24028 | M 145 × 2 | 83 | 14 | 93 | 0.96 | | | 140 | 23128C KE4 + AHX 3128 | M 150 × 2 | 83 | 14 | 88 | 1.28 | | | 140 | 22228C DKE4 + AHX 3128 | M 150 × 2 | 83 | 14 | 88 | 1.28 | | | 140 | 24128C K30E4 + AH 24128 | M 150 × 2 | 99 | 14 | 109 | 1.3 | | | 140 | 23228C KE4 + AHX 3228 | M 155 × 3 | 104 | 15 | 109 | 1.84 | | | 140 | 22328C KE4 + AHX 2328 | M 155 × 3 | 125 | 20 | 130 | 2.33 | B 366 B 367 NSK Shaft Diameter 145 – 180 mm | Shaft | Nominal
Bearing | Nominal Numbers | Screw Thread | D | imensions
(mm) | 3 | Mass
(kg) | |-----------------------|------------------------|--------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 145 | 150 | 23030CDKE4 + AHX 3030 | M 160 × 3 | 72 | 15 | 77 | 1.15 | | | 150 | 24030CK30E4 + AH 24030 | M 155 × 3 | 90 | 15 | 101 | 1.11 | | | 150 | 23130CKE4 + AHX 3130 | M 165 × 3 | 96 | 15 | 101 | 1.79 | | | 150 | 22230CDKE4 + AHX 3130 | M 165 × 3 | 96 | 15 | 101 | 1.79 | | | 150 | 24130CK30E4 + AH 24130 | M 160 × 3 | 115 | 15 | 126 | 1.63 | | | 150 | 23230CKE4 + AHX 3230 | M 165 × 3 | 114 | 17 | 119 | 2.22 | | | 150 | 22330CAKE4 + AHX 2330 | M 165 × 3 | 135 | 24 | 140 | 2.82 | | 150 | 160 | 23032C DKE4 + AH 3032 | M 170 × 3 | 77 | 16 | 82 | 2.05 | | | 160 | 24032C K30E4 + AH 24032 | M 170 × 3 | 95 | 15 | 106 | 2.28 | | | 160 | 23132C KE4 + AH 3132 | M 180 × 3 | 103 | 16 | 108 | 3.2 | | | 160 | 22232CDKE4 + AH 3132 | M 180 × 3 | 103 | 16 | 108 | 3.2 | | | 160 | 24132CK30E4 + AH 24132 | M 170 × 3 | 124 | 15 | 135 | 3.03 | | | 160 | 23232CKE4 + AH 3232 | M 180 × 3 | 124 | 20 | 130 | 4.1 | | | 160 | 22332CAKE4 + AH 2332 | M 180 × 3 | 140 | 24 | 146 | 4.7 | | 160 | 170 | 23034C DKE4 + AH 3034 | M 180 × 3 | 85 | 17 | 90 | 2.45 | | | 170 | 24034C K30E4 + AH 24034 | M 180 × 3 | 106 | 16 | 117 | 2.74 | | | 170 | 23134C KE4 + AH 3134 | M 190 × 3 | 104 | 16 | 109 | 3.4 | | | 170 | 22234C DKE4 + AH 3134 | M 190 × 3 | 104 | 16 | 109 | 3.4 | | | 170 | 24134C K30E4 + AH 24134 | M 180 × 3 | 125 | 16 | 136 | 3.26 | | | 170 | 23234C KE4 + AH 3234 | M 190 × 3 | 134 | 24 | 140 | 4.8 | | | 170 | 22334C AKE4 + AH 2334 | M 190 × 3 | 146 | 24 | 152 | 5.25 | | 170 | 180 | 23036C DKE4 + AH 3036 | M 190 × 3 | 92 | 17 | 98 | 2.8 | | | 180 | 24036C K30E4 + AH 24036 | M 190 × 3 | 116 | 16 | 127 | 3.19 | | | 180 | 23136C KE4 + AH 3136 | M 200 × 3 | 116 | 19 | 122 | 4.2 | | | 180 | 24136CK30E4 + AH 24136 | M 190 × 3 | 134 | 16 | 145 | 3.74 | | | 180 | 22236CDKE4 + AH 2236 | M 200 × 3 | 105 | 17 | 110 | 3.75 | | | 180 | 23236CKE4 + AH 3236 | M 200 × 3 | 140 | 24 | 146 | 5.3 | | | 180 | 22336CAKE4 + AH 2336 | M 200 × 3 | 154 | 26 | 160 | 5.85 | | 180 | 190 | 23038C AKE4 + AH 3038 | Tr 205 × 4 | 96 | 18 | 102 | 3.35 | | | 190 | 24038C K30E4 + AH 24038 | M 200 × 3 | 118 | 18 | 131 | 3.47 | | | 190 | 23138C KE4 + AH 3138 | Tr 210 × 4 | 125 | 20 | 131 | 4.9 | | | 190 | 24138CK30E4 + AH 24138 | M 200 × 3 | 146 | 18 | 159 | 4.38 | | | 190 | 22238CAKE4 + AH 2238 | Tr 210 × 4 | 112 | 18 | 117 | 4.25 | | | 190 | 23238CKE4 + AH 3238 | Tr 210 × 4 | 145 | 25 | 152 | 5.9 | | | 190 | 22338CAKE4 + AH 2338 | Tr 210 × 4 | 160 | 26 | 167 | 6.65 | | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | Screw Thread | D | imensions
(mm) | | Mass
(kg) | |-------------------|---------------------------------|---|--|--------------------------|----------------------|--------------------------|-----------------------------| | d_1 | (mm)
d | Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 190 | 200 | 23040CAKE4 + AH 3040 | Tr 215 × 4 | 102 | 19 | 108 | 3.8 | | | 200 | 24040CK30E4 + AH 24040 | Tr 210 × 4 | 127 | 18 | 140 | 3.92 | | | 200 | 23140CKE4 + AH 3140 | Tr 220 × 4 | 134 | 21 | 140 | 5.5 | | | 200 | 24140CK30E4 + AH 24140 | Tr 210 × 4 | 158 | 18 | 171 | 5.0 | | | 200 | 22240CAKE4 + AH 2240 | Tr 220 × 4 | 118 | 19 | 123 | 4.7 | | | 200 | 23240CKE4 + AH 3240 | Tr 220 × 4 | 153 | 25 | 160 | 6.7 | | | 200 | 22340CAKE4 + AH 2340 | Tr 220 × 4 | 170 | 30 | 177 | 7.55 | | 200 | 220 | 23044CAKE4 + AH 3044 | Tr 235 × 4 | 111 | 20 | 117 | 7.4 | | | 220 | 24044CK30E4 + AH 24044 | Tr 230 × 4 | 138 | 20 | 152 | 8.23 | | | 220 | 23144CKE4 + AH 3144 | Tr 240 × 4 | 145 | 23 | 151 | 10.5 | | | 220
220
220
220 | 24144CK30E4 + AH 24144 22244CAKE4 + AH 2244 23244CKE4 + AH 2344 22344CAKE4 + AH
2344 | Tr 230 × 4
Tr 240 × 4
Tr 240 × 4
Tr 240 × 4 | 170
130
181
181 | 20
20
30
30 | 184
136
189
189 | 10.3
9.1
13.5
13.5 | | 220 | 240 | 23048CAKE4 + AH 3048 | Tr 260 × 4 | 116 | 21 | 123 | 8.75 | | | 240 | 24048CK30E4 + AH 24048 | Tr 250 × 4 | 138 | 20 | 153 | 9.0 | | | 240 | 23148CKE4 + AH 3148 | Tr 260 × 4 | 154 | 25 | 161 | 12 | | | 240
240
240
240 | 24148CK30E4 + AH 24148 22248CAKE4 + AH 2248 23248CAKE4 + AH 2348 22348CAKE4 + AH 2348 | Tr 260 × 4
Tr 260 × 4
Tr 260 × 4
Tr 260 × 4 | 180
144
189
189 | 20
21
30
30 | 195
150
197
197 | 12.6
11
15.5
15.5 | | 240 | 260 | 23052CAKE4 + AH 3052 | Tr 280 × 4 | 128 | 23 | 135 | 10.5 | | | 260 | 24052CAK30E4 + AH 24052 | Tr 270 × 4 | 162 | 22 | 178 | 11.7 | | | 260 | 23152CAKE4 + AH 3152 | Tr 290 × 4 | 172 | 26 | 179 | 16 | | | 260 | 24152CAK30E4 + AH 24152 | Tr 280 × 4 | 202 | 22 | 218 | 15.5 | | | 260 | 22252CAKE4 + AH 2252 | Tr 290 × 4 | 155 | 23 | 161 | 14 | | | 260 | 23252CAKE4 + AH 2352 | Tr 290 × 4 | 205 | 30 | 213 | 19.5 | | | 260 | 22352CAKE4 + AH 2352 | Tr 290 × 4 | 205 | 30 | 213 | 19.5 | | 260 | 280 | 23056CAKE4 + AH 3056 | Tr 300 × 4 | 131 | 24 | 139 | 12 | | | 280 | 24056CAK30E4 + AH 24056 | Tr 290 × 4 | 162 | 22 | 179 | 12.6 | | | 280 | 23156CAKE4 + AH 3156 | Tr 310 × 5 | 175 | 28 | 183 | 17.5 | | | 280 | 24156C AK30E4 + AH 24156 | Tr 300 × 4 | 202 | 22 | 219 | 16.8 | | | 280 | 22256C AKE4 + AH 2256 | Tr 310 × 5 | 155 | 24 | 163 | 15 | | | 280 | 23256C AKE4 + AH 2356 | Tr 310 × 5 | 212 | 30 | 220 | 21.5 | | | 280 | 22356C AKE4 + AH 2356 | Tr 310 × 5 | 212 | 30 | 220 | 21.5 | M>K Shaft Diameter 280 – 380 mm | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | 3 | Mass
(kg) | |----------------|------------------------|-------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 280 | 300 | 23060CAKE4 + AH 3060 | Tr 320 × 5 | 145 | 26 | 153 | 14.5 | | | 300 | 24060CAK30E4 + AH 24060 | Tr 310 × 5 | 184 | 24 | 202 | 15.5 | | | 300 | 23160CAKE4 + AH 3160 | Tr 330 × 5 | 192 | 30 | 200 | 21 | | | 300 | 24160CAK30E4 + AH 24160 | Tr 320 × 5 | 224 | 24 | 242 | 20.3 | | | 300 | 22260CAKE4 + AH 2260 | Tr 330 × 5 | 170 | 26 | 178 | 18 | | | 300 | 23260CAKE4 + AH 3260 | Tr 330 × 5 | 228 | 34 | 236 | 20 | | 300 | 320 | 23064CAKE4 + AH 3064 | Tr 345 × 5 | 149 | 27 | 157 | 16 | | | 320 | 24064CAK30E4 + AH 24064 | Tr 330 × 5 | 184 | 24 | 202 | 16.4 | | | 320 | 23164CAKE4 + AH 3164 | Tr 350 × 5 | 209 | 31 | 217 | 24.5 | | | 320 | 24164CAK30E4 + AH 24164 | Tr 340 × 5 | 242 | 24 | 260 | 23.5 | | | 320 | 23264CAKE4 + AH 3264 | Tr 350 × 5 | 246 | 36 | 254 | 25 | | 320 | 340 | 23068CAKE4 + AH 3068 | Tr 365 × 5 | 162 | 28 | 171 | 19.5 | | | 340 | 24068CAK30E4 + AH 24068 | Tr 360 × 5 | 206 | 26 | 225 | 21.2 | | | 340 | 23168CAKE4 + AH 3168 | Tr 370 × 5 | 225 | 33 | 234 | 29 | | | 340 | 24168CAK30E4 + AH 24168 | Tr 360 × 5 | 269 | 26 | 288 | 28.3 | | | 340 | 23268CAKE4 + AH 3268 | Tr 370 × 5 | 264 | 38 | 273 | 35.5 | | 340 | 360 | 23072CAKE4 + AH 3072 | Tr 385 × 5 | 167 | 30 | 176 | 21 | | | 360 | 24072CAK30E4 + AH 24072 | Tr 380 × 5 | 206 | 26 | 226 | 22.5 | | | 360 | 23172CAKE4 + AH 3172 | Tr 400 × 5 | 229 | 35 | 238 | 33 | | | 360 | 24172CAK30E4 + AH 24172 | Tr 380 × 5 | 269 | 26 | 289 | 30 | | | 360 | 23272CAKE4 + AH 3272 | Tr 400 × 5 | 274 | 40 | 283 | 41.5 | | 360 | 380 | 23076CAKE4 + AH 3076 | Tr 410 × 5 | 170 | 31 | 180 | 23.5 | | | 380 | 24076CAK30E4 + AH 24076 | Tr 400 × 5 | 208 | 28 | 228 | 24.1 | | | 380 | 23176CAKE4 + AH 3176 | Tr 420 × 5 | 232 | 36 | 242 | 35.5 | | | 380 | 24176CAK30E4 + AH 24176 | Tr 400 × 5 | 271 | 28 | 291 | 32.1 | | | 380 | 23276CAKE4 + AH 3276 | Tr 420 × 5 | 284 | 42 | 294 | 45.5 | | 380 | 400 | 23080CAKE4 + AH 3080 | Tr 430 × 5 | 183 | 33 | 193 | 27.5 | | | 400 | 24080CAK30E4 + AH 24080 | Tr 420 × 5 | 228 | 28 | 248 | 28 | | | 400 | 23180CAKE4 + AH 3180 | Tr 440 × 5 | 240 | 38 | 250 | 39.5 | | | 400 | 24180CAK30E4 + AH 24180 | Tr 420 × 5 | 278 | 28 | 298 | 34.8 | | | 400 | 23280CAKE4 + AH 3280 | Tr 440 × 5 | 302 | 44 | 312 | 51.5 | | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | 3 | Mass
(kg) | |-----------------|------------------------|-------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter (mm) | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 400 | 420 | 23084CAKE4 + AH 3084 | Tr 450 × 5 | 186 | 34 | 196 | 29 | | | 420 | 24084CAK30E4 + AH 24084 | Tr 440 × 5 | 230 | 30 | 252 | 29.8 | | | 420 | 23184CAKE4 + AH 3184 | Tr 460 × 5 | 266 | 40 | 276 | 46.5 | | | 420 | 24184CAK30E4 + AH 24184 | Tr 440 × 5 | 310 | 30 | 332 | 41.4 | | | 420 | 23284CAKE4 + AH 3284 | Tr 460 × 5 | 321 | 46 | 331 | 59 | | 420 | 440 | 23088CAKE4 + AHX 3088 | Tr 470 × 5 | 194 | 35 | 205 | 42 | | | 440 | 24088CAK30E4 + AH 24088 | Tr 460 × 5 | 242 | 30 | 264 | 33 | | | 440 | 23188CAKE4 + AHX 3188 | Tr 480 × 5 | 270 | 42 | 281 | 50 | | | 440 | 24188CAK30E4 + AH 24188 | Tr 460 × 5 | 310 | 30 | 332 | 43.5 | | | 440 | 23288CAKE4 + AHX 3288 | Tr 480 × 5 | 330 | 48 | 341 | 64 | | 440 | 460 | 23092CAKE4 + AHX 3092 | Tr 490 × 5 | 202 | 37 | 213 | 46 | | | 460 | 24092CAK30E4 + AH 24092 | Tr 480 × 5 | 250 | 32 | 273 | 35.9 | | | 460 | 23192CAKE4 + AHX 3192 | Tr 510 × 6 | 285 | 43 | 296 | 58 | | | 460 | 24192CAK30E4 + AH 24192 | Tr 480 × 5 | 332 | 32 | 355 | 49.7 | | | 460 | 23292CAKE4 + AHX 3292 | Tr 510 × 6 | 349 | 50 | 360 | 74.5 | | 460 | 480 | 23096CAKE4 + AHX 3096 | Tr 520 × 6 | 205 | 38 | 217 | 51 | | | 480 | 24096CAK30E4 + AH 24096 | Tr 500 × 5 | 250 | 32 | 273 | 37.5 | | | 480 | 23196CAKE4 + AHX 3196 | Tr 530 × 6 | 295 | 45 | 307 | 63 | | | 480 | 24196CAK30E4 + AH 24196 | Tr 500 × 5 | 340 | 32 | 363 | 53 | | | 480 | 23296CAKE4 + AHX 3296 | Tr 530 × 6 | 364 | 52 | 376 | 82 | | 480 | 500 | 230/500CAKE4 + AHX 30/500 | Tr 540 × 6 | 209 | 40 | 221 | 54.5 | | | 500 | 240/500CAK30E4 + AH 240/500 | Tr 530 × 6 | 253 | 35 | 276 | 41.9 | | | 500 | 231/500CAKE4 + AHX 31/500 | Tr 550 × 6 | 313 | 47 | 325 | 71 | | | 500 | 241/500CAK30E4 + AH 241/500 | Tr 530 × 6 | 360 | 35 | 383 | 61.2 | | | 500 | 232/500CAKE4 + AHX 32/500 | Tr 550 × 6 | 393 | 54 | 405 | 94.5 | Nut with Washer | | | | | | | | | | | | | Uni | its : mm | |----------------|---------------|-------|-------|-----|----------|---------------------|----------|---|----------|--------------|---|-------------------|---------------| | | | | | Nut | Series | AN | | | | | | Reference | | | minal
mbers | Screw Threads | d_2 | d_1 | g | Basic Di | mensior
<i>h</i> | is d_3 | В | r
max | Mass
(kg) | Adapter (¹)
Sleeve Bore
Dia Numbers | Washer
Numbers | Shaft
Dia. | | Nominal
Numbers | Screw Threads G | d_2 | d_1 | g
g | asic Di | mensio | ns d_3 | В | r
max. | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Washer
Numbers | Shaft
Dia. | |-------------------------|-------------------------------|-------------------|-------------------|-------------------|----------------|-------------|-------------------|----------------|-------------------|-------------------------|--|-------------------------|---------------| | AN 02 | M 15×1 | 25 | 21 | 21 | 4 | 2 | 15.5 | 5 | 0.4 | 0.010 | — | AW 02 X | 15 | | AN 03 | M 17×1 | 28 | 24 | 24 | 4 | 2 | 17.5 | 5 | 0.4 | 0.013 | — | AW 03 X | 17 | | AN 04 | M 20×1 | 32 | 26 | 28 | 4 | 2 | 20.5 | 6 | 0.4 | 0.019 | 04 | AW 04 X | 20 | | AN 05 | M 25×1.5 | 38 | 32 | 34 | 5 | 2 | 25.8 | 7 | 0.4 | 0.025 | 05 | AW 05 X | 25 | | AN 06 | M 30×1.5 | 45 | 38 | 41 | 5 | 2 | 30.8 | 7 | 0.4 | 0.043 | 06 | AW 06 X | 30 | | AN 07 | M 35×1.5 | 52 | 44 | 48 | 5 | 2 | 35.8 | 8 | 0.4 | 0.053 | 07 | AW 07 X | 35 | | AN 08 | M 40×1.5 | 58 | 50 | 53 | 6 | 2.5 | 40.8 | 9 | 0.5 | 0.085 | 08 | AW 08 X | 40 | | AN 09 | M 45×1.5 | 65 | 56 | 60 | 6 | 2.5 | 45.8 | 10 | 0.5 | 0.119 | 09 | AW 09 X | 45 | | AN 10 | M 50×1.5 | 70 | 61 | 65 | 6 | 2.5 | 50.8 | 11 | 0.5 | 0.148 | 10 | AW 10 X | 50 | | AN 11 | M 55×2 | 75 | 67 | 69 | 7 | 3 | 56 | 11 | 0.5 | 0.158 | 11 | AW 11 X | 55 | | AN 12 | M 60×2 | 80 | 73 | 74 | 7 | 3 | 61 | 11 | 0.5 | 0.174 | 12 | AW 12 X | 60 | | AN 13 | M 65×2 | 85 | 79 | 79 | 7 | 3 | 66 | 12 | 0.5 | 0.203 | 13 | AW 13 X | 65 | | AN 14 | M 70×2 | 92 | 85 | 85 | 8 | 3.5 | 71 | 12 | 0.5 | 0.242 | 14 | AW 14 X | 70 | | AN 15 | M 75×2 | 98 | 90 | 91 | 8 | 3.5 | 76 | 13 | 0.5 | 0.287 | 15 | AW 15 X | 75 | | AN 16 | M 80×2 | 105 | 95 | 98 | 8 | 3.5 | 81 | 15 | 0.6 | 0.395 | 16 | AW 16 X | 80 | | AN 17 | M 85×2 | 110 | 102 | 103 | 8 | 3.5 | 86 | 16 | 0.6 | 0.45 | 17 | AW 17 X | 85 | | AN 18 | M 90×2 | 120 | 108 | 112 | 10 | 4 | 91 | 16 | 0.6 | 0.555 | 18 | AW 18 X | 90 | | AN 19 | M 95×2 | 125 | 113 | 117 | 10 | 4 | 96 | 17 | 0.6 | 0.66 | 19 | AW 19 X | 95 | | AN 20 | M 100×2 | 130 | 120 | 122 | 10 | 4 | 101 | 18 | 0.6 | 0.70 | 20 | AW 20 X | 100 | | AN 21 | M 105×2 | 140 | 126 | 130 | 12 | 5 | 106 | 18 | 0.7 | 0.845 | 21 | AW 21 X | 105 | | AN 22 | M 110×2 | 145 | 133 | 135 | 12 | 5 | 111 | 19 | 0.7 | 0.965 | 22 | AW 22 X | 110 | | AN 23
AN 24
AN 25 | M 115×2
M 120×2
M 125×2 | 150
155
160 | 137
138
148 | 140
145
150 | 12
12
12 |
5
5
5 | 116
121
126 | 19
20
21 | 0.7
0.7
0.7 | 1.01
1.08
1.19 | | AW 23
AW 24
AW 25 | | Note (1) Applicable to adapter sleeve Series A31, A2, A3, and A23. Remarks The basic design and dimensions of screw threads are in accordance with JIS B 0205. Nut with Washer Units: mm | | | | | | | Reference | | | | | | | | |-------------------------|-------------------------------|-------------------|-------------------|-------------------|----------------|-------------|-------------------------|----------------|-------------------|-------------------------|--|-------------------|-----------------| | Nominal
Numbers | Screw Threads ${\it G}$ | d_2 | d_1 | g
B | asic Di b | mensio | ons d_3 | В | r
max. | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Washer
Numbers | Shaft
Dia. | | AN 26 | M 130×2 | 165 | 149 | 155 | 12 | 5 | 131 | 21 | 0.7 | 1.25 | 26 | AW 26 | 130 | | AN 27 | M 135×2 | 175 | 160 | 163 | 14 | 6 | 136 | 22 | 0.7 | 1.55 | — | AW 27 | 135 | | AN 28 | M 140×2 | 180 | 160 | 168 | 14 | 6 | 141 | 22 | 0.7 | 1.56 | 28 | AW 28 | 140 | | AN 29
AN 30
AN 31 | M 145×2
M 150×2
M 155×3 | 190
195
200 | 172
171
182 | 178
183
186 | 14
14
16 | 6
6
7 | 146
151
156.5 | 24
24
25 | 0.7
0.7
0.7 | 2.0
2.03
2.21 | | AW 29
AW 30 | 145
150
— | | AN 32
AN 33
AN 34 | M 160×3
M 165×3
M 170×3 | 210
210
220 | 182
193
193 | 196
196
206 | 16
16
16 | 7
7
7 | 161.5
166.5
171.5 | 25
26
26 | 0.7
0.7
0.7 | 2.59
2.43
2.8 | 32
—
34 | AW 32
AW 34 | 160
—
170 | | AN 36 | M 180×3 | 230 | 203 | 214 | 18 | 8 | 181.5 | 27 | 0.7 | 3.05 | 36 | AW 36 | 180 | | AN 38 | M 190×3 | 240 | 214 | 224 | 18 | 8 | 191.5 | 28 | 0.7 | 3.4 | 38 | AW 38 | 190 | | AN 40 | M 200×3 | 250 | 226 | 234 | 18 | 8 | 201.5 | 29 | 0.7 | 3.7 | 40 | AW 40 | 200 | | | | | | Nut S | Series . | ANL | | | | | | | | | ANL 24 | M 120×2 | 145 | 133 | 135 | 12 | 5 | 121 | 20 | 0.7 | 0.78 | 24 | AWL 24 | 120 | | ANL 26 | M 130×2 | 155 | 143 | 145 | 12 | 5 | 131 | 21 | 0.7 | 0.88 | 26 | AWL 26 | 130 | | ANL 28 | M 140×2 | 165 | 151 | 153 | 14 | 6 | 141 | 22 | 0.7 | 0.99 | 28 | AWL 28 | 140 | | ANL 30 | M 150×2 | 180 | 164 | 168 | 14 | 6 | 151 | 24 | 0.7 | 1.38 | 30 | AWL 30 | 150 | | ANL 32 | M 160×3 | 190 | 174 | 176 | 16 | 7 | 161.5 | 25 | 0.7 | 1.56 | 32 | AWL 32 | 160 | | ANL 34 | M 170×3 | 200 | 184 | 186 | 16 | 7 | 171.5 | 26 | 0.7 | 1.72 | 34 | AWL 34 | 170 | | ANL 36 | M 180×3 | 210 | 192 | 194 | 18 | 8 | 181.5 | 27 | 0.7 | 1.95 | 36 | AWL 36 | 180 | | ANL 38 | M 190×3 | 220 | 202 | 204 | 18 | 8 | 191.5 | 28 | 0.7 | 2.08 | 38 | AWL 38 | 190 | | ANL 40 | M 200×3 | 240 | 218 | 224 | 18 | 8 | 201.5 | 29 | 0.7 | 2.98 | 40 | AWL 40 | 200 | **Note** (1) Series AN is applicable to adapter sleeve Series A31 and A23. Series ANL is applicable to adapter sleeve Series A30. $\textbf{Remarks} \quad \text{The basic design and dimensions of screw threads are in accordance with JIS B 0205}.$ B 372 B 373 #### (For Adapters and Shafts) **ANL 60** Tr 300×4 **ANL 64** Tr 320×5 **ANL 68** Tr 340×5 **ANL 72** Tr 360×5 **ANL 76** Tr 380×5 **ANL 80** Tr 400×5 Nut with Stopper Nut Series AN Nominal Screw **Basic Dimensions** Mass Adapter (1) Stopper Shaft Numbers Threads Tapped Holes Sleeve Bore (kg) bhBNumbers Dia. d_2 approx. Dia. Numbers I Screw Threads (S) max. 280 250 260 20 10 222 300 270 280 20 10 242 32 0.8 15 M 8×1.25 238 34 0.8 15 M 8×1.25 258 **AN 44** Tr 220×4 **AL 44** 220 **AL 44** 240 **48** Tr 240×4 48 5.95 36 0.8 18 M 10×1.5 281 **AN 52** Tr 260×4 330 300 306 24 12 262 8.05 52 **AL 52** 260 350 320 326 24 12 282 38 0.8 18 M 10×1.5 **AL 52** 280 **56** Tr 280×4 **60** Tr 300×4 380 340 356 24 12 302 40 0.8 18 M 10×1.5 326 11.8 AL 60 300 60 64 Tr 320×5 400 360 376 24 12 322.5 42 0.8 18 M 10×1.5 345 13.1 **AL 64** 320 **AN 68** Tr 340×5 440 400 410 28 15 342.5 55 1 21 M 12×1.75 372 23.1 **AL 68** 340 460 420 430 28 15 362.5 58 1 490 450 454 32 18 382.5 60 1 **72** Tr 360×5 21 M 12×1.75 392 25.1 72 **AL 68** 360 21 M 12×1.75 414 31 **76** Tr 380×5 76 **AL 76** 380 **AN 80** Tr 400×5 520 470 484 32 18 402.5 62 27 M 16×2 80 **AL 80** 400 439 37 **84** Tr 420×5 | 540 | 490 | 504 | 32 | 18 | 422.5 | 70 | 1 | 88 | Tr 440×5 | 560 | 510 | 520 | 36 | 20 | 442.5 | 70 | 1 27 M 16×2 459 43.5 **AL 80** 420 84 27 M 16×2 477 45 88 **AL 88** 440 **AN 92** Tr 460×5 580 540 540 36 20 462.5 75 **AN 96** Tr 480×5 620 560 580 36 20 482.5 75 27 M 16×2 27 M 16×2 497 50.5 **AL 88** 460 527 62 **AL 96** 480 96 27 M 16×2 **AN 100** Tr 500×5 630 580 584 40 23 502.5 80 1 539 63.5 /500 **AL 100** 500 Nut Series ANL **ANL 44** Tr 220×4 260 242 242 20 9 222 0.8 12 M **ALL 44** 220 ANL 48 Tr 240×4 290 270 270 20 10 242 34 0.8 15 M 8×1.25 253 5.15 48 **ALL 48** 240 **ANL 52** Tr 260×4 310 290 290 20 10 262 34 0.8 15 M 8×1.25 273 5.65 52 **ALL 48** 260 330 310 310 24 10 282 38 0.8 15 M 8×1.25 293 **ALL 56** 280 **ANL 56** Tr 280×4 6.8 ANL 100 Tr 500×5 580 550 550 36 15 502.5 68 1 21 M 12×1.75 522 33.5 /500 ALL 96 500 Note (1) Series AN is applicable to adapter sleeve Series A31, A32 and A23. Series ANL is applicable to adapter sleeve Series A30. Remarks 1. The basic design and dimensions of screw threads are in accordance with JIS B 0216. The basic design and dimensions of threads in tapped holes are in accordance with JIS B 0205. 360 336 336 24 12 302 42 0.8 15 M 8×1.25 316 380 356 356 24 12 322.5 42 0.8 15 M 8×1.25 335 400 376 376 24 12 342.5 45 1 470 442 442 28 14 402.5 52 1 420 394 394 28 13 362.5 45 450 422 422 28 14 382.5 48 **ANL 84** Tr 420×5 490 462 462 32 14 422.5 52 1 **ANL 88** Tr 440×5 520 490 490 32 15 442.5 60 1 **ANL 92** Tr 460×5 540 510 510 32 15 462.5 60 1 **ANL 96** Tr 480×5 560 530 530 36 15 482.5 60 #### (For Withdrawal Sleeves) Units · mm NSK | Uni | | | | | | | | | | | Units : mm | | | | | |-----|----------------------------|----------------------------------|-------------------|------------|-------------------|----------|----------------|-------------------------|----------------|-------------------|----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------| | ı | | | | | Nut | Serie | s HN | | | | | | Refer | ence | | | | Nominal
Numbers | Screw
Threads | _ | | Bas | | nens | | | r | Mass | W | ithdrawal Sle | eeve Numbers | 1 | | | | G | d_2 | d_1 | g | b | h | d_3 | В | max. | (kg)
approx. | AH 31 | AH 22 | AH 32 | AH 23 | | | HN 42
HN 44
HN 48 | Tr 210×4
Tr 220×4
Tr 240×4 | 270
280
300 | 250 | 250
260
280 | 20 | 10 | 212
222
242 | 30
32
34 | 0.8
0.8
0.8 | 4.75
5.35
6.2 | AH 3138
AH 3140
AH 3144 | AH 2238
AH 2240
AH 2244 | AH 3238
AH 3240 | AH 2338
AH 2340
AH 2344 | | | HN 52
HN 58
HN 62 | Tr 260×4
Tr 290×4
Tr 310×5 | 330
370
390 | 330 | 306
346
366 | 24 | 12 | 262
292
312.5 | | 0.8
0.8
0.8 | 8.55
11.8
13.4 | AH 3148
AH 3152
AH 3156 | AH 2248
AH 2252
AH 2256 | _
_
_ | AH 2348
AH 2352
AH 2356 | | | HN 66
HN 70
HN 74 | Tr 330×5
Tr 350×5
Tr 370×5 | 420
450
470 | 410
430 | 390
420
440 | 28
28 | 15
15 | 332.5
352.5
372.5 | | 1
1
1 | 20.4
25.2
28.2 | AH 3160
AH 3164
AH 3168 | AH 2260
AH 2264 | AH 3260
AH 3264
AH 3268 | | | | HN 80
HN 84
HN 88 | Tr 400×5
Tr 420×5
Tr 440×5 | 520
540
560 | 490 | 484
504
520 | 32 | 18
18
20 | 402.5
422.5
442.5 | 62
70
70 | 1
1
1 | 40
46.9
48.5 | AH 3172
AH 3176
AH 3180 | _ | AH 3272
AH 3276
AH 3280 | | | | HN 92
HN 96
HN 102 | Tr 460×5
Tr 480×5
Tr 510×6 | 580
620
650 | 560
590 | 540
580
604 | 36
40 | 20
23 | 462.5
482.5
513 | 75
75
80 | 1
1
1 | 55
67
75 | AH 3184
AHX 3188
AHX 3192 | _ | AH 3284
AHX 3288
AHX 3292 | | | | HN 106
HN 110 | Tr 530×6
Tr 550×6 | 670
700 | | 624
654 | | 23
23 | 533
553 | 80
80 | 1 | 78
92.5 | AHX 3196
AHX 31/500 | _ | AHX 3296
AHX 32/500 | _ | | | | | | | Nut S | Series | s HNI | L | | | | AH 30 | AH 2 | | | | | HNL 41
HNL 43
HNL 47 | Tr 205×4
Tr 215×4
Tr 235×4 | 250
260
280 | 242 | 234
242
262 | 20 | 9 | 207
217
237 | 30
30
34 | 0.8
0.8
0.8 | 3.45
3.7
4.6 | AH 3038
AH 3040
AH 3044 | AH 238
AH 240
AH 244 | | | | | HNL 52
HNL 56
HNL 60 | Tr 260×4
Tr 280×4
Tr 300×4 | 310
330
360 | 310 | 290
310
336 | 24 | 10 | 262
282
302 | | 0.8
0.8
0.8 | 5.8
6.7
9.6 | AH 3048
AH 3052
AH 3056 | AH 248
AH 252
AH 256 | | | | | HNL 64
HNL 69
HNL 73 | | 380
410
430 | 384
404 | 356
384
404 | 28
28 | 13
13 | 322.5
347.5
367.5 | | 1
1
1 | 10.3
11.5
14.2 | AH 3060
AH 3064
AH 3068 | _ | | | | | HNL 77
HNL 82
HNL 86 | | 450
480
500 | 452
472 | 422
452
472 | 32
32 | 14
14 | 432.5 | 52
52 | 1
1
1 | 15
19
19.8 | AH 3072
AH 3076
AH 3080 | _ | | | | | | Tr 470×5
Tr 490×5 | 520
540
580 | 510
550 | 490
510
550 | 32
36 | 15 | 452.5
472.5
492.5 | 60 | 1
1
1 | 23.8
25
34 | AH 3084
AHX 3088
AHX 3092 | _
_
_ | | | | | HNL 104
HNL 108 | Tr 520×6
Tr 540×6 | 600
630 | | 570
590 | 36
40 | 15
20 | 523
543 | 68
68 | 1
1 | 37
43.5 | AHX 3096
AHX 30/500 | _ | | | Remarks 1. The basic design and dimensions of screw threads are in accordance with JIS B 0216 2. The number of notches in the nut may be bigger than that shown in the above figure. B 374 Units: mm **ALL 60** 300 **ALL 64** 320 **ALL 64** 340 **ALL 72** 360 **ALL 76** 380 **ALL 76** 400 **ALL 84**
420 **ALL 88** 440 **ALL 88** 460 **ALL 96** 480 9.95 68 76 80 84 88 92 15 M 8×1.25 355 15 M 8×1.25 374 18 M 10×1.5 18 M 10×1.5 398 14.9 18 M 10×1.5 438 17.4 21 M 12×1.75 462 26.2 21 M 12×1.75 482 28 21 M 12×1.75 502 29.5 Reference (Combination of Withdrawal Sleeves and Nuts) | | | | | | | | | Units : mm | |--------------------|-------|----|-------|------------|----------|-------|--------------------------|-----------------| | | | | | Stopper S | eries AL | | | Reference | | Nominal
Numbers | | | | Dimensions | | | Mass (kg)
per 100 pcs | Nut Numbers | | | t_1 | S | L_2 | s_1 | i | L_3 | approx. | | | AL 44 | 4 | 20 | 12 | 9 | 22.5 | 30.5 | 2.6 | AN 44, AN 48 | | AL 52 | 4 | 24 | 12 | 12 | 25.5 | 33.5 | 3.4 | AN 52, AN 56 | | AL 60 | 4 | 24 | 12 | 12 | 30.5 | 38.5 | 3.8 | AN 60 | | AL 64 | 5 | 24 | 15 | 12 | 31 | 41 | 5.35 | AN 64 | | AL 68 | 5 | 28 | 15 | 14 | 38 | 48 | 6.65 | AN 68, AN 72 | | AL 76 | 5 | 32 | 15 | 14 | 40 | 50 | 7.95 | AN 76 | | AL 80 | 5 | 32 | 15 | 18 | 45 | 55 | 8.2 | AN 80, AN 84 | | AL 88 | 5 | 36 | 15 | 18 | 43 | 53 | 9.0 | AN 88, AN 92 | | AL 96 | 5 | 36 | 15 | 18 | 53 | 63 | 10.4 | AN 96 | | AL 100 | 5 | 40 | 15 | 18 | 45 | 55 | 10.5 | AN 100 | | | | | | Stopper Se | ries ALL | | | | | ALL 44 | 4 | 20 | 12 | 7 | 13.5 | 21.5 | 2.12 | ANL 44 | | ALL 48 | 4 | 20 | 12 | 9 | 17.5 | 25.5 | 2.29 | ANL 48, ANL 52 | | ALL 56 | 4 | 24 | 12 | 9 | 17.5 | 25.5 | 2.92 | ANL 56 | | ALL 60 | 4 | 24 | 12 | 9 | 20.5 | 28.5 | 3.15 | ANL 60 | | ALL 64 | 5 | 24 | 15 | 9 | 21 | 31 | 4.55 | ANL 64, ANL 68 | | ALL 72 | 5 | 28 | 15 | 9 | 20 | 30 | 5.05 | ANL 72 | | ALL 76 | 5 | 28 | 15 | 12 | 24 | 34 | 5.3 | ANL 76, ANL 80 | | ALL 84 | 5 | 32 | 15 | 12 | 24 | 34 | 6.1 | ANL 84 | | ALL 88 | 5 | 32 | 15 | 14 | 28 | 38 | 6.45 | ANL 88, ANL 92 | | ALL 96 | 5 | 36 | 15 | 14 | 28 | 38 | 7.3 | ANL 96, ANL 100 | | | | | | Reference | | | | |-------------------------|---------------------------|---------------------------|----------------------------|------------------|----------------------|-------------------------------|----------------------------------| | Nominal
Numbers | | | Witho | drawal Sleeve Nu | mbers | | | | Wallibers | AH 30 | AH 31 | AH 2 | AH 22 | AH 32 | AH 3 | AH 23 | | AN 09
AN 10
AN 11 | _
_
_ | _
_
_ | AH 208
AH 209
AH 210 | _
_
_ | _
_
_ | AH 308
AH 309
AHX 310 | AH 2308
AH 2309
AHX 2310 | | AN 12
AN 13
AN 14 | _
_
_ | = | AH 211
AH 212
— | | _
_
_ | AHX 311
AHX 312 | AHX 2311
AHX 2312
— | | AN 15
AN 16
AN 17 | _
_
_ | = | AH 213
AH 214
AH 215 | | _
_
_ | AH 313
AH 314
AH 315 | AH 2313
AHX 2314
AHX 2315 | | AN 18
AN 19
AN 20 | _
_
_ | _
_
_ | AH 216
AH 217
AH 218 | _
_
_ |
AHX 3218 | AH 316
AHX 317
AHX 318 | AHX 2316
AHX 2317
AHX 2318 | | AN 21
AN 22
AN 23 | | = | AH 219
AH 220
AH 221 | = | AHX 3220 | AHX 319
AHX 320
AHX 321 | AHX 2319
AHX 2320 | | AN 24
AN 25
AN 26 |
AHX 3024 | AHX 3122
—
AHX 3124 | AH 222
—
AH 224 | = | AHX 3222
— | AHX 322
AHX 324 | AHX 2322 | | AN 27
AN 28
AN 29 | AHX 3026 | AHX 3126 | AH 226 | = | AHX 3224
AHX 3226 | AHX 326 | AHX 2324
AHX 2326 | | AN 30
AN 31
AN 32 | AHX 3028
—
AHX 3030 | AHX 3128
—
— | AH 228
—
AH 230 | | AHX 3228 | AHX 328
 | AHX 2328 | | AN 33
AN 34
AN 36 | —
AH 3032
AH 3034 | AHX 3130
—
AH 3132 | —
AH 232
AH 234 | | AHX 3230
AH 3232 | AHX 330
AH 332 | AHX 2330
AH 2332 | | AN 38
AN 40 | AH 3036
— | AH 3134
AH 3136 | AH 236
— | —
AH 2236 | AH 3234
AH 3236 | AH 334
— | AH 2334
AH 2336 | Units: mm B 379 Bent-Tab Straight-Tab Units: mm | Nomina | al Numbers | Lock-washer Series AW | | | | | | | | | F | Reference | | | | |-------------------------|-------------------------------|-----------------------|----------------------|-------------|-------------|-------------|----------------|----------------|-------------|-------------------|-----------------|-------------------------------------|--|-------------------------|----------------| | Bent-Tab | Straight-Tab | d_3 | M | f_1 | Basic B_1 | Dimen | sions d_4 | d_5 | Ben
** | it-Tab B_2 | No. of
Teeth | Mass (kg)
per 100 pcs
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Nut
Numbers | Shaft
Dia. | | AW 02
AW 03
AW 04 | AW 02 X
AW 03 X
AW 04 X | 15
17
20 | 13.5
15.5
18.5 | 4
4
4 | 1
1
1 | 4
4
4 | 21
24
26 | 28
32
36 | 1
1
1 | 2.5
2.5
2.5 | 13
13
13 | 0.253
0.315
0.35 | <u>-</u>
04 | AN 02
AN 03
AN 04 | 15
17
20 | | AW 05 | AW 05 X | 25 | 23 | 5 | 1.2 | 5 | 32 | 42 | 1 | 2.5 | 13 | 0.64 | 05 | AN 05 | 25 | | AW 06 | AW 06 X | 30 | 27.5 | 5 | 1.2 | 5 | 38 | 49 | 1 | 2.5 | 13 | 0.78 | 06 | AN 06 | 30 | | AW 07 | AW 07 X | 35 | 32.5 | 6 | 1.2 | 5 | 44 | 57 | 1 | 2.5 | 15 | 1.04 | 07 | AN 07 | 35 | | AW 08 | AW 08 X | 40 | 37.5 | 6 | 1.2 | 6 | 50 | 62 | 1 | 2.5 | 15 | 1.23 | 08 | AN 08 | 40 | | AW 09 | AW 09 X | 45 | 42.5 | 6 | 1.2 | 6 | 56 | 69 | 1 | 2.5 | 17 | 1.52 | 09 | AN 09 | 45 | | AW 10 | AW 10 X | 50 | 47.5 | 6 | 1.2 | 6 | 61 | 74 | 1 | 2.5 | 17 | 1.6 | 10 | AN 10 | 50 | | AW 11 | AW 11 X | 55 | 52.5 | 8 | 1.2 | 7 | 67 | 81 | 1 | 4 | 17 | 1.96 | 11 | AN 11 | 55 | | AW 12 | AW 12 X | 60 | 57.5 | 8 | 1.5 | 7 | 73 | 86 | 1.2 | 4 | 17 | 2.53 | 12 | AN 12 | 60 | | AW 13 | AW 13 X | 65 | 62.5 | 8 | 1.5 | 7 | 79 | 92 | 1.2 | 4 | 19 | 2.9 | 13 | AN 13 | 65 | | AW 14 | AW 14 X | 70 | 66.5 | 8 | 1.5 | 8 | 85 | 98 | 1.2 | 4 | 19 | 3.35 | 14 | AN 14 | 70 | | AW 15 | AW 15 X | 75 | 71.5 | 8 | 1.5 | 8 | 90 | 104 | 1.2 | 4 | 19 | 3.55 | 15 | AN 15 | 75 | | AW 16 | AW 16 X | 80 | 76.5 | 10 | 1.8 | 8 | 95 | 112 | 1.2 | 4 | 19 | 4.65 | 16 | AN 16 | 80 | | AW 17 | AW 17 X | 85 | 81.5 | 10 | 1.8 | 8 | 102 | 119 | 1.2 | 4 | 19 | 5.25 | 17 | AN 17 | 85 | | AW 18 | AW 18 X | 90 | 86.5 | 10 | 1.8 | 10 | 108 | 126 | 1.2 | 4 | 19 | 6.25 | 18 | AN 18 | 90 | | AW 19 | AW 19 X | 95 | 91.5 | 10 | 1.8 | 10 | 113 | 133 | 1.2 | 4 | 19 | 6.7 | 19 | AN 19 | 95 | | AW 20 | AW 20 X | 100 | 96.5 | 12 | 1.8 | 10 | 120 | 142 | 1.2 | 6 | 19 | 7.65 | 20 | AN 20 | 100 | | AW 21 | AW 21 X | 105 | 100.5 | 12 | 1.8 | 12 | 126 | 145 | 1.2 | 6 | 19 | 8.25 | 21 | AN 21 | 105 | | AW 22 | AW 22 X | 110 | 105.5 | 12 | 1.8 | 12 | 133 | 154 | 1.2 | 6 | 19 | 9.4 | 22 | AN 22 | 110 | | AW 23 | AW 23 X | 115 | 110.5 | 12 | 2 | 12 | 137 | 159 | 1.5 | 6 | 19 | 10.8 | | AN 23 | 115 | | AW 24 | AW 24 X | 120 | 115 | 14 | 2 | 12 | 138 | 164 | 1.5 | 6 | 19 | 10.5 | 24 | AN 24 | 120 | | AW 25 | AW 25 X | 125 | 120 | 14 | 2 | 12 | 148 | 170 | 1.5 | 6 | 19 | 11.8 | | AN 25 | 125 | Note (1) Applicable to adapter sleeve Series A31, A2, A3, and A23. Remarks Lock-washers with straight tabs shall be used with adapter sleeves having narrow slits, and for those having wide slits, either type of lock-washer may be used. Bent-Tab Straight-Tab | Nominal Numbers Lock-washer Series AW | | | | | | | | | | | F | Reference | | | | |---------------------------------------|--------------|-------|-------|-------|---------------|-------|-------------|--------|-----------------|-------------|-----------------|-------------------------------------|--|----------------|---------------| | Bent-Tab | Straight-Tab | d_3 | M | f_1 | Basic I B_1 | Dimen | sions d_4 | d_5 | Ben
r | t-Tab B_2 | No. of
Teeth | Mass (kg)
per 100 pcs
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Nut
Numbers | Shaft
Dia. | | AW 26 | AW 26 X | 130 | 125 | 14 | 2 | 12 | 149 | 175 | 1.5 | 6 | 19 | 11.3 | 26 | AN 26 | 130 | | AW 27 | AW 27 X | 135 | 130 | 14 | 2 | 14 | 160 | 185 | 1.5 | 6 | 19 | 14.4 | — | AN 27 | 135 | | AW 28 | AW 28 X | 140 | 135 | 16 | 2 | 14 | 160 | 192 | 1.5 | 8 | 19 | 14.2 | 28 | AN 28 | 140 | | AW 29 | AW 29 X | 145 | 140 | 16 | 2 | 14 | 172 | 202 | 1.5 | 8 | 19 | 16.8 | 30 | AN 29 | 145 | | AW 30 | AW 30 X | 150 | 145 | 16 | 2 | 14 | 171 | 205 | 1.5 | 8 | 19 | 15.9 | | AN 30 | 150 | | AW 31 | AW 31 X | 155 | 147.5 | 16 | 2.5 | 16 | 182 | 212 | 1.5 | 8 | 19 | 20.9 | | AN 31 | 155 | | AW 32 | AW 32 X | 160 | 154 | 18 | 2.5 | 16 | 182 | 217 | 1.5 | 8 | 19 | 22.2 | 32 | AN 32 | 160 | | AW 33 | AW 33 X | 165 | 157.5 | 18 | 2.5 | 16 | 193 | 222 | 1.5 | 8 | 19 | 24.1 | — | AN 33 | 165 | | AW 34 | AW 34 X | 170 | 164 | 18 | 2.5 | 16 | 193 | 232 | 1.5 | 8 | 19 | 24.7 | 34 | AN 34 | 170 | | AW 36 | AW 36 X | 180 | 174 | 20 | 2.5 | 18 | 203 | 242 | 1.5 | 8 | 19 | 26.8 | 36 | AN 36 | 180 | | AW 38 | AW 38 X | 190 | 184 | 20 | 2.5 | 18 | 214 | 252 | 1.5 | 8 | 19 | 27.8 | 38 | AN 38 | 190 | | AW 40 | AW 40 X | 200 | 194 | 20 | 2.5 | 18 | 226 | 262 | 1.5 | 8 | 19 | 29.3 | 40 | AN 40 | 200 | | | | | | | | Wash | ner Seri | es AWL | | | | | | | | | AWL 24 | AWL 24 X | 120 | 115 | 14 | 2 | 12 | 133 | 155 | 1.5 | 6 | 19 | 7.7 | 24 | ANL 24 | 120 | | AWL 26 | AWL 26 X | 130 | 125 | 14 | 2 | 12 | 143 | 165 | 1.5 | 6 | 19 | 8.7 | 26 | ANL 26 | 130 | | AWL 28 | AWL 28 X | 140 | 135 | 16 | 2 | 14 | 151 | 175 | 1.5 | 8 | 19 | 10.9 | 28 | ANL 28 | 140 | | AWL 30 | AWL 30 X | 150 | 145 | 16 | 2 | 14 | 164 | 190 | 1.5 | 8 | 19 | 11.3 | 30 | ANL 30 | 150 | | AWL 32 | AWL 32 X | 160 | 154 | 18 | 2.5 | 16 | 174 | 200 | 1.5 | 8 | 19 | 16.2 | 32 | ANL 32 | 160 | | AWL 34 | AWL 34 X | 170 | 164 | 18 | 2.5 | 16 | 184 | 210 | 1.5 | 8 | 19 | 19 | 34 | ANL 34 | 170 | | AWL 36 | AWL 36 X | 180 | 174 | 20 | 2.5 | 18 | 192 | 220 | 1.5 | 8 | 19 | 18 | 36 | ANL 36 | 180 | | AWL 38 | AWL 38 X | 190 | 184 | 20 | 2.5 | 18 | 202 | 230 | 1.5 | 8 | 19 | 20.5 | 38 | ANL 38 | 190 | | AWL 40 | AWL 40 X | 200 | 194 | 20 | 2.5 | 18 | 218 | 250 | 1.5 | 8 | 19 | 21.4 | 40 | ANL 40 | 200 | Note (1) Series AW is applicable to adapter sleeve Series A31 and A23. Series AWL is
applicable to adapter sleeve Series A30. Remarks Lock-washers with straight tabs shall be used with adapter sleeves having narrow slits, and for those having wide slits, either type of lock-washer may be used. Page # INTRODUCTION OF NSK PRODUCTS - APPENDICES ## INTRODUCTION OF NSK PRODUCTS Photos of NSK Products AP | 1 | Conversion from SI (International Units) System | C 8 | |----|---|--| | 2 | N-kgf Force Conversion Table | C10 | | 3 | kg-lb Mass Conversion Table | C11 | | 4 | $^{\circ}C^{\circ}F$ Temperature Conversion Table | C12 | | 5 | Viscosity Conversion Table | C13 | | 6 | inch-mm Dimension Conversion Table | C14 | | 7 | Hardness Conversion Table | C16 | | 8 | Physical and Mechanical Properties of Materials | C17 | | 9 | Tolerances for Shaft Diameters | C18 | | 10 | Tolerances for Housing Bore Diameters | C20 | | 11 | Values of Standard Tolerance Grades IT | C22 | | 12 | Speed Factor $f_{\rm n}$ | C24 | | 13 | Fatigue Life Factor f_h and Fatigue Life $L \cdot L_h$ | C25 | | 14 | Index of Inch Design Tapered Roller Bearings | C26 | | | 1
2
3
4
5
6
7
8
9
10
11
12 | 1 Conversion from SI (International Units) System 2 N-kgf Force Conversion Table 3 kg-lb Mass Conversion Table 4 °C-°F Temperature Conversion Table 5 Viscosity Conversion Table 6 inch-mm Dimension Conversion Table 7 Hardness Conversion Table 8 Physical and Mechanical Properties of Materials 9 Tolerances for Shaft Diameters 10 Tolerances for Housing Bore Diameters 11 Values of Standard Tolerance Grades IT 12 Speed Factor f_n 13 Fatigue Life Factor f_h and Fatigue Life $L \cdot L_h$ 14 Index of Inch Design Tapered Roller Bearings | ## **NSK** ### **AUTOMOTIVE PRODUCTS** Column Type Electric Power Steering (CAT.No. E4102) Pinion Type Electric Power Steering (CAT.No. E4102) Offeet Ball Screw Type Electric Power Steering (CAT.No. E4102) Long Life Water Pump Bearings (CAT.No. E396, E4102) Hub Unit Bearings (CAT.No. E4201) One-Way Clutch (CAT.No. E4102) ### PRECISION MACHINE COMPONENTS ## **BALL SCREWS** NSK Standard Ball Screws Compact FA Series (CAT. No. E3239, E3162) High-Speed, Low-Noise Ball Screws BSS Series (CAT. No. E3162) Ball Screws for High-Speed Machine Tools HMD Series (CAT. No. E3162) Ball Screws for Twin-Drive Systems TW Series (CAT. No. E3162) Ball Screws for Small Lathes BSL Series (CAT. No. E3162) Ball Screws for High-Load Drive HTF-SRC Series, HTF-SRD Series, HTF Series, A1 Series (CAT. No. E3238, E3162) Highly Dust-Resistant Ball Screws, NSK Linear Guides V1 Series (CAT. No. E3162) **MONOCARRIERS** Ball Screws, NSK Linear Guides with NSK K1[™] Lubrication Unit (CAT. No. E3331, E3162) Ball Screws, NSK Linear Guides with E-DFO Thin-Film Lubrication for Vacuum Environments (CAT. No. E1258) Monocarriers (CAT. No. E3419, E3162) ## NSK ### PRECISION MACHINE COMPONENTS ## **LINEAR BEARINGS** NSK Linear Guides Roller Guides RA Series (CAT. No. E3328, E3162) NSK Linear Guides High-Accuracy Series (CAT. No. E3329, E3162) NSK Linear Guides LH Series, LS Series (CAT. No. E3162) NSK Linear Guides Miniature PU Series, PE Series (CAT. No. E3327, E3162) NSK Low-Noise Linear Guides SH Series, SS Series (CAT. No. E3162) New Type of Rolling Element Linear Motion Bearing Translide™ (CAT. No. E3324, E3162) ### PRECISION MACHINE COMPONENTS ## **MECHATRONIC ACTUATORS** Megatorque Motor™ (CAT.No. E3511) XY Modules Megapositioner™ XY Tables ## **ASSORTED SPINDLES** High Speed Integrated Motor Spindles Precision Grinding Spindles (CAT.No. E2202) Live Centers (CAT.No. E2202) Oil/Air Lubricating Unit, Fine Lube (CAT.No. E1254/A1387) Standard Type Precision Boring Heads (CAT.No. E2202) Spindles for Electrical and Electric Equipment Air Bearing Slides ## **AIR SPINDLES** Air-spindle ## RELATED PRODUCT WITH BEARING Bearing Induction Heater (CAT.No. E398) Extra Small Bearing Monitor NB-4 (Bearing Abnormality Detector) (CAT.No. E410) ## **Large Size Proximity Stepper RZ Series** C 6 C 7 ### Appendix Table 1 Conversion Table from SI (International Units) System #### Comparison of SI, CGS, and Engineering Units | Units
Unit System | Length | Mass | Time | Temp. | Acceleration | Force | Stress | Pressure | Energy | Power | |----------------------------|--------|------------------|------|-------|------------------|-------|---------------------|---------------------|--------------|---------| | SI | m | kg | s | K, °C | m/s ² | N | Pa | Pa | J | W | | CGS System | cm | g | s | °C | Gal | dyn | dyn/cm ² | dyn/cm ² | erg | erg/s | | Engineering
Unit System | m | $kgf\cdot s^2/m$ | s | °C | m/s ² | kgf | kgf/m ² | kgf/m² | $kgf\cdot m$ | kgf⋅m/s | #### **Conversion Factors from SI Units** | Parameter | SI Units | | Units other than S | I | Conversion Factors | | |-------------------|-----------------------------|------------------|--|--------------------|--|--| | raiailielei | Names of Units | Symbols | Name of Units | Symbols | from SI Units | | | Angle | Radian | rad | Degree
Minute
Second | o
,
″ | 180/π
10 800/π
648 000/π | | | Length | Meter | m | Micron
Angstrom | $\overset{\mu}{A}$ | 10 ⁶
10 ¹⁰ | | | Area | Square meter | m^2 | Are
Hectare | a
ha | 10 ⁻²
10 ⁻⁴ | | | Volume | Cubic meter | m^3 | Liter
Deciliter | l, L
dl, dL | 10 ³
10 ⁴ | | | Time | Second | s | Minute
Hour
Day | min
h
d | 1/60
1/3 600
1/86 400 | | | Frequency | Hertz | Hz | Cycle | S^{-1} | 1 | | | Speed of Rotation | Revolution per second | s^{-1} | Revolution per miunte | rpm | 60 | | | Speed | Meter per second | m/s | Kilometer per hour
Knot | km/h
kn | 3 600/1 000
3 600/1 852 | | | Acceleration | Meter per second per second | m/s ² | Gal
g | Gal
G | 10 ²
1/9.806 65 | | | Mass | Kilogram | kg | Ton | t | 10 ⁻³ | | | Force | Newton | N | Kilogram-force
Ton-force
Dyne | kgf
tf
dyn | 1/9.806 65
1/ (9.806 65×10 ³)
10 ⁵ | | | Torque or Moment | Newton · meter | N·m | Kilogram-force meter | kgf⋅m | 1/9.806 65 | | | Stress | Pascal | Pa
(N/m²) | Kilogram-force per square centimeter
Kilogram-force per square millimeter | | 1/ (9.806 65×10 ⁴)
1/ (9.806 65×10 ⁶) | | #### Prefixes Used In SI System | Multiples | Prefix | Symbols | Multiples | Prefix | Symbols | |------------------|--------|---------|-------------------|--------|---------| | 10 ¹⁸ | Exa | E | 10-1 | Deci | d | | 10 ¹⁵ | Peta | P | 10-2 | Centi | c | | 10 ¹² | Tera | T | 10-3 | Milli | m | | 10 ⁹ | Giga | G | 10-6 | Micro | μ | | 10 ⁶ | Mega | M | 10-9 | Nano | n | | 10 ³ | Kilo | k | 10-12 | Pico | p | | 10 ² | Hecto | h | 10 ⁻¹⁵ | Femto | f | | 10 | Deca | da | 10 ⁻¹⁸ | Ato | a | #### Conversion Factors from SI Units (Continued) | Parameter | SI Units | | Units other than S | I | Conversion Factors | |---|-------------------------------------|------------|--|---|---| | i arameter | Names of Units | Symbols | Names of Units | Units | from SI Units | | Pressure | Pascal
(Newton per square meter) | | | | | | Energy | Joule
(Newton · meter) | J
(N·m) | Erg
Calorie (International)
Kilogram-force meter
Kilowatt hour
French horse power hour | $\begin{array}{c} erg \\ cal_{IT} \\ kgf \cdot m \\ kW \cdot h \\ PS \cdot h \end{array}$ | 10 ⁷ 1/4.186 8 1/9.806 65 1/(3.6×10 ⁹) ≈ 3.776 72×10 ⁻⁷ | | Work | Watt
(Joule per second) | W
(J/s) | Kilogram-force meter per second
Kilocalorie per hour
French horse power | kgf·m/s
kcal/h
PS | 1/9.806 65
1/1.163
≈ 1/735.498 8 | | Viscosity, Viscosity Index | Pascal second | Pa·s | Poise | P | 10 | | Kinematic Viscosity,
Kinematic Viscosity Index | Square meter per second | m²/s | Stokes
Centistokes | St
cSt | 10 ⁴
10 ⁶ | | Temperature | Kelvin, Degree celsius | K, °C | Degree | °C | (See note (1)) | | Electric Current,
Magnetomotive Force | Ampere | A | Ampere | A | 1 | | Voltage, Electromotive Force | Volt | V | (Watts per ampere) | (W/A) | 1 | | Magnetic Field Strength | Ampere per meter | A/m | Oersted | Oe | $4\pi/10^3$ | | Magnetic Flux
Density | Tesla | Т | Gauss
Gamma | Gs
γ | 10 ⁴
10 ⁹ | | Electrical Resistance | Ohm | Ω | (Volts per ampere) | (V/A) | 1 | **Note** (1) The conversion from TK into $\theta \circ C$ is $\theta = T - 273.15$ but for a temperature difference, it is $\Delta T = \Delta \theta$. However, ΔT and $\Delta \theta$ represent temperature differences measured using the Kelvin and Celsius scales respectively. **Remarks** The names and symbols in () are equivalent to those directly above them or on their left. Example of conversion 1N=1/9.806 65kgf #### Appendix Table 2 N-kgf Conversion Table #### Appendix Table 3 kg-lb Conversion Table [Method of using this table] For example, to convert 10N into kgf, read the figure in the right kgf column adjacent to the 10 in the center column in the 1st block. This means that 10N is 1.0197kgf. To convert 10kgf into N, read the figure in the left N
column of the same row, which indicates that the answer is 98.066N. 1 N=0.1019716 kgf 1 kgf=9.80665 N [Method of using this table] For example, to convert 10kg into 1b, read the figure in the right 1b column adjacent to the 10 in the center column in the 1st block. This means that 10kg is 22.046lb. To convert 10lb into kg, read the figure in the left kg column of the same row, which indicates that the answer is 4.536kg. 1 kg=2.2046226 lb 1 lb=0.45359237 kg | N | | kgf | N | | kgf | | N | | kgf | kg | | 1b | kg | | lb | kg | | lb | |--|----------------------------|--|--|----------------------------|--|---|--|----------------------------|--|--|----------------------------|--|--|----------------------------|--|--|----------------------------|--| | 9.8066
19.613
29.420
39.227
49.033 | 1
2
3
4
5 | 0.1020
0.2039
0.3059
0.4079
0.5099 | 333.43
343.23
353.04
362.85
372.65 | 34
35
36
37
38 | 3.4670
3.5690
3.6710
3.7729
3.8749 | • | 657.05
666.85
676.66
686.47
696.27 | 67
68
69
70
71 | 6.8321
6.9341
7.0360
7.1380
7.2400 | 0.454
0.907
1.361
1.814
2.268 | 1
2
3
4
5 | 2.205
4.409
6.614
8.818
11.023 | 15.422
15.876
16.329
16.783
17.237 | 34
35
36
37
38 | 74.957
77.162
79.366
81.571
83.776 | 30.391
30.844
31.298
31.751
32.205 | 67
68
69
70
71 | 147.71
149.91
152.12
154.32
156.53 | | 78.453
88.260 | 6
7
8
9
10 | 0.6118
0.7138
0.8158
0.9177
1.0197 | 382.46
392.27
402.07
411.88
421.69 | 39
40
41
42
43 | 3.9769
4.0789
4.1808
4.2828
4.3848 | | 706.08
715.89
725.69
735.50
745.31 | 72
73
74
75
76 | 7.3420
7.4439
7.5459
7.6479
7.7498 | 2.722
3.175
3.629
4.082
4.536 | 6
7
8
9
10 | 13.228
15.432
17.637
19.842
22.046 | 17.690
18.144
18.597
19.051
19.504 | 39
40
41
42
43 | 85.980
88.185
90.390
92.594
94.799 | 32.659
33.112
33.566
34.019
34.473 | 72
73
74
75
76 | 158.73
160.94
163.14
165.35
167.55 | | 117.68
127.49
137.29 | 11
12
13
14
15 | 1.1217
1.2237
1.3256
1.4276
1.5296 | 431.49
441.30
451.11
460.91
470.72 | 44
45
46
47
48 | 4.4868
4.5887
4.6907
4.7927
4.8946 | | 755.11
764.92
774.73
784.53
794.34 | 77
78
79
80
81 | 7.8518
7.9538
8.0558
8.1577
8.2597 | 4.990
5.443
5.897
6.350
6.804 | 11
12
13
14
15 | 24.251
26.455
28.660
30.865
33.069 | 19.958
20.412
20.865
21.319
21.772 | 44
45
46
47
48 | 97.003
99.208
101.41
103.62
105.82 | 34.927
35.380
35.834
36.287
36.741 | 77
78
79
80
81 | 169.76
171.96
174.17
176.37
178.57 | | 166.71
176.52
186.33 | 16
17
18
19
20 | 1.6315
1.7335
1.8355
1.9375
2.0394 | 480.53
490.33
500.14
509.95
519.75 | 49
50
51
52
53 | 4.9966
5.0986
5.2006
5.3025
5.4045 | | 804.15
813.95
823.76
833.57
843.37 | 82
83
84
85
86 | 8.3617
8.4636
8.5656
8.6676
8.7696 | 7.257
7.711
8.165
8.618
9.072 | 16
17
18
19
20 | 35.274
37.479
39.683
41.888
44.092 | 22.226
22.680
23.133
23.587
24.040 | 49
50
51
52
53 | 108.03
110.23
112.44
114.64
116.84 | 37.195
37.648
38.102
38.555
39.009 | 82
83
84
85
86 | 180.78
182.98
185.19
187.39
189.60 | | 215.75
225.55
235.36 | 21
22
23
24
25 | 2.1414
2.2434
2.3453
2.4473
2.5493 | 529.56
539.37
549.17
558.98
568.79 | 54
55
56
57
58 | 5.5065
5.6084
5.7104
5.8124
5.9144 | | 853.18
862.99
872.79
882.60
892.41 | 87
88
89
90 | 8.8715
8.9735
9.0755
9.1774
9.2794 | 9.525
9.979
10.433
10.886
11.340 | 21
22
23
24
25 | 46.297
48.502
50.706
52.911
55.116 | 24.494
24.948
25.401
25.855
26.308 | 54
55
56
57
58 | 119.05
121.25
123.46
125.66
127.87 | 39.463
39.916
40.370
40.823
41.277 | 87
88
89
90 | 191.80
194.01
196.21
198.42
200.62 | | 264.78
274.59
284.39 | 26
27
28
29
30 | 2.6513
2.7532
2.8552
2.9572
3.0591 | 578.59
588.40
598.21
608.01
617.82 | 59
60
61
62
63 | 6.0163
6.1183
6.2203
6.3222
6.4242 | | 902.21
912.02
921.83
931.63
941.44 | 92
93
94
95
96 | 9.3814
9.4834
9.5853
9.6873
9.7893 | 11.793
12.247
12.701
13.154
13.608 | 26
27
28
29
30 | 57.320
59.525
61.729
63.934
66.139 | 26.762
27.216
27.669
28.123
28.576 | 59
60
61
62
63 | 130.07
132.28
134.48
136.69
138.89 | 41.730
42.184
42.638
43.091
43.545 | 92
93
94
95
96 | 202.83
205.03
207.23
209.44
211.64 | | 313.81 | 31
32
33 | 3.1611
3.2631
3.3651 | 627.63
637.43
647.24 | 64
65
66 | 6.5262
6.6282
6.7301 | _ | 951.25
961.05
970.86 | 97
98
99 | 9.8912
9.9932
10.095 | 14.061
14.515
14.969 | 31
32
33 | 68.343
70.548
72.753 | 29.030
29.484
29.937 | 64
65
66 | 141.10
143.30
145.51 | 43.998
44.452
44.906 | 97
98
99 | 213.85
216.05
218.26 | C 11 C 10 ### Appendix Table 4 $\,^{\circ}\text{C-}^{\circ}\text{F}$ Conversion Table [Method of using this table] For example, to convert 38°C into ${}^\circ F$, read the figure in the right ${}^\circ F$ column adjacent to the 38 in the center column in the 2nd block. This means that 38°C is 100.4°F. To convert 38°F into °C, read the figure in the left °C column of the same row, which indicates that the answer is 3.3°C. $$C = \frac{5}{9}(F - 32)$$ $F = 32 + \frac{9}{9}C$ | 9 | | |---------------------|--| | $F=32+\frac{9}{5}C$ | | | | | | °C | | °F | |-------|------|--------|------|----|-------|------|-----|-------|-------|------|------| | -73.3 | -100 | -148.0 | 0.0 | 32 | 89.6 | 21.7 | 71 | 159.8 | 43.3 | 110 | 230 | | -62.2 | - 80 | -112.0 | 0.6 | 33 | 91.4 | 22.2 | 72 | 161.6 | 46.1 | 115 | 239 | | -51.1 | - 60 | - 76.0 | 1.1 | 34 | 93.2 | 22.8 | 73 | 163.4 | 48.9 | 120 | 248 | | -40.0 | - 40 | - 40.0 | 1.7 | 35 | 95.0 | 23.3 | 74 | 165.2 | 51.7 | 125 | 257 | | -34.4 | - 30 | - 22.0 | 2.2 | 36 | 96.8 | 23.9 | 75 | 167.0 | 54.4 | 130 | 266 | | -28.9 | - 20 | - 4.0 | 2.8 | 37 | 98.6 | 24.4 | 76 | 168.8 | 57.2 | 135 | 275 | | -23.3 | - 10 | 14.0 | 3.3 | 38 | 100.4 | 25.0 | 77 | 170.6 | 60.0 | 140 | 284 | | -17.8 | 0 | 32.0 | 3.9 | 39 | 102.2 | 25.6 | 78 | 172.4 | 65.6 | 150 | 302 | | -17.2 | 1 | 33.8 | 4.4 | 40 | 104.0 | 26.1 | 79 | 174.2 | 71.1 | 160 | 320 | | -16.7 | 2 | 35.6 | 5.0 | 41 | 105.8 | 26.7 | 80 | 176.0 | 76.7 | 170 | 338 | | -16.1 | 3 | 37.4 | 5.6 | 42 | 107.6 | 27.2 | 81 | 177.8 | 82.2 | 180 | 356 | | -15.6 | 4 | 39.2 | 6.1 | 43 | 109.4 | 27.8 | 82 | 179.6 | 87.8 | 190 | 374 | | -15.0 | 5 | 41.0 | 6.7 | 44 | 111.2 | 28.3 | 83 | 181.4 | 93.3 | 200 | 392 | | -14.4 | 6 | 42.8 | 7.2 | 45 | 113.0 | 28.9 | 84 | 183.2 | 98.9 | 210 | 410 | | -13.9 | 7 | 44.6 | 7.8 | 46 | 114.8 | 29.4 | 85 | 185.0 | 104.4 | 220 | 428 | | -13.3 | 8 | 46.4 | 8.3 | 47 | 116.6 | 30.0 | 86 | 186.8 | 110.0 | 230 | 446 | | -12.8 | 9 | 48.2 | 8.9 | 48 | 118.4 | 30.6 | 87 | 188.6 | 115.6 | 240 | 464 | | -12.2 | 10 | 50.0 | 9.4 | 49 | 120.2 | 31.1 | 88 | 190.4 | 121.1 | 250 | 482 | | -11.7 | 11 | 51.8 | 10.0 | 50 | 122.0 | 31.7 | 89 | 192.2 | 148.9 | 300 | 572 | | -11.1 | 12 | 53.6 | 10.6 | 51 | 123.8 | 32.2 | 90 | 194.0 | 176.7 | 350 | 662 | | -10.6 | 13 | 55.4 | 11.1 | 52 | 125.6 | 32.8 | 91 | 195.8 | 204 | 400 | 752 | | -10.0 | 14 | 57.2 | 11.7 | 53 | 127.4 | 33.3 | 92 | 197.6 | 232 | 450 | 842 | | - 9.4 | 15 | 59.0 | 12.2 | 54 | 129.2 | 33.9 | 93 | 199.4 | 260 | 500 | 932 | | - 8.9 | 16 | 60.8 | 12.8 | 55 | 131.0 | 34.4 | 94 | 201.2 | 288 | 550 | 1022 | | - 8.3 | 17 | 62.6 | 13.3 | 56 | 132.8 | 35.0 | 95 | 203.0 | 316 | 600 | 1112 | | - 7.8 | 18 | 64.4 | 13.9 | 57 | 134.6 | 35.6 | 96 | 204.8 | 343 | 650 | 1202 | | - 7.2 | 19 | 66.2 | 14.4 | 58 | 136.4 | 36.1 | 97 | 206.6 | 371 | 700 | 1292 | | - 6.7 | 20 | 68.0 | 15.0 | 59 | 138.2 | 36.7 | 98 | 208.4 | 399 | 750 | 1382 | | - 6.1 | 21 | 69.8 | 15.6 | 60 | 140.0 | 37.2 | 99 | 210.2 | 427 | 800 | 1472 | | - 5.6 | 22 | 71.6 | 16.1 | 61 | 141.8 | 37.8 | 100 | 212.0 | 454 | 850 | 1562 | | - 5.0 | 23 | 73.4 | 16.7 | 62 | 143.6 | 38.3 | 101 | 213.8 | 482 | 900 | 1652 | | - 4.4 | 24 | 75.2 | 17.2 | 63 | 145.4 | 38.9 | 102 | 215.6 | 510 | 950 | 1742 | | - 3.9 | 25 | 77.0 | 17.8 | 64 | 147.2 | 39.4 | 103 | 217.4 | 538 | 1000 | 1832 | | - 3.3 | 26 | 78.8 | 18.3 | 65 | 149.0 | 40.0 | 104 | 219.2 | 593 | 1100 | 2012 | | - 2.8 | 27 | 80.6 | 18.9 | 66 | 150.8 | 40.6 | 105 | 221.0 | 649 | 1200 | 2192 | | - 2.2 | 28 | 82.4 | 19.4 | 67 | 152.6 | 41.1 | 106 | 222.8 | 704 | 1300 | 2372 | | - 1.7 | 29 | 84.2 | 20.0 | 68 | 154.4 | 41.7 | 107 | 224.6 | 760 | 1400 | 2552 | | - 1.1 | 30 | 86.0 | 20.6 | 69 | 156.2 | 42.2 | 108 | 226.4 | 816 | 1500 | 2732 | | - 0.6 | 31 | 87.8 | 21.1 | 70 | 158.0 | 42.8 | 109 | 228.2 | 871 | 1600 | 2912 | |
Kinematic
Viscosity
mm ² /s | | bolt
ersal
(sec) | No.1
Redv
R (s | vood | Engler
E (degree) | Kinematic
Viscosity
mm ² /s | Sayl
Unive
SUS | ersal | No.1
Redw
R (s | rood | Engler
E (degree) | |--|-------|------------------------|----------------------|-------|----------------------|--|----------------------|-------|----------------------|--------|----------------------| | 11111 / 8 | 100°F | 210°F | 50°C | 100°C | | IIIII / S | 100°F | 210°F | 50°C | 100° C | | | 2 | 32.6 | 32.8 | 30.8 | 31.2 | 1.14 | 35 | 163 | 164 | 144 | 147 | 4.70 | | 3 | 36.0 | 36.3 | 33.3 | 33.7 | 1.22 | 36 | 168 | 170 | 148 | 151 | 4.83 | | 4 | 39.1 | 39.4 | 35.9 | 36.5 | 1.31 | 37 | 172 | 173 | 153 | 155 | 4.96 | | 5 | 42.3 | 42.6 | 38.5 | 39.1 | 1.40 | 38 | 177 | 178 | 156 | 159 | 5.08 | | 6 | 45.5 | 45.8 | 41.1 | 41.7 | 1.48 | 39 | 181 | 183 | 160 | 164 | 5.21 | | 7 | 48.7 | 49.0 | 43.7 | 44.3 | 1.56 | 40 | 186 | 187 | 164 | 168 | 5.34 | | 8 | 52.0 | 52.4 | 46.3 | 47.0 | 1.65 | 41 | 190 | 192 | 168 | 172 | 5.47 | | 9 | 55.4 | 55.8 | 49.1 | 50.0 | 1.75 | 42 | 195 | 196 | 172 | 176 | 5.59 | | 10 | 58.8 | 59.2 | 52.1 | 52.9 | 1.84 | 43 | 199 | 201 | 176 | 180 | 5.72 | | 11 | 62.3 | 62.7 | 55.1 | 56.0 | 1.93 | 44 | 204 | 205 | 180 | 185 | 5.85 | | 12 | 65.9 | 66.4 | 58.2 | 59.1 | 2.02 | 45 | 208 | 210 | 184 | 189 | 5.98 | | 13 | 69.6 | 70.1 | 61.4 | 62.3 | 2.12 | 46 | 213 | 215 | 188 | 193 | 6.11 | | 14 | 73.4 | 73.9 | 64.7 | 65.6 | 2.22 | 47 | 218 | 219 | 193 | 197 | 6.24 | | 15 | 77.2 | 77.7 | 68.0 | 69.1 | 2.32 | 48 | 222 | 224 | 197 | 202 | 6.37 | | 16 | 81.1 | 81.7 | 71.5 | 72.6 | 2.43 | 49 | 227 | 228 | 201 | 206 | 6.50 | | 17 | 85.1 | 85.7 | 75.0 | 76.1 | 2.54 | 50 | 231 | 233 | 205 | 210 | 6.63 | | 18 | 89.2 | 89.8 | 78.6 | 79.7 | 2.64 | 55 | 254 | 256 | 225 | 231 | 7.24 | | 19 | 93.3 | 94.0 | 82.1 | 83.6 | 2.76 | 60 | 277 | 279 | 245 | 252 | 7.90 | | 20 | 97.5 | 98.2 | 85.8 | 87.4 | 2.87 | 65 | 300 | 302 | 266 | 273 | 8.55 | | 21 | 102 | 102 | 89.5 | 91.3 | 2.98 | 70 | 323 | 326 | 286 | 294 | 9.21 | | 22 | 106 | 107 | 93.3 | 95.1 | 3.10 | 75 | 346 | 349 | 306 | 315 | 9.89 | | 23 | 110 | 111 | 97.1 | 98.9 | 3.22 | 80 | 371 | 373 | 326 | 336 | 10.5 | | 24 | 115 | 115 | 101 | 103 | 3.34 | 85 | 394 | 397 | 347 | 357 | 11.2 | | 25 | 119 | 120 | 105 | 107 | 3.46 | 90 | 417 | 420 | 367 | 378 | 11.8 | | 26 | 123 | 124 | 109 | 111 | 3.58 | 95 | 440 | 443 | 387 | 399 | 12.5 | | 27 | 128 | 129 | 112 | 115 | 3.70 | 100 | 464 | 467 | 408 | 420 | 13.2 | | 28 | 132 | 133 | 116 | 119 | 3.82 | 120 | 556 | 560 | 490 | 504 | 15.8 | | 29 | 137 | 138 | 120 | 123 | 3.95 | 140 | 649 | 653 | 571 | 588 | 18.4 | | 30 | 141 | 142 | 124 | 127 | 4.07 | 160 | 742 | 747 | 653 | 672 | 21.1 | | 31 | 145 | 146 | 128 | 131 | 4.20 | 180 | 834 | 840 | 734 | 757 | 23.7 | | 32 | 150 | 150 | 132 | 135 | 4.32 | 200 | 927 | 933 | 816 | 841 | 26.3 | | 33 | 154 | 155 | 136 | 139 | 4.45 | 250 | 1 159 | 1 167 | 1 020 | 1 051 | 32.9 | | 34 | 159 | 160 | 140 | 143 | 4.57 | 300 | 1 391 | 1 400 | 1 224 | 1 241 | 39.5 | Remarks 1mm²/s=1cSt | Appendix Table 6 | inch - mm | Conversion Table | |------------------|-----------|-------------------------| | pp | ******* | | 1"=25.4 mm | ir | nch | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |---|--|---|---|---|---|---|---|---|---|---|--|---| | Fraction | n Decimal | | | | | | mm | | | | | | | 0
1/64
1/32
3/64 | 0.000000
0.015625
0.031250
0.046875 | 0.000
0.397
0.794
1.191 | 25.400 25.797 26.194 26.591 | 50.800 51.197 51.594 51.991 | 76.200 76.597 76.994 77.391 | 101.600
101.997
102.394
102.791 | 127.000
127.397
127.794
128.191 | 152.400
152.797
153.194
153.591 | 177.800
178.197
178.594
178.991 | 203.200
203.597
203.994
204.391 | 228.600
228.997
229.394
229.791 | 254.000
254.397
254.794
255.191 | | 1/16 5/64 3/32 7/64 | 0.062500 0.078125 0.093750 0.109375 | 1.588
1.984
2.381
2.778 | 26.988 27.384 27.781 28.178 | 52.388 52.784 53.181 53.578 | 77.788 78.184 78.581 78.978 | 103.188
103.584
103.981
104.378 | 128.588
128.984
129.381
129.778 | 153.988
154.384
154.781
155.178 | 179.388
179.784
180.181
180.578 | 204.788
205.184
205.581
205.978 | 230.188
230.584
230.981
231.378 | 255.588
255.984
256.381
256.778 | | 1/8
9/64
5/32
11/64 | 0.125000 0.140625 0.156250 0.171875 | 3.175
3.572
3.969
4.366 | 28.575
28.972
29.369
29.766 | 53.975 54.372 54.769 55.166 | 79.375
79.772
80.169
80.566 | 104.775
105.172
105.569
105.966 | 130.175
130.572
130.969
131.366 | 155.575
155.972
156.369
156.766 | 180.975
181.372
181.769
182.166 | 206.375
206.772
207.169
207.566 | 231.775
232.172
232.569
232.966 | 257.175
257.572
257.969
258.366 | | 3/16
13/64
7/32
15/64 | 0.187500 0.203125 0.218750 0.234375 | 4.762 5.159 5.556 5.953 | 30.162
30.559
30.956
31.353 | 55.562 55.959 56.356 56.753 | 80.962
81.359
81.756
82.153 | 106.362
106.759
107.156
107.553 | 131.762
132.159
132.556
132.953 | 157.162
157.559
157.956
158.353 | 182.562
182.959
183.356
183.753 | 207.962
208.359
208.756
209.153 | 233.362
233.759
234.156
234.553 | 258.762
259.159
259.556
259.953 | | 1/4
17/64
9/32
19/64 | 0.250000 0.265625 0.281250 0.296875 | 6.350 6.747 7.144 7.541 | 31.750
32.147
32.544
32.941 | 57.150 57.547 57.944 58.341 | 82.550
82.947
83.344
83.741 | 107.950
108.347
108.744
109.141 | 133.350 133.747 134.144 134.541 | 158.750
159.147
159.544
159.941 | 184.150
184.547
184.944
185.341 | 209.550
209.947
210.344
210.741 | 234.950
235.347
235.744
236.141 | 260.350
260.747
261.144
261.541 | | 5/16 21/64 11/32 23/64 | 0.312500 0.328125 0.343750 0.359375 | 7.938 8.334 8.731 9.128 | 33.338
33.734
34.131
34.528 | 58.738 59.134 59.531 59.928 | 84.138
84.534
84.931
85.328 | 109.538
109.934
110.331
110.728 | 134.938
135.334
135.731
136.128 | 160.338
160.734
161.131
161.528 | 185.738
186.134
186.531
186.928 | 211.138
211.534
211.931
212.328 | 236.538
236.934
237.331
237.728 | 261.938
262.334
262.731
263.128 | | 3/8
25/64
13/32
27/64 | 0.375000 0.390625 0.406250 0.421875 | 9.525
9.922
10.319
10.716 | 34.925
35.322
35.719
36.116 | 60.325
60.722
61.119
61.516 | 85.725
86.122
86.519
86.916 | 111.125
111.522
111.919
112.316 | 136.525
136.922
137.319
137.716 | 161.925
162.322
162.719
163.116 | 187.325
187.722
188.119
188.516 | 212.725
213.122
213.519
213.916 | 238.125
238.522
238.919
239.316 | 263.525
263.922
264.319
264.716 | | 7/16 29/64 15/32 31/64 | 0.437500 0.453125 0.468750 0.484375 | 11.112 11.509 11.906 12.303 | 36.512
36.909
37.306
37.703 | 61.912 62.309 62.706 63.103 | 87.312
87.709
88.106
88.503 | 112.712
113.109
113.506
113.903 | 138.112
138.509
138.906
139.303 | 163.512
163.909
164.306
164.703 | 188.912
189.309
189.706
190.103 | 214.312
214.709
215.106
215.503 | 239.712
240.109
240.506
240.903 | 265.112
265.509
265.906
266.303 | | 1/2
33/64
17/32
35/64 | 0.500000 0.515625 0.531250 0.546875 | 12.700 13.097 13.494 13.891 | 38.100
38.497
38.894
39.291 | 63.500
63.897
64.294
64.691 | 88.900
89.297
89.694
90.091 | 114.300
114.697
115.094
115.491 | 139.700
140.097
140.494
140.891 | 165.100
165.497
165.894
166.291 | 190.500
190.897
191.294
191.691 | 215.900
216.297
216.694
217.091 | 241.300
241.697
242.094
242.491 | 266.700
267.097
267.494
267.891 | | 9/16
37/64
19/32
39/64 | 0.562500 0.578125 0.593750 0.609375 | 14.288
14.684
15.081
15.478 | 39.688
40.084
40.481
40.878 | 65.088
65.484
65.881
66.278 | 90.488
90.884
91.281
91.678 | 115.888
116.284
116.681
117.078 | 141.288
141.684
142.081
142.478 | 166.688
167.084
167.481
167.878 | 192.088
192.484
192.881
193.278 | 217.488
217.884
218.281
218.678 | 242.888
243.284
243.681
244.078 | 268.288
268.684
269.081
269.478 | | 5/8 41/64 21/32 43/64 | 0.625000 0.640625 0.656250 0.671875 | 15.875 16.272 16.669 17.066 | 41.275
41.672
42.069
42.466 | 66.675 67.072 67.469 67.866 | 92.075
92.472
92.869
93.266 |
117.475
117.872
118.269
118.666 | 142.875 143.272 143.669 144.066 | 168.275
168.672
169.069
169.466 | 193.675
194.072
194.469
194.866 | 219.075
219.472
219.869
220.266 | 244.475
244.872
245.269
245.666 | 269.875
270.272
270.669
271.066 | | 11/16
45/64
23/32
47/64 | 0.687500 0.703125 0.718750 0.734375 | 17.462 17.859 18.256 18.653 | 42.862
43.259
43.656
44.053 | 68.262 68.659 69.056 69.453 | 93.662
94.059
94.456
94.853 | 119.062
119.459
119.856
120.253 | 144.462
144.859
145.256
145.653 | 169.862
170.259
170.656
171.053 | 195.262
195.659
196.056
196.453 | 220.662
221.059
221.456
221.853 | 246.062
246.459
246.856
247.253 | 271.462
271.859
272.256
272.653 | | 3/4
49/64
25/32
51/64 | 0.750000 0.765625 0.781250 0.796875 | 19.050
19.447
19.844
20.241 | 44.450
44.847
45.244
45.641 | 69.850
70.247
70.644
71.041 | 95.250
95.647
96.044
96.441 | 120.650
121.047
121.444
121.841 | 146.050
146.447
146.844
147.241 | 171.450
171.847
172.244
172.641 | 196.850
197.247
197.644
198.041 | 222.250
222.647
223.044
223.441 | 247.650
248.047
248.444
248.841 | 273.050
273.447
273.844
274.241 | | 13/16 53/64 27/32 55/64 | 0.812500 0.828125 0.843750 0.859375 | 20.638 21.034 21.431 21.828 | 46.038
46.434
46.831
47.228 | 71.438 71.834 72.231 72.628 | 96.838
97.234
97.631
98.028 | 122.238
122.634
123.031
123.428 | 147.638
148.034
148.431
148.828 | 173.038
173.434
173.831
174.228 | 198.438
198.834
199.231
199.628 | 223.838
224.234
224.631
225.028 | 249.238
249.634
250.031
250.428 | 274.638
275.034
275.431
275.828 | | 7/8 57/64 29/32 59/64 | 0.875000 0.890625 0.906250 0.921875 | 22.225 22.622 23.019 23.416 | 47.625
48.022
48.419
48.816 | 73.025 73.422 73.819 74.216 | 98.425
98.822
99.219
99.616 | 123.825
124.222
124.619
125.016 | 149.225 149.622 150.019 150.416 | 174.625
175.022
175.419
175.816 | 200.025
200.422
200.819
201.216 | 225.425
225.822
226.219
226.616 | 250.825
251.222
251.619
252.016 | 276.225
276.622
277.019
277.416 | | 15/16
61/64
31/32
63/64 | 0.937500 0.953125 0.968750 0.984375 | 23.812
24.209
24.606
25.003 | 49.212
49.609
50.006
50.403 | 74.612 75.009 75.406 75.803 | 100.012
100.409
100.806
101.203 | 125.412
125.809
126.206
126.603 | 150.812
151.209
151.606
152.003 | 176.212
176.609
177.006
177.403 | 201.612
202.009
202.406
202.803 | 227.012
227.409
227.806
228.203 | 252.412
252.809
253.206
253.603 | 277.812
278.209
278.606
279.003 | | 1′ | ′=25.4 | mn | |----|--------|----| |----|--------|----| | in | ch | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | |-------------------------------------|---|---|---|---|---|---|---|---|---|---|---|--| | Fraction | n Decimal | | mm | | | | | | | | | | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 279.400
280.988
282.575
284.162 | 304.800
306.388
307.975
309.562 | 330.200
331.788
333.375
334.962 | 355.600
357.188
358.775
360.362 | 381.000
382.588
384.175
385.762 | 406.400
407.988
409.575
411.162 | 431.800
433.388
434.975
436.562 | 457.200
458.788
460.375
461.962 | 482.600
484.188
485.775
487.362 | 508.000
509.588
511.175
512.762 | | | 1/4
5/16
3/8
7/16 | 0.2500 0.3125 0.3750 0.4375 | 285.750 287.338 288.925 290.512 | 311.150
312.738
314.325
315.912 | 336.550
338.138
339.725
341.312 | 361.950
363.538
365.125
366.712 | 387.350
388.938
390.525
392.112 | 412.750
414.338
415.925
417.512 | 438.150
439.738
441.325
442.912 | 463.550
465.138
466.725
468.312 | 488.950
490.538
492.125
493.712 | 514.350 515.938 517.525 519.112 | | | 1/2
9/16
5/8
11/16 | 0.5000
0.5625
0.6250
0.6875 | 292.100 293.688 295.275 296.862 | 317.500
319.088
320.675
322.262 | 342.900
344.488
346.075
347.662 | 368.300
369.888
371.475
373.062 | 393.700
395.288
396.875
398.462 | 419.100
420.688
422.275
423.862 | 444.500
446.088
447.675
449.262 | 469.900
471.488
473.075
474.662 | 495.300
496.888
498.475
500.062 | 520.700 522.288 523.875 525.462 | | | 3/4
13/16
7/8
15/16 | 0.7500
0.8125
0.8750
0.9375 | 298.450
300.038
301.625
303.212 | 323.850
325.438
327.025
328.612 | 349.250
350.838
352.425
354.012 | 374.650
376.238
377.825
379.412 | 400.050
401.638
403.225
404.812 | 425.450
427.038
428.625
430.212 | 450.850
452.438
454.025
455.612 | 476.250
477.838
479.425
481.012 | 501.650
503.238
504.825
506.412 | 527.050 528.638 530.225 531.812 | | 1"=25.4 mm | in | ıch | 21 | 22 | 23 | 24 | 25 | 25 26 27 28 29 | | 29 | 30 | | |-------------------------------------|---|--|--|--|---|---|---|---|---|---|---| | Fraction | n Decimal | | | | | m | m | | | | | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 533.400 534.988 536.575 538.162 | 558.800 560.388 561.975 563.562 | 584.200 585.788 587.375 588.962 | 609.600
611.188
612.775
614.362 | 635.000
636.588
638.175
639.762 | 660.400
661.988
663.575
665.162 | 685.800
687.388
688.975
690.562 | 711.200
712.788
714.375
715.962 | 736.600
738.188
739.775
741.362 | 762.000
763.588
765.175
766.762 | | 1/4
5/16
3/8
7/16 | 0.2500 0.3125 0.3750 0.4375 | 539.750 541.338 542.925 544.512 | 565.150 566.738 568.325 569.912 | 590.550 592.138 593.725 595.312 | 615.950 617.538 619.125 620.712 | 641.350 642.938 644.525 646.112 | 666.750 668.338 669.925 671.512 | 692.150 693.738 695.325 696.912 | 717.550
719.138
720.725
722.312 | 742.950 744.538 746.125 747.712 | 768.350 769.938 771.525 773.112 | | 1/2
9/16
5/8
11/16 | 0.5000 0.5625 0.6250 0.6875 | 546.100 547.688 549.275 550.862 | 571.500 573.088 574.675 576.262 | 596.900 598.488 600.075 601.662 | 622.300 623.888 625.475 627.062 | 647.700
649.288
650.875
652.462 | 673.100 674.688 676.275 677.862 | 698.500
700.088
701.675
703.262 | 723.900
725.488
727.075
728.662 | 749.300
750.888
752.475
754.062 | 774.700
776.288
777.875
779.462 | | 3/4
13/16
7/8
15/16 | 0.7500 0.8125 0.8750 0.9375 | 552.450 554.038 555.625 557.212 | 577.850 579.438 581.025 582.612 | 603.250
604.838
606.425
608.012 | 628.650
630.238
631.825
633.412 | 654.050
655.638
657.225
658.812 | 679.450
681.038
682.625
684.212 | 704.850
706.438
708.025
709.612 | 730.250
731.838
733.425
735.012 | 755.650
757.238
758.825
760.412 | 781.050
782.638
784.225
785.812 | 1"=25.4 mm | in | ch | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |-------------------------------------|---|---|---|---|---|---|---|---|---|---|---| | Fraction | Decimal | | | | | m | m | | | | | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 787.400
788.988
790.575
792.162 | 812.800
814.388
815.975
817.562 | 838.200
839.788
841.375
842.962 |
863.600
865.188
866.775
868.362 | 889.000
890.588
892.175
893.762 | 914.400
915.988
917.575
919.162 | 939.800
941.388
942.975
944.562 | 965.200
966.788
968.375
969.962 | 990.600
992.188
993.775
995.362 | 1016.000
1017.588
1019.175
1020.762 | | 1/4
5/16
3/8
7/16 | 0.2500 0.3125 0.3750 0.4375 | 793.750 795.338 796.925 798.512 | 819.150
820.738
822.325
823.912 | 844.550
846.138
847.725
849.312 | 869.950
871.538
873.125
874.712 | 895.350
896.938
898.525
900.112 | 920.750
922.338
923.925
925.512 | 946.150
947.738
949.325
950.912 | 971.550
973.138
974.725
976.312 | 996.950
998.538
1000.125
1001.712 | 1022.350
1023.938
1025.525
1027.112 | | 1/2
9/16
5/8
11/16 | 0.5000 0.5625 0.6250 0.6875 | 800.100
801.688
803.275
804.862 | 825.500
827.088
828.675
830.262 | 850.900
852.488
854.075
855.662 | 876.300
877.888
879.475
881.062 | 901.700
903.288
904.875
906.462 | 927.100
928.688
930.275
931.862 | 952.500
954.088
955.675
957.262 | 977.900
979.488
981.075
982.662 | 1003.300
1004.888
1006.475
1008.062 | 1028.700
1030.288
1031.875
1033.462 | | 3/4
13/16
7/8
15/16 | 0.7500
0.8125
0.8750
0.9375 | 806.450
808.038
809.625
811.212 | 831.850
833.438
835.025
836.612 | 857.250
858.838
860.425
862.012 | 882.650
884.238
885.825
887.412 | 908.050
909.638
911.225
912.812 | 933.450
935.038
936.625
938.212 | 958.850
960.438
962.025
963.621 | 984.250
985.838
987.425
989.012 | 1009.650
1011.238
1012.825
1014.412 | 1035.050
1036.638
1038.225
1039.812 | | | | | | | | | | | ı | | C 15 | ### Appendix Table 7 Hardness Conversion Table (Reference) | Rockwell
C Scale Hardness
(1 471N)
{150kgf} | Vickers
Hardness | Brinell H
Standard Ball | lardness
Tungsten
Carbide Ball | Rockwell
A Scale
Load ^{588.4N}
[60kgf]
Brale Indenter | Hardness
B Scale
Load ^{980.7N}
{100kgf}
1.588 mm
(1/16in) Ball | Shore Hardness | |--|--|--|--|--|--|----------------------------------| | 68
67
66
65
64 | 940
900
865
832
800 | = = = | —
—
739
722 | 85.6
85.0
84.5
83.9
83.4 | = = = | 97
95
92
91
88 | | 63
62
61
60
59 | 772
746
720
697
674 | _
_
_ | 705
688
670
654
634 | 82.8
82.3
81.8
81.2
80.7 | | 87
85
83
81
80 | | 58
57
56
55
54 | 653
633
613
595
577 | | 615
595
577
560
543 | 80.1
79.6
79.0
78.5
78.0 | | 78
76
75
74
72 | | 53
52
51
50
49 | 560
544
528
513
498 | 500
487
475
464 | 525
512
496
481
469 | 77.4
76.8
76.3
75.9
75.2 | | 71
69
68
67
66 | | 48
47
46
45
44 | 484
471
458
446
434 | 451
442
432
421
409 | 455
443
432
421
409 | 74.7
74.1
73.6
73.1
72.5 | | 64
63
62
60
58 | | 43
42
41
40
39 | 423
412
402
392
382 | 400
390
381
371
362 | 400
390
381
371
362 | 72.0
71.5
70.9
70.4
69.9 | | 57
56
55
54
52 | | 38
37
36
35
34 | 372
363
354
345
336 | 353
344
336
327
319 | 353
344
336
327
319 | 69.4
68.9
68.4
67.9
67.4 | —
(109.0)
(108.5)
(108.0) | 51
50
49
48
47 | | 33
32
31
30
29 | 327
318
310
302
294 | 311
301
294
286
279 | 311
301
294
286
279 | 66.8
66.3
65.8
65.3
64.7 | (107.5)
(107.0)
(106.0)
(105.5)
(104.5) | 46
44
43
42
41 | | 28
27
26
25
24 | 286
279
272
266
260 | 271
264
258
253
247 | 271
264
258
253
247 | 64.3
63.8
63.3
62.8
62.4 | (104.0)
(103.0)
(102.5)
(101.5)
(101.0) | 41
40
38
38
37 | | 23
22
21
20 | 254
248
243
238 | 243
237
231
226 | 243
237
231
226 | 62.0
61.5
61.0
60.5 | 100.0
99.0
98.5
97.8 | 36
35
35
34 | | (18)
(16)
(14)
(12) | 230
222
213
204 | 219
212
203
194 | 219
212
203
194 | _
_
_ | 96.7
95.5
93.9
92.3 | 33
32
31
29 | | (10)
(8)
(6)
(4)
(2)
(0) | 196
188
180
173
166
160 | 187
179
171
165
158
152 | 187
179
171
165
158
152 | _
_
_
_ | 90.7
89.5
87.1
85.5
83.5
81.7 | 28
27
26
25
24
24 | ## Appendix Table 8 Physical and Mechanical Properties of Materials | Materials | Specific Gravity | Coefficient of
Linear Expansion
(0° to 100°C)
(K ⁻¹) | Hardness
(Brinell) | Young's
modulus
(MPa)
{kgf/mm²} | Tensile Strength
(MPa)
{kgf/mm²} | Yield Point
(MPa)
{kgf/mm²} | Elongation (%) | |---|------------------|---|-----------------------|--|--|-----------------------------------|----------------| | Bearing Steel (hardened) | 7.83 | 12.5×10 ⁻⁶ | 650 to 740 | 208 000
{21 200} | 1 570 to 1 960
{160 to 200} | _ | _ | | Martensitic Stainless Steel
SUS 440C | 7.68 | 10.1×10 ⁻⁶ | 580 | 200 000
{20 400} | 1 960
{200} | 1 860
{190} | _ | | Mild Steel (C=0.12~0.20%) | 7.86 | 11.6×10 ⁻⁶ | 100 to 130 | 206 000
{21 000} | 373 to 471
{38 to 48} | 216 to 294
{22 to 30} | 24 to 36 | | Hard Steel (C=0.3~0.5%) | 7.84 | 11.3×10 ⁻⁶ | 160 to 200 | 206 000
{21 000} | 539 to 686
{55 to 70} | 333 to 451
{34 to 46} | 14 to 26 | | Austenitic Stainless Steel
SUS 304 | 8.03 | 16.3×10 ⁻⁶ | 150 | 193 000
{19 700} | 588
{60} | 245
{25} | 60 | | Gray Iron
FC200 | 7.3 | 10.4×10 ⁻⁶ | 223 | 98 100 | More than
200
{20} | _ | _ | | Spheroidal graphite Iron
FCD400 | 7.0 | 11.7×10 ⁻⁶ | Less than
201 | {10 000} | More than
400
{41} | _ | More than 12 | | Aluminum | 2.69 | 23.7×10 ⁻⁶ | 15 to 26 | 70 600
{7 200} | 78
{8} | 34
{3.5} | 35 | | Zinc | 7.14 | 31×10 ⁻⁶ | 30 to 60 | 92 200
{9 400} | 147
{15} | _ | 30 to 40 | | Copper | 8.93 | 16.2×10 ⁻⁶ | 50 | 123 000
{12 500} | 196
{20} | 69
{7} | 15 to 20 | | (Annealed)
Brass | 8.5 | 19.1×10 ⁻⁶ | 45 | 103 000 | | _ | 65 to 75 | | (Machined) | | | 85 to 130 | {10 500} | 363 to 539
{37 to 55} | | 15 to 50 | Remarks The hardness of hardened bearing steel and martensitic stainless steel is usually expressed using the Rockwell C Scale, but for comparison, it is converted into Brinell hardness. ## Appendix Table 9 Tolerances | Classifica | neter
tion (mm) | Single Plane
Mean B.D.
Deviation | d6 | e6 | f6 | g5 | g6 | h5 | h6 | h7 | h8 | h9 | h10 | js5 | js6 | |------------|--------------------|--|--------------|----------------------|--------------|--------------|--------------|------------|----------|----------------|----------------|-------------|-------------|--------|--------| | over | incl. | (Normal) Δ_{dmp} | - 30 | - 20 | - 10 | _ 4 | - 4 | 0 | 0 | 0 | 0 | 0 | 0 | - | | | 3 | 6 | - 8
0 | - 38
- 40 | - 20
- 28
- 25 | - 18
- 13 | - 9
- 5 | - 12
- 5 | - 5
0 | - 8
0 | - 12
0 | - 18
0 | - 30
0 | - 48
0 | ± 2.5 | ± 4 | | 6 | 10 | - 8
0 | - 49
- 50 | - 34
- 32 | - 22
- 16 | - 11
- 6 | - 14
- 6 | - 6
0 | - 9
0 | - 15
0 | - 22
0 | - 36
0 | - 58
0 | ± 3 | ± 4.5 | | 10 | 18 | - 8 | - 61 | - 43 | - 27 | - 14 | - 17 | - 8 | -11 | - 18 | - 27 | - 43 | – 70 | ± 4 | ± 5.5 | | 18 | 30 | - 10 | - 65
- 78 | - 40
- 53 | - 20
- 33 | - 7
- 16 | - 7
- 20 | _ 0
_ 9 | 0
-13 | _ 0
_ 21 | - 33 | 0
- 52 | 0
- 84 | ± 4.5 | ± 6.5 | | 30 | 50 | 0
- 12 | - 80
- 96 | - 50
- 66 | - 25
- 41 | - 9
- 20 | - 9
- 25 | 0
-11 | 0
-16 | 0
- 25 | 0
- 39 | 0
- 62 | 0
-100 | ± 5.5 | ± 8 | | 50 | 80 | 0
- 15 | -100
-119 | - 60
- 79 | - 30
- 49 | - 10
- 23 | - 10
- 29 | 0
-13 | 0
-19 | - 30 | 0
- 46 | - 74 | 0
-120 | ± 6.5 | ± 9.5 | | 80 | 120 | - ⁰ | -120
-142 | - 72
- 94 | - 36
- 58 | - 12
- 27 | - 12
- 34 | 0
-15 | 0
-22 | 0
- 35 | 0
- 54 | _ 0
_ 87 | 0
-140 | ± 7.5 | ± 11 | | 120 | 180 | 0
- 25 | 145
170 | - 85
-110 | - 43
- 68 | - 14
- 32 | - 14
- 39 | 0
-18 | 0
-25 | - ⁰ | 0
- 63 | 0
-100 | 0
-160 | ± 9 | ± 12.5 | | 180 | 250 | - 30 | -170
-199 | -100
-129 | - 50
- 79 | - 15
- 35 | - 15
- 44 | 0
-20 | 0
-29 | 0
- 46 | - ⁰ | 0
-115 | 0
-185 | ±10 | ± 14.5 | | 250 | 315 | 0
- 35 | -190
-222 | -110
-142 | - 56
- 88 | - 17
- 40 | - 17
- 49 | 0
-23 | 0
-32 | - 52 | - 81 | 0
-130 | 0
210 | ± 11.5 | ± 16 | | 315 | 400 | - 40 | -210
-246 | - 125
- 161 | - 62
- 98 | - 18
- 43 | - 18
- 54 | 0
-25 | 0
-36 | 0
- 57 | - 89 | 0
-140 | 0
-230 | ± 12.5 | ± 18 | | 400 | 500 | 0
- 45 | -230
-270 | -
135
- 175 | - 68
-108 | - 20
- 47 | - 20
- 60 | 0
-27 | 0
-40 | 0
- 63 | - 97 | 0
155 | 0
-250 | ± 13.5 | ± 20 | | 500 | 630 | 0
- 50 | -260
-304 | -145
-189 | - 76
-120 | _ | - 22
- 66 | _ | 0
-44 | - 70 | 0
110 | 0
-175 | 0
-280 | _ | ± 22 | | 630 | 800 | 0
- 75 | -290
-340 | -160
-210 | - 80
-130 | _ | - 24
- 74 | _ | 0
-50 | - 80 | 0
-125 | 0
 | 0
-320 | _ | ± 25 | | 800 | 1 000 | 0
-100 | -320
-376 | 170
226 | - 86
-142 | _ | - 26
- 82 | _ | 0
-56 | - 90 | 0
-140 | 0
-230 | 0
-360 | _ | ± 28 | | 1 000 | 1 250 | 0
125 | -350
-416 | 195
261 | - 98
-164 | _ | - 28
- 94 | _ | 0
-66 | 0
-105 | 0
165 | 0
-260 | 0
-420 | _ | ± 33 | | 1 250 | 1 600 | 0
-160 | -390
-468 | -220
-298 | -110
-188 | _ | - 30
-108 | _ | 0
-78 | 0
-125 | 0
195 | _310 | 0
-500 | _ | ± 39 | | 1 600 | 2 000 | 0
-200 | -430
-522 | -240
-332 | -120
-212 | _ | - 32
-124 | _ | 0
-92 | 0
-150 | 0
-230 | 0
-370 | 0
-600 | _ | ± 46 | ### for Shaft Diameters Units : µm | i5 | j6 | i7 | k5 | k6 | k7 | m5 | m6 | n6 | р6 | r6 | r7 | Diameter Cl
(m | | |------------|-------------|--------------|-------------|-------------|-------------|--------------|---------------|---------------|---------------|-------------------------|-------------------------|-------------------|------------| | | | - | | | | | | | • | | | over | incl. | | + 3 - 2 | + 6
- 2 | + 8
- 4 | + 6 + 1 | + 9 + 1 | + 13 + 1 | + 9
+ 4 | + 12 + 4 | + 16
+ 8 | + 20
+ 12 | + 23
+ 15 | + 27
+ 15 | 3 | 6 | | + 4 - 2 | + 7
- 2 | + 10
- 5 | + 7
+ 1 | + 10
+ 1 | + 16
+ 1 | + 12
+ 6 | + 15
+ 6 | + 19
+ 10 | + 24
+ 15 | + 28
+ 19 | + 34
+ 19 | 6 | 10 | | + 5
- 3 | + 8
- 3 | + 12
- 6 | + 9
+ 1 | + 12
+ 1 | + 19
+ 1 | + 15
+ 7 | + 18
+ 7 | + 23
+ 12 | + 29
+ 18 | + 34
+ 23 | + 41
+ 23 | 10 | 18 | | + 5
- 4 | + 9
- 4 | + 13
— 8 | + 11 + 2 | + 15
+ 2 | + 23
+ 2 | + 17
+ 8 | + 21
+ 8 | + 28
+ 15 | + 35
+ 22 | + 41
+ 28 | + 49
+ 28 | 18 | 30 | | + 6
- 5 | + 11
- 5 | + 15
10 | + 13 + 2 | + 18
+ 2 | + 27
+ 2 | + 20
+ 9 | + 25
+ 9 | + 33
+ 17 | + 42
+ 26 | + 50
+ 34 | + 59
+ 34 | 30 | 50 | | + 6 | + 12 | + 18 | + 15 | + 21 | + 32 | + 24 | + 30 | + 39 | + 51 | + 60
+ 41 | + 71
+ 41 | 50 | 65 | | - 7 | - 7 | -12 | + 2 | + 2 | + 2 | + 11 | + 11 | + 20 | + 32 | + 62
+ 43 | + 73
+ 43 | 65 | 80 | | + 6 | + 13 | + 20 | + 18 | + 25 | + 38 | + 28 | + 35 | + 45 | + 59 | + 73
+ 51 | + 86
+ 51 | 80 | 100 | | - 9 | - 9 | – 15 | + 3 | + 3 | + 3 | + 13 | + 13 | + 23 | + 37 | + 76
+ 54 | + 89
+ 54 | 100 | 120 | | | | | | - | | | | | - | + 88 + 63 | + 103
+ 63 | 120 | 140 | | + 7
-11 | + 14
11 | + 22
18 | + 21
+ 3 | + 28
+ 3 | + 43
+ 3 | + 33
+ 15 | + 40
+ 15 | + 52
+ 27 | + 68
+ 43 | + 90
+ 65
+ 93 | + 105
+ 65
+ 108 | 140 | 160 | | | | | | | | | | | | + 68 | + 68 | 160 | 180 | | + 7 | + 16 | + 25 | + 24 | + 33 | + 50 | + 37 | + 46 | + 60 | + 79 | + 106
+ 77
+ 109 | + 123
+ 77
+ 126 | 180 | 200 | | -13 | -13 | -21 | + 4 | + 4 | + 4 | + 17 | + 17 | + 31 | + 50 | + 80 | + 80 + 130 | 200 | 225 | | | | | | | | | | | | + 84 + 126 | + 84 + 146 | 225 | 250 | | + 7
-16 | ± 16 | ± 26 | + 27
+ 4 | + 36
+ 4 | + 56
+ 4 | + 43
+ 20 | + 52
+ 20 | + 66
+ 34 | + 88
+ 56 | + 94
+ 130 | + 94
+ 150 | 250 | 280
315 | | | | | | | | | | | | + 98 | + 98
+ 165 | 315 | 355 | | + 7
-18 | ± 18 | + 29
- 28 | + 29
+ 4 | + 40
+ 4 | + 61
+ 4 | + 46
+ 21 | + 57
+ 21 | + 73
+ 37 | + 98
+ 62 | + 108 | + 108 | 355 | 400 | | _ | | | | | | | | | 400 | + 114 | + 114 | 400 | 450 | | + 7
-20 | ± 20 | + 31
- 32 | + 32
+ 5 | + 45
+ 5 | + 68
+ 5 | + 50
+ 23 | + 63
+ 23 | + 80
+ 40 | + 108
+ 68 | + 126
+ 172
+ 132 | + 126
+ 195
+ 132 | 450 | 500 | | | | | | + 44 | + 70 | | + 70 | + 88 | + 122 | + 194
+ 150 | + 220
+ 150 | 500 | 560 | | _ | _ | _ | _ | 0 | 0 | _ | + 70
+ 26 | + 88
+ 44 | + 78 | + 199
+ 155 | + 225
+ 155 | 560 | 630 | | | | | | + 50 | + 80 | | + 80 | + 100 | + 138 | + 225
+ 175 | + 255
+ 175 | 630 | 710 | | - | _ | _ | _ | 0 | 0 | _ | + 30 | + 50 | + 88 | + 235
+ 185 | + 265
+ 185 | 710 | 800 | | | | | | + 56 | + 90 | | + 90 | + 112 | + 156 | + 266
+ 210 | + 300
+ 210 | 800 | 900 | | _ | _ | | | 0 | 0 | _ | + 34 | + 56 | + 100 | + 276
+ 220 | + 310
+ 220 | 900 | 1 000 | | | | | | + 66 | + 105 | | + 106 | + 132 | + 186 | + 316
+ 250 | + 355
+ 250 | 1 000 | 1 120 | | | | | | 0 | 0 | | + 40 | + 66 | + 120 | + 326
+ 260 | + 365
+ 260 | 1 120 | 1 250 | | _ | _ | _ | _ | + 78 | + 125 | _ | + 126 | + 156 | + 218 | + 378 + 300 | + 425
+ 300 | 1 250 | 1 400 | | | | | | 0 | 0 | | + 48 | + 78 | + 140 | + 408
+ 330 | + 455
+ 330 | 1 400 | 1 600 | | _ | _ | _ | _ | + 92
0 | + 150
0 | _ | + 150
+ 58 | + 184
+ 92 | + 262 | + 462
+ 370
+ 492 | + 520
+ 370 | 1 600 | 1 800 | | | | | | U | U | | + 56 | + 92 | + 170 | + 492 | + 550
+ 400 | 1 800 | 2 000 | ## Appendix Table 10 | Dian
Classifica
over | neter
tion (mm)
incl. | Single Plane
Mean O.D.
Deviation
(Normal)
D _{mp} | E6 | F6 | F7 | G6 | G7 | Н6 | Н7 | Н8 | J6 | J7 | JS6 | JS7 | |----------------------------|-----------------------------|---|----------------|----------------|----------------|---------------|---------------|------------|------------|------------|-------------|--------------|--------|--------| | 10 | 18 | 0
- 8 | + 43
+ 32 | + 27
+ 16 | + 34
+ 16 | + 17
+ 6 | + 24
+ 6 | + 11 | + 18
0 | + 27
0 | + 6
- 5 | + 10
— 8 | ± 5.5 | ± 9 | | 18 | 30 | - 9 | + 53
+ 40 | + 33
+ 20 | + 41
+ 20 | + 20
+ 7 | + 28
+ 7 | + 13 | + 21 | + 33 | + 8
- 5 | + 12
- 9 | ± 6.5 | ± 10.5 | | 30 | 50 | 0
- 11 | + 66
+ 50 | + 41
+ 25 | + 50
+ 25 | + 25
+ 9 | + 34 + 9 | + 16 | + 25 | + 39 | + 10
— 6 | + 14
11 | ± 8 | ± 12.5 | | 50 | 80 | 0
- 13 | + 79
+ 60 | + 49
+ 30 | + 60
+ 30 | + 29
+ 10 | + 40
+ 10 | + 19 | + 30 | + 46 | + 13
— 6 | + 18
12 | ± 9.5 | ± 15 | | 80 | 120 | 0
- 15 | + 94
+ 72 | + 58
+ 36 | + 71
+ 36 | + 34
+ 12 | + 47
+ 12 | + 22 | + 35 | + 54 | + 16
— 6 | + 22
13 | ± 11 | ± 17.5 | | 120
150 | 150
180 | 0
- 18
0
- 25 | + 110
+ 85 | + 68
+ 43 | + 83
+ 43 | + 39
+ 14 | + 54
+ 14 | + 25
0 | + 40 | + 63 | + 18
- 7 | + 26
14 | ± 12.5 | ± 20 | | 180 | 250 | 0
- 30 | + 129
+ 100 | + 79
+ 50 | + 96
+ 50 | + 44
+ 15 | + 61
+ 15 | + 29 | + 46 | + 72 | + 22
— 7 | + 30
— 16 | ± 14.5 | ± 23 | | 250 | 315 | 0
- 35 | + 142
+ 110 | + 88
+ 56 | + 108
+ 56 | + 49
+ 17 | + 69
+ 17 | + 32 | + 52
0 | + 81 | + 25
— 7 | + 36
— 16 | ± 16 | ± 26 | | 315 | 400 | 0
- 40 | + 161
+ 125 | + 98
+ 62 | + 119
+ 62 | + 54
+ 18 | + 75
+ 18 | + 36 | + 57
0 | + 89 | + 29
— 7 | + 39
— 18 | ± 18 | ± 28.5 | | 400 | 500 | 0
- 45 | + 175
+ 135 | + 108
+ 68 | + 131
+ 68 | + 60
+ 20 | + 83
+ 20 | + 40 | + 63 | + 97 | + 33
— 7 | + 43
- 20 | ± 20 | ± 31.5 | | 500 | 630 | 0
- 50 | + 189
+ 145 | + 120
+ 76 | + 146
+ 76 | + 66
+ 22 | + 92
+ 22 | + 44 | + 70 | + 110 | _ | _ | ± 22 | ± 35 | | 630 | 800 | 0
- 75 | + 210
+ 160 | + 130
+ 80 | + 160
+ 80 | + 74
+ 24 | + 104
+ 24 | + 50 | + 80 | + 125
0 | _ | _ | ± 25 | ± 40 | | 800 | 1 000 | 0
-100 | + 226
+ 170 | + 142
+ 86 | + 176
+ 86 | + 82
+ 26 | + 116
+ 26 | + 56
0 | + 90 | + 140
0 | _ | _ | ± 28 | ± 45 | | 1 000 | 1 250 | 0
125 | + 261
+ 195 | + 164
+ 98 | + 203
+ 98 | + 94
+ 28 | + 133
+ 28 | + 66 | + 105
0 | + 165
0 | _ | _ | ± 33 | ± 52.5 | | 1 250 | 1 600 | 0
160 | + 298
+ 220 | + 188
+ 110 | + 235
+ 110 | + 108
+ 30 | + 155
+ 30 | + 78 | + 125
0 | + 195
0 | _ | _ | ±39 | ± 62.5 | | 1 600 | 2 000 | 0
-200 | + 332
+ 240 | + 212
+ 120 | + 270
+ 120 | + 124
+ 32 | + 182
+ 32 | + 92 | + 150
0 | + 230 | | _ | ± 46 | ± 75 | | 2 000 | 2 500 | 0
-250 | + 370
+ 260 | + 240
+ 130 | + 305
+ 130 | + 144
+ 34 | + 209
+ 34 | + 110
0 | + 175
0 | + 280
0 | _ | _ | ± 55 | ± 87.5 | ## **Tolerances for Housing Bore Diameters** Units : µm | | | | | | | | | | | | Diameter Cl | | |------------|-------------|----------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------| | K5 | K6 | K7 | M5 | M6 | M7 | N5 | N6 | N7 | P6 | P7 | over | incl. | | + 2
- 6 | + 2
- 9 | + 6
- 12 | - 4
-12 | - 4
- 15 | 0
- 18 | - 9
-17 | - 9
- 20 | - 5
- 23 | - 15
- 26 | - 11
- 29 | 10 | 18 | | + 1 - 8 | + 2
- 11 | + 6
- 15 | - 5
-14 | - 4
- 17 | 0
- 21 | -12
-21 | - 11
- 24 | - 7
- 28 | - 18
- 31 | - 14
- 35 | 18 | 30 | | + 2
- 9 | + 3
- 13 | + 7
- 18 | - 5
-16 | - 4
- 20 | 0
- 25 | -13
-24 | - 12
- 28 | - 8
- 33 | - 21
- 37 | - 17
- 42 | 30 | 50 | | + 3
-10 | + 4
- 15 | + 9
- 21 | - 6
-19 | - 5
- 24 | - 30 | - 15
- 28 | - 14
- 33 | - 9
- 39 | - 26
- 45 | - 21
- 51 | 50 | 80 | | + 2
-13 | + 4
- 18 | + 10
- 25 | - 8
-23 | - 6
- 28 | 0
- 35 | -18
-33 | - 16
- 38 | - 10
- 45 | - 30
- 52 | - 24
- 59 | 80 | 120 | | + 3
-15 | + 4
- 21 | + 12
- 28 | - 9
-27 | - 8
- 33 | 0
- 40 | -21
-39 | - 20
- 45 | - 12
- 52 | - 36
- 61 | - 28
- 68 | 120 | 180 | | +
2
-18 | + 5
- 24 | + 13
- 33 | -11
-31 | - 8
- 37 | 0
- 46 | -25
-45 | - 22
- 51 | - 14
- 60 | - 41
- 70 | - 33
- 79 | 180 | 250 | | + 3
-20 | + 5
- 27 | + 16
- 36 | -13
-36 | - 9
- 41 | 0
- 52 | -27
-50 | - 25
- 57 | - 14
- 66 | - 47
- 79 | - 36
- 88 | 250 | 315 | | + 3
-22 | + 7
- 29 | + 17
- 40 | -14
-39 | - 10
- 46 | 0
- 57 | -30
-55 | - 26
- 62 | - 16
- 73 | - 51
- 87 | - 41
- 98 | 315 | 400 | | + 2
-25 | + 8
- 32 | + 18
- 45 | -16
-43 | - 10
- 50 | 0
- 63 | -33
-60 | - 27
- 67 | - 17
- 80 | - 55
- 95 | - 45
-108 | 400 | 500 | | _ | 0
- 44 | - ⁰ | _ | - 26
- 70 | - 26
- 96 | _ | - 44
- 88 | - 44
-114 | - 78
-122 | - 78
-148 | 500 | 630 | | _ | - 50 | - 80 | _ | - 30
- 80 | - 30
-110 | _ | - 50
-100 | - 50
-130 | - 88
-138 | - 88
-168 | 630 | 800 | | _ | 0
- 56 | 0
- 90 | _ | - 34
- 90 | - 34
-124 | _ | - 56
-112 | - 56
-146 | -100
-156 | -100
-190 | 800 | 1 000 | | | 0
- 66 | 0
105 | _ | - 40
-106 | - 40
-145 | _ | - 66
-132 | - 66
-171 | -120
-186 | -120
-225 | 1 000 | 1 250 | | | 0
- 78 | 0
125 | | - 48
-126 | - 48
-173 | _ | - 78
-156 | - 78
-203 | -140
-218 | -140
-265 | 1 250 | 1 600 | | | 0
- 92 | 0
150 | _ | - 58
-150 | - 58
-208 | _ | - 92
-184 | - 92
-242 | -170
-262 | -170
-320 | 1 600 | 2 000 | | | 0
-110 | 0
175 | _ | - 68
-178 | - 68
-243 | _ | -110
-220 | -110
-285 | -195
-305 | -195
-370 | 2 000 | 2 500 | C 20 C 21 ### Appendix Table 11 Values of | Basic | Size | | | | | | | | | | | Standard | |-------|-------|-----|-----|-----|-----|-----|------------|-----|-----|-----|------|----------| | (m | ım) | IT1 | IT2 | IT3 | IT4 | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | | over | incl. | | | | | Tol | erances (μ | m) | | | | | | _ | 3 | 0.8 | 1.2 | 2 | 3 | 4 | 6 | 10 | 14 | 25 | 40 | 60 | | 3 | 6 | 1 | 1.5 | 2.5 | 4 | 5 | 8 | 12 | 18 | 30 | 48 | 75 | | 6 | 10 | 1 | 1.5 | 2.5 | 4 | 6 | 9 | 15 | 22 | 36 | 58 | 90 | | 10 | 18 | 1.2 | 2 | 3 | 5 | 8 | 11 | 18 | 27 | 43 | 70 | 110 | | 18 | 30 | 1.5 | 2.5 | 4 | 6 | 9 | 13 | 21 | 33 | 52 | 84 | 130 | | 30 | 50 | 1.5 | 2.5 | 4 | 7 | 11 | 16 | 25 | 39 | 62 | 100 | 160 | | 50 | 80 | 2 | 3 | 5 | 8 | 13 | 19 | 30 | 46 | 74 | 120 | 190 | | 80 | 120 | 2.5 | 4 | 6 | 10 | 15 | 22 | 35 | 54 | 87 | 140 | 220 | | 120 | 180 | 3.5 | 5 | 8 | 12 | 18 | 25 | 40 | 63 | 100 | 160 | 250 | | 180 | 250 | 4.5 | 7 | 10 | 14 | 20 | 29 | 46 | 72 | 115 | 185 | 290 | | 250 | 315 | 6 | 8 | 12 | 16 | 23 | 32 | 52 | 81 | 130 | 210 | 320 | | 315 | 400 | 7 | 9 | 13 | 18 | 25 | 36 | 57 | 89 | 140 | 230 | 360 | | 400 | 500 | 8 | 10 | 15 | 20 | 27 | 40 | 63 | 97 | 155 | 250 | 400 | | 500 | 630 | 9 | 11 | 16 | 22 | 32 | 44 | 70 | 110 | 175 | 280 | 440 | | 630 | 800 | 10 | 13 | 18 | 25 | 36 | 50 | 80 | 125 | 200 | 320 | 500 | | 800 | 1 000 | 11 | 15 | 21 | 28 | 40 | 56 | 90 | 140 | 230 | 360 | 560 | | 1 000 | 1 250 | 13 | 18 | 24 | 33 | 47 | 66 | 105 | 165 | 260 | 420 | 660 | | 1 250 | 1 600 | 15 | 21 | 29 | 39 | 55 | 78 | 125 | 195 | 310 | 500 | 780 | | 1 600 | 2 000 | 18 | 25 | 35 | 46 | 65 | 92 | 150 | 230 | 370 | 600 | 920 | | 2 000 | 2 500 | 22 | 30 | 41 | 55 | 78 | 110 | 175 | 280 | 440 | 700 | 1 100 | | 2 500 | 3 150 | 26 | 36 | 50 | 68 | 96 | 135 | 210 | 330 | 540 | 860 | 1 350 | # Remarks 1. Standard tolerance grades IT14 to IT18 shall not be used for basic sizes less than or equal to 1 mm. #### Standard Tolerance Grades IT | Grades | | | Basic | Size | | | | | |--------|------|------|------------|-------|-------|-------|-------|-------| | IT12 | IT13 | IT14 | IT15 | IT16 | IT17 | IT18 | (n | nm) | | | | Tole | erances (m | nm) | | | over | incl. | | 0.10 | 0.14 | 0.25 | 0.40 | 0.60 | 1.00 | 1.40 | _ | 3 | | 0.12 | 0.18 | 0.30 | 0.48 | 0.75 | 1.20 | 1.80 | 3 | 6 | | 0.15 | 0.22 | 0.36 | 0.58 | 0.90 | 1.50 | 2.20 | 6 | 10 | | 0.18 | 0.27 | 0.43 | 0.70 | 1.10 | 1.80 | 2.70 | 10 | 18 | | 0.21 | 0.33 | 0.52 | 0.84 | 1.30 | 2.10 | 3.30 | 18 | 30 | | 0.25 | 0.39 | 0.62 | 1.00 | 1.60 | 2.50 | 3.90 | 30 | 50 | | 0.30 | 0.46 | 0.74 | 1.20 | 1.90 | 3.00 | 4.60 | 50 | 80 | | 0.35 | 0.54 | 0.87 | 1.40 | 2.20 | 3.50 | 5.40 | 80 | 120 | | 0.40 | 0.63 | 1.00 | 1.60 | 2.50 | 4.00 | 6.30 | 120 | 180 | | 0.46 | 0.72 | 1.15 | 1.85 | 2.90 | 4.60 | 7.20 | 180 | 250 | | 0.52 | 0.81 | 1.30 | 2.10 | 3.20 | 5.20 | 8.10 | 250 | 315 | | 0.57 | 0.89 | 1.40 | 2.30 | 3.60 | 5.70 | 8.90 | 315 | 400 | | 0.63 | 0.97 | 1.55 | 2.50 | 4.00 | 6.30 | 9.70 | 400 | 500 | | 0.70 | 1.10 | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 500 | 630 | | 0.80 | 1.25 | 2.00 | 3.20 | 5.00 | 8.00 | 12.50 | 630 | 800 | | 0.90 | 1.40 | 2.30 | 3.60 | 5.60 | 9.00 | 14.00 | 800 | 1 000 | | 1.05 | 1.65 | 2.60 | 4.20 | 6.60 | 10.50 | 16.50 | 1 000 | 1 250 | | 1.25 | 1.95 | 3.10 | 5.00 | 7.80 | 12.50 | 19.50 | 1 250 | 1 600 | | 1.50 | 2.30 | 3.70 | 6.00 | 9.20 | 15.00 | 23.00 | 1 600 | 2 000 | | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 17.50 | 28.00 | 2 000 | 2 500 | | 2.10 | 3.30 | 5.40 | 8.60 | 13.50 | 21.00 | 33.00 | 2 500 | 3 150 | ^{2.} Values for standard tolerance grades IT1 to IT5 for basic sizes over 500 mm are included for experimental use. ### Appedix Table 12 Speed Factor $f_{ m n}$ #### Appendix Table 13 Fatigue Life Factor f_n and Fatigue Life $L \cdot L_h$ Ball Bearings $f_{ m n}$ = (0.03 n) $^{-1/3}$ Roller Bearings $f_{\rm n}$ = (0.03 n) $^{-3/10}$ Ball Bearings $L=(C/P)^3$ $L_{\rm h}=500\,f_{\rm h}^3$ $_{\rm h}$ =500 $f_{\rm h}^{10/3}$ | Speed | | factor $f_{\rm n}$ | Speed | Speed F | | Speed | Speed F | actor $f_{\rm n}$ | |-------------------------------|---------------|--------------------|-------------------------------|---------------|-----------------|-------------------------------|---------------|-------------------| | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | | 10 | 1.49 | 1.44 | 180 | 0.570 | 0.603 | 3 000 | 0.223 | 0.259 | | 11 | 1.45 | 1.39 | 190 | 0.560 | 0.593 | 3 200 | 0.218 | 0.254 | | 12 | 1.41 | 1.36 | 200 | 0.550 | 0.584 | 3 400 | 0.214 | 0.250 | | 13 | 1.37 | 1.33 | 220 | 0.533 | 0.568 | 3 600 | 0.210 | 0.245 | | 14 | 1.34 | 1.30 | 240 | 0.518 | 0.553 | 3 800 | 0.206 | 0.242 | | 15 | 1.30 | 1.27 | 260 | 0.504 | 0.540 | 4 000 | 0.203 | 0.238 | | 16 | 1.28 | 1.25 | 280 | 0.492 | 0.528 | 4 200 | 0.199 | 0.234 | | 17 | 1.25 | 1.22 | 300 | 0.481 | 0.517 | 4 400 | 0.196 | 0.231 | | 18 | 1.23 | 1.20 | 320 | 0.471 | 0.507 | 4 600 | 0.194 | 0.228 | | 19 | 1.21 | 1.18 | 340 | 0.461 | 0.498 | 4 800 | 0.191 | 0.225 | | 20 | 1.19 | 1.17 | 360 | 0.452 | 0.490 | 5 000 | 0.188 | 0.222 | | 21 | 1.17 | 1.15 | 380 | 0.444 | 0.482 | 5 200 | 0.186 | 0.220 | | 22 | 1.15 | 1.13 | 400 | 0.437 | 0.475 | 5 400 | 0.183 | 0.217 | | 23 | 1.13 | 1.12 | 420 | 0.430 | 0.468 | 5 600 | 0.181 | 0.215 | | 24 | 1.12 | 1.10 | 440 | 0.423 | 0.461 | 5 800 | 0.179 | 0.213 | | 25 | 1.10 | 1.09 | 460 | 0.417 | 0.455 | 6 000 | 0.177 | 0.211 | | 26 | 1.09 | 1.08 | 480 | 0.411 | 0.449 | 6 200 | 0.175 | 0.209 | | 27 | 1.07 | 1.07 | 500 | 0.405 | 0.444 | 6 400 | 0.173 | 0.207 | | 28 | 1.06 | 1.05 | 550 | 0.393 | 0.431 | 6 600 | 0.172 | 0.205 | | 29 | 1.05 | 1.04 | 600 | 0.382 | 0.420 | 6 800 | 0.170 | 0.203 | | 30 | 1.04 | 1.03 | 650 | 0.372 | 0.410 | 7 000 | 0.168 | 0.201 | | 31 | 1.02 | 1.02 | 700 | 0.362 | 0.401 | 7 200 | 0.167 | 0.199 | | 32 | 1.01 | 1.01 | 750 | 0.354 | 0.393 | 7 400 | 0.165 | 0.198 | | 33.3 | 1.00 | 1.00 | 800 | 0.347 | 0.385 | 7 600 | 0.164 | 0.196 | | 34 | 0.993 | 0.994 | 850 | 0.340 | 0.378 | 7 800 | 0.162 | 0.195 | | 36 | 0.975 | 0.977 | 900 | 0.333 | 0.372 | 8 000 | 0.161 | 0.193 | | 38 | 0.957 | 0.961 | 950 | 0.327 | 0.366 | 8 500 | 0.158 | 0.190 | | 40 | 0.941 | 0.947 | 1 000 | 0.322 | 0.360 | 9 000 | 0.155 | 0.186 | | 42 | 0.926 | 0.933 | 1 050 | 0.317 | 0.355 | 9 500 | 0.152 | 0.183 | | 44 | 0.912 | 0.920 | 1 100 | 0.312 | 0.350 | 10 000 | 0.149 | 0.181 | | 46 | 0.898 | 0.908 | 1 150 | 0.307 | 0.346 | 11 000 | 0.145 | 0.176 | | 48 | 0.886 | 0.896 | 1 200 | 0.303 | 0.341 | 12 000 | 0.141 | 0.171 | | 50 | 0.874 | 0.885 | 1 250 | 0.299 | 0.337 | 13 000 | 0.137 | 0.167 | | 55 | 0.846 | 0.861 | 1 300 | 0.295 | 0.333 | 14 000 | 0.134 | 0.163 | | 60 | 0.822 | 0.838 | 1 400 | 0.288 | 0.326 | 15 000 | 0.130 | 0.160 | | 65 | 0.800 | 0.818 | 1 500 | 0.281 | 0.319 | 16 000 | 0.128 | 0.157 | | 70 | 0.781 | 0.800 | 1 600 | 0.275 | 0.313 | 17 000 | 0.125 | 0.154 | | 75 | 0.763 | 0.784 | 1 700 | 0.270 | 0.307 | 18 000 | 0.123 | 0.151 | | 80 | 0.747 | 0.769 | 1 800 | 0.265 | 0.302 | 19 000 | 0.121 | 0.149 | | 85 | 0.732 | 0.755 | 1 900 | 0.260 | 0.297 | 20 000 | 0.119 | 0.147 | | 90 | 0.718 | 0.742 | 2 000 | 0.255 | 0.293 | 22 000 | 0.115 | 0.143 | | 95 | 0.705 | 0.730 | 2 100 | 0.251 | 0.289 | 24 000 | 0.112 | 0.139 | | 100 | 0.693 | 0.719 | 2 200 | 0.247 | 0.285 | 26 000 | 0.109 | 0.136 | | 110 | 0.672 | 0.699 | 2 300 | 0.244 | 0.281 | 28 000 | 0.106 | 0.133 | | 120 | 0.652 | 0.681 | 2 400 | 0.240 | 0.277 | 30 000 | 0.104 | 0.130 | | 130 | 0.635 | 0.665 | 2 500 | 0.237 | 0.274 | 32 000 | 0.101 | 0.127 | | 140 | 0.620 | 0.650 | 2 600 | 0.234 | 0.271 | 34 000 | 0.099 | 0.125 | | 150 | 0.606 | 0.637 | 2 700 | 0.231 | 0.268 | 36 000 | 0.097 | 0.123 | | 160 | 0.593 | 0.625 | 2 800 | 0.228 | 0.265 | 38 000 | 0.096 | 0.121 | | 170 | 0.581 | 0.613 | 2 900 | 0.226 | 0.262 | 40 000 | 0.094 | 0.119 | | | | | | | | Roller B | earings $L = (C$ | $/P)^{10/3}L_{\rm h}$ | $=500 f_{\mathrm{h}}^{10/3}$ | |--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|---
--|---|--| | | Ball Bear | ing Life | Roller Bea | aring Life | | Ball Bear | ing Life | Roller Be | aring Life | | C/P or $f_{ m h}$ | <i>L</i> (10 ⁶ rev) | <i>L</i> _h (h) | <i>L</i> (10 ⁶ rev) | <i>L</i> _h (h) | C/P or $f_{ m h}$ | <i>L</i> (10 ⁶ rev) | <i>L</i> _h (h) | <i>L</i> (10 ⁶ rev) | <i>L</i> _h (h) | | 0.70 | 0.34 | 172 | 0.30 | 152 | 3.45 | 41.1 | 20 500 | 62.0 | 31 000 | | 0.75 | 0.42 | 211 | 0.38 | 192 | 3.50 | 42.9 | 21 400 | 65.1 | 32 500 | | 0.80 | 0.51 | 256 | 0.48 | 238 | 3.55 | 44.7 | 22 400 | 68.2 | 34 100 | | 0.85 | 0.61 | 307 | 0.58 | 291 | 3.60 | 46.7 | 23 300 | 71.5 | 35 800 | | 0.90 | 0.73 | 365 | 0.70 | 352 | 3.65 | 48.6 | 24 300 | 74.9 | 37 400 | | 0.95 | 0.86 | 429 | 0.84 | 421 | 3.70 | 50.7 | 25 300 | 78.3 | 39 200 | | 1.00 | 1.00 | 500 | 1.00 | 500 | 3.75 | 52.7 | 26 400 | 81.9 | 41 000 | | 1.05 | 1.16 | 579 | 1.18 | 588 | 3.80 | 54.9 | 27 400 | 85.6 | 42 800 | | 1.10 | 1.33 | 665 | 1.37 | 687 | 3.85 | 57.1 | 28 500 | 89.4 | 44 700 | | 1.15 | 1.52 | 760 | 1.59 | 797 | 3.90 | 59.3 | 29 700 | 93.4 | 46 700 | | 1.20 | 1.73 | 864 | 1.84 | 918 | 3.95 | 61.6 | 30 800 | 97.4 | 48 700 | | 1.25 | 1.95 | 977 | 2.10 | 1 050 | 4.00 | 64.0 | 32 000 | 102 | 50 800 | | 1.30 | 2.20 | 1 100 | 2.40 | 1 200 | 4.05 | 66.4 | 33 200 | 106 | 52 900 | | 1.35 | 2.46 | 1 230 | 2.72 | 1 360 | 4.10 | 68.9 | 34 500 | 110 | 55 200 | | 1.40 | 2.74 | 1 370 | 3.07 | 1 530 | 4.15 | 71.5 | 35 700 | 115 | 57 400 | | 1.45 | 3.05 | 1 520 | 3.45 | 1 730 | 4.20 | 74.1 | 37 000 | 120 | 59 800 | | 1.50 | 3.38 | 1 690 | 3.86 | 1 930 | 4.25 | 76.8 | 38 400 | 124 | 62 200 | | 1.55 | 3.72 | 1 860 | 4.31 | 2 150 | 4.30 | 79.5 | 39 800 | 129 | 64 600 | | 1.60 | 4.10 | 2 050 | 4.79 | 2 400 | 4.35 | 82.3 | 41 200 | 134 | 67 200 | | 1.65 | 4.49 | 2 250 | 5.31 | 2 650 | 4.40 | 85.2 | 42 600 | 140 | 69 800 | | 1.70 | 4.91 | 2 460 | 5.86 | 2 930 | 4.45 | 88.1 | 44 100 | 145 | 72 500 | | 1.75 | 5.36 | 2 680 | 6.46 | 3 230 | 4.50 | 91.1 | 45 600 | 150 | 75 200 | | 1.80 | 5.83 | 2 920 | 7.09 | 3 550 | 4.55 | 94.2 | 47 100 | 156 | 78 000 | | 1.85 | 6.33 | 3 170 | 7.77 | 3 890 | 4.60 | 97.3 | 48 700 | 162 | 80 900 | | 1.90 | 6.86 | 3 430 | 8.50 | 4 250 | 4.65 | 101 | 50 300 | 168 | 83 900 | | 1.95 | 7.41 | 3 710 | 9.26 | 4 630 | 4.70 | 104 | 51 900 | 174 | 87 000 | | 2.00 | 8.00 | 4 000 | 10.1 | 5 040 | 4.75 | 107 | 53 600 | 180 | 90 100 | | 2.05 | 8.62 | 4 310 | 10.9 | 5 470 | 4.80 | 111 | 55 300 | 187 | 93 300 | | 2.10 | 9.26 | 4 630 | 11.9 | 5 930 | 4.85 | 114 | 57 000 | 193 | 96 600 | | 2.15 | 9.94 | 4 970 | 12.8 | 6 410 | 4.90 | 118 | 58 800 | 200 | 99 900 | | 2.20 | 10.6 | 5 320 | 13.8 | 6 920 | 4.95 | 121 | 60 600 | 207 | 103 000 | | 2.25 | 11.4 | 5 700 | 14.9 | 7 460 | 5.00 | 125 | 62 500 | 214 | 107 000 | | 2.30 | 12.2 | 6 080 | 16.1 | 8 030 | 5.10 | 133 | 66 300 | 228 | 114 000 | | 2.35 | 13.0 | 6 490 | 17.3 | 8 630 | 5.20 | 141 | 70 300 | 244 | 122 000 | | 2.40 | 13.8 | 6 910 | 18.5 | 9 250 | 5.30 | 149 | 74 400 | 260 | 130 000 | | 2.45 | 14.7 | 7 350 | 19.8 | 9 910 | 5.40 | 157 | 78 700 | 276 | 138 000 | | 2.50 | 15.6 | 7 810 | 21.2 | 10 600 | 5.50 | 166 | 83 200 | 294 | 147 000 | | 2.55 | 16.6 | 8 290 | 22.7 | 11 300 | 5.60 | 176 | 87 800 | 312 | 156 000 | | 2.60 | 17.6 | 8 790 | 24.2 | 12 100 | 5.70 | 185 | 92 600 | 331 | 165 000 | | 2.65 | 18.6 | 9 300 | 25.8 | 12 900 | 5.80 | 195 | 97 600 | 351 | 175 000 | | 2.70 | 19.7 | 9 840 | 27.4 | 13 700 | 5.90 | 205 | 103 000 | 371 | 186 000 | | 2.75 | 20.8 | 10 400 | 29.1 | 14 600 | 6.00 | 216 | 108 000 | 392 | 196 000 | | 2.80 | 22.0 | 11 000 | 30.9 | 15 500 | 6.50 | 275 | 137 000 | 513 | 256 000 | | 2.85 | 23.1 | 11 600 | 32.8 | 16 400 | 7.00 | 343 | 172 000 | 656 | 328 000 | | 2.90 | 24.4 | 12 200 | 34.8 | 17 400 | 7.50 | 422 | 211 000 | 826 | 413 000 | | 2.95
3.00
3.05
3.10
3.15 | 25.7
27.0
28.4
29.8
31.3 | 12 800
13 500
14 200
14 900
15 600 | 36.8
38.9
41.1
43.4
45.8 | 18 400
19 500
20 600
21 700
22 900 | 8.00
8.50
9.00
9.50
10.0 | 512
614
729
857
1 000 | 256 000
307 000
365 000
429 000 | 1 020
1 250
1 520
1 820
2 150 | 512 000
627 000
758 000
908 000 | | 3.20
3.25
3.30
3.35
3.40 | 32.8
34.3
35.9
37.6
39.3 | 16 400
17 200
18 000
18 800
19 700 | 48.3
50.8
53.5
56.3
59.1 | 24 100
25 400
26 800
28 100
29 600 | 11.0
12.0
13.0
14.0
15.0 | 1 330
1 730
2 200
2 740
3 380 | _
_
_
_ | 2 960
3 960
5 170
6 610
8 320 | _
_
_
_ | C 24 C 25 Appendix Table14 Index of Inch Design Tapered Roller Bearings | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:C0 | al Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | |--------------------------|--|-------------------------------------|--------------------------|--|-------------------------------------|--------------------------|--|---|--------------------------------|--------------------------|--|--------------------------------| | 332
336
342 | D 80.000
d 41.275
d 41.275 | B140,B144,B146
B146
B146 | 497
498
522 | d 85.725
d 84.138
D 101.600 | B162
B162
B148,B150 | 657
658
659 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 73.025
74.612
76.200 | B158
B158
B158 | 1328
1329
1380 | D 52.388
D 53.975
d 22.225 | B136
B136
B136 | | 342 S
344
344 A | d 42.875
d 40.000
d 40.000 | B146
B144
B144 | 528
529
529 X | d 47.625
d 50.800
d 50.800 | B148
B150
B150 | 661
663
664 | $egin{array}{c} d \\ d \\ d \end{array}$ | 79.375
82.550
84.138 | B160
B160
B162 | 1620
1680
1729 | D 66.675
d 33.338
D 56.896 | B142
B142
B136,B138 | | 346
354 A
359 S | d 31.750
D 85.000
d 46.038 | B140
B148
B148 | 532 X
539
552 A | D 107.950
d 53.975
D 123.825 | B152
B152
B152,B154,B156 | 665
665 A
672 | d
d
D | 85.725
85.725
168.275 | B162
B162
B162,B164,B166 | 1755
1779
1922 | d 22.225
d 23.812
D 57.150 | B136
B138
B138 | | 362 A
366
368 | D 88.900
d 50.000
d 50.800 | B148,B150
B150
B150 | 553 X
555 S
557 S | D 122.238
d 57.150
d 53.975 | B154,B156
B152
B152 | 677
681
683 | $egin{array}{c} d \\ d \\ d \end{array}$ | 85.725
92.075
95.250 | B162
B164
B164 | 1988
1997 X
A2047 | d 28.575
d 26.988
d 12.000 | B138
B138
B136 | | 368 A
369 A
372 | d 50.800
d 47.625
D 100.000 | B150
B148
B150 | 558
559
560 | d 60.325
d 63.500
d 66.675 | B154
B154
B156 | 685
687
742 | $d \\ d \\ D$ | 98.425
101.600
150.089 | B164
B166
B156,B160,B162 | A2126
2523
2558 | D 31.991
D 69.850
d 30.162 | B136
B140,B142
B140 | | 374
376
377 | D 93.264
d 45.000
d 52.388 | B148
B148
B150 | 560 S
563
563 X | d 68.262
D 127.000
D 127.000 | B156
B154,B156,B158
B156 | 743
745 A
749 | D
d
d | 150.000
69.850
85.026 | B160
B156
B162 | 2559
2580
2582 | d 30.162
d 31.750
d 31.750 | B140
B140
B140 | | 382
382 A
382 S | D 98.425
D 96.838
D 96.838 | B152
B152
B152 | 565
566
567 | d 63.500
d 69.850
d 73.025 | B154
B156
B158 | 749 A
749 S
750 | $egin{array}{c} d \\ d \\ d \end{array}$ | 82.550
85.026
79.375 | B160
B162
B160 | 2585
2631
2690 | d 33.338
D 66.421
d 29.367 | B142
B140
B140 | | 385
387
387 A | d 55.000
d 57.150
d 57.150 | B152
B152
B152 | 567 A
567 S
568 | d 71.438
d 71.438
d 73.817 | B158
B158
B158 | 752
753
757 | D
D
d | 161.925
168.275
82.550 | B160,B162
B160,B162
B160 | 2720
2729
2735 X | D 76.200
D 76.200
D 73.025 | B144
B144
B144 | | 388 A
390 A
394 A | d 57.531
d 63.500
D 110.000 | B152
B154
B154,B156 | 569
570
572 | d 64.963
d 68.262
D 139.992 | B154
B156
B158,B160 | 758
759
760 | d
d
d | 85.725
88.900
90.488 | B162
B162
B162 | 2788
2789
2820 | d 38.100
d 39.688
D 73.025 | B144
B144
B142 | | 395
395 A
395 S | d 63.500
d 66.675
d 66.675 | B154
B156
B156 | 572 X
575
580 | D 139.700
d 76.200
d 82.550 | B160
B158
B160 | 766
772
776 | $egin{matrix} d \\ D \\ d \end{matrix}$ | 88.900
180.975
95.250 | B162
B164,B166
B164 | 2877
2924
2984 | d 34.925
D 85.000
d 46.038 | B142
B148
B148 | | 397
399 A
414 | d 60.000
d 68.262
D 88.501 | B154
B156
B144 | 581
582
590 A | d 80.962
d 82.550
d 76.200 | B160
B160
B158 | 779
780
782 | d
d
d | 98.425
101.600
104.775 | B164
B166
B166 | 3120
3188
3197 | D 72.626
d 31.750
d 33.338 | B140,B142
B140
B142 | | 418
432
432 A | d 38.100
D 95.250
D 95.250 | B144
B146
B148 | 592
592 A
593 | D 152.400
D 152.400
d 88.900 | B164
B158,B162,B164
B162 | 787
792
795 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 104.775
206.375
120.650 | B166
B168
B168 | 3320
3386
3420
 D 80.167
d 39.688
D 79.375 | B144
B144
B142,B144 | | 436
438
453 A | d 46.038
d 44.450
D 107.950 | B148
B146
B148 | 594
596
597 | d 95.250
d 85.725
d 93.662 | B164
B162
B164 | 797
799
799 A | $egin{array}{c} d \\ d \\ d \end{array}$ | 130.000
128.588
130.175 | B168
B168
B168 | 3478
3479
3490 | d 34.925
d 36.512
d 38.100 | B142
B144
B144 | | 453 X
460
462 | D 104.775
d 44.450
d 57.150 | B152
B148
B152 | 598
598 A
614 X | d 92.075
d 92.075
D 115.000 | B164
B164
B152 | 832
837
842 | $egin{array}{c} D \\ d \\ d \end{array}$ | 168.275
76.200
82.550 | B160,B162
B160
B160 | 3525
3576
3578 | D 87.312
d 41.275
d 44.450 | B146
B146
B146 | | 469
472
472 A | d 57.150
D 120.000
D 120.000 | B152
B156,B158
B156 | 622 X
632
633 | d 55.000
D 136.525
D 130.175 | B152
B154,B158
B154,B156,B158 | 843
850
854 | d
d
D | 76.200
88.900
190.500 | B160
B162
B162,B164,B166 | 3720
3730
3775 | D 93.264
D 93.264
d 50.800 | B146
B150
B150 | | 478
480
484 | d 65.000
d 68.262
d 70.000 | B156
B156
B158 | 637
639
643 | $egin{array}{ccc} d & 60.325 \\ d & 63.500 \\ d & 69.850 \\ \end{array}$ | B154
B154
B156 | 855
857
861 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 88.900
92.075
101.600 | B162
B164
B166 | 3780
3782
3820 | d 50.800
d 44.450
D 85.725 | B150
B146
B146 | | 492 A
493
495 | D 133.350
D 136.525
d 82.550 | B160,B162
B158,B160,B162
B160 | 644
645
652 | d 71.438
d 71.438
D 152.400 | B158
B158
B158,B160 | 864
866
932 | $d \\ d \\ D$ | 95.250
98.425
212.725 | B164
B164
B166 | 3877
3920
3926 | d 41.275
D 112.712
D 112.712 | B146
B154,B156
B152,B154 | | 495 A
495 AX
496 | d 76.200
d 76.200
d 80.962 | B158
B158
B160 | 653
653 X
655 | $egin{array}{ccc} D & 146.050 \\ D & 150.000 \\ d & 69.850 \\ \end{array}$ | B156,B158,B160,B162
B158
B156 | 938
1220
1280 | d
D
d | 114.300
57.150
22.225 | B166
B136
B136 | 3981
3982
3984 | d 58.738
d 63.500
d 66.675 | B152
B154
B156 | | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (r
d:CONE (Bore Di
D:CUP (Outside D | |--------------------------|---|---------------------------|---------------------------|--|---------------------------|-----------------------------|--|---------------------------|---------------------------|---| | 3994 | d 66.675 | B156 | 02820 | D 73.025 | B138,B142 | 13685 | d 38.100 | B144 | 19150 | d 38.10 | | A4050 | d 12.700 | B136 | 02872 | d 28.575 | B138 | 13687 | d 38.100 | B144 | 19268 | D 68.26 | | A4059 | d 15.000 | B136 | 02878 | d 34.925 | B142 | 13830 | D 63.500 | B144 | 21075 | d 19.05 | | A4138
4335
4388 | D 34.988
D 90.488
d 41.275 | B136
B146
B146 | 03062
03162
05062 | $egin{array}{ccc} d & 15.875 \\ D & 41.275 \\ d & 15.875 \\ \end{array}$ | B136
B136
B136 | 13889
14123 A
14125 A | d 38.100
d 31.750
d 31.750 | B144
B140
B140 | 21212
L21511
L21549 | D 53.97
D 34.98
d 15.87 | | 4535
4595
A5069 | D 104.775
d 53.975
d 17.455 | B152
B152
B136 | 05068
05075
05079 | d 17.462
d 19.050
d 19.990 | B136
B136
B136 | 14130
14131
14137 A | $egin{array}{ccc} d & 33.338 \\ d & 33.338 \\ d & 34.925 \\ \end{array}$ | B142
B142
B142 | 22168
22325
23100 | d 42.86
D 82.55
d 25.40 | | A5144
5335
5356 | D 36.525
D 103.188
d 44.450 | B136
B148
B148 | 05175
05185
07079 | $\begin{array}{ccc} D & 44.450 \\ D & 47.000 \\ d & 20.000 \end{array}$ | B136
B136
B136 | 14138 A
14139
14274 | d 34.925
d 34.976
D 69.012 | B142
B142
B140,B142 | 23256
23621
23691 | D 65.08
D 73.02
d 35.00 | | 5535 | D 122.238 | B152,B154 | 07087 | d 22.225 | B136 | 14276 | D 69.012 | B140,B142 | 24720 | D 76.20 | | 5566 | d 55.562 | B152 | 07097 | d 25.000 | B138 | 14283 | D 72.085 | B142 | 24721 | D 76.20 | | 5582 | d 60.325 | B154 | 07098 | d 24.981 | B138 | 15100 | d 25.400 | B138 | 24780 | d 41.27 | | 5584
5735
5760 | $egin{array}{ccc} d & 63.500 \\ D & 135.733 \\ d & 76.200 \\ \end{array}$ | B154
B158,B160
B158 | 07100
07100SA
07196 | d 25.400
d 25.400
D 50.005 | B138
B138
B136,B138 | 15101
15106
15112 | $egin{array}{ccc} d & 25.400 \\ d & 26.988 \\ d & 28.575 \\ \end{array}$ | B138
B138
B138 | 25520
25521
25523 | D 82.93
D 83.05
D 82.93 | | 5795
A6062
A6067 | d 77.788
d 15.875
d 16.993 | B160
B136
B136 | 07204
07205
08118 | $\begin{array}{ccc} D & 51.994 \\ D & 52.001 \\ d & 30.162 \end{array}$ | B136,B138
B138
B140 | 15113
15116
15117 | d 28.575
d 30.112
d 30.000 | B138
B140
B140 | 25577
25578
25580 | d 42.87
d 42.86
d 44.45 | | A6075
A6157
6220 | d 19.050
D 39.992
D 127.000 | B136
B136
B150,B152 | 08125
08231
09062 | $egin{array}{ccc} d & 31.750 \\ D & 58.738 \\ d & 15.875 \end{array}$ | B140
B140
B136 | 15118
15119
15120 | d 30.213
d 30.213
d 30.213 | B140
B140
B140 | 25584
25590
25820 | d 44.98
d 45.61
D 73.02 | | 6279
6280
6320 | d 50.800
d 53.975
D 135.755 | B150
B152
B154,B156 | 09067
09074
09078 | $egin{array}{ccc} d & 19.050 \\ d & 19.050 \\ d & 19.050 \\ \end{array}$ | B136
B136
B136 | 15123
15125
15126 | d 31.750
d 31.750
d 31.750 | B140
B140
B140 | 25821
25877
25878 | D 73.02
d 34.92
d 34.92 | | 6376 | d 60.325 | B154 | 09081 | d 20.625 | B136 | 15245 | D 62.000 | B138,B140 | 25880 | d 36.48 | | 6379 | d 65.088 | B156 | 09194 | D 49.225 | B136 | 15250 | D 63.500 | B140 | 26118 | d 30.00 | | 6420 | D 149.225 | B152,B156,B158 | 09195 | D 49.225 | B136 | 15250 X | D 63.500 | B138 | 26131 | d 33.33 | | 6454 | d 69.850 | B156 | 09196 | D 49.225 | B136 | 15520 | D 57.150 | B138 | 26283 | D 72.00 | | 6455 | d 57.150 | B152 | 11162 | d 41.275 | B146 | 15523 | D 60.325 | B138 | 26820 | D 80.16 | | 6460 | d 73.025 | B158 | 11300 | D 76.200 | B146 | 15578 | d 25.400 | B138 | 26822 | D 79.37 | | 6461 | d 76.200 | B158 | 11520 | D 42.862 | B136 | 15580 | d 26.988 | B138 | 26823 | D 76.20 | | 6535 | D 161.925 | B158,B160,B162 | 11590 | d 15.875 | B136 | 16150 | d 38.100 | B144 | 26882 | d 41.27 | | 6536 | D 161.925 | B158 | LM11710 | D 39.878 | B136 | 16284 | D 72.238 | B144 | 26884 | d 42.87 | | 6559 | d 82.550 | B160 | LM11749 | d 17.462 | B136 | 16929 | D 74.988 | B146 | 27620 | D 125.41 | | 6575 | d 76.200 | B158 | LM11910 | D 45.237 | B136 | 16986 | d 43.000 | B146 | 27687 | d 82.55 | | 6576 | d 76.200 | B158 | LM11949 | d 19.050 | B136 | 17098 | d 24.981 | B138 | 27689 | d 83.34 | | 6580 | d 88.900 | B162 | 12168 | d 42.862 | B146 | 17118 | d 30.000 | B140 | 27690 | d 83.34 | | 9121 | D 152.400 | B154,B156 | 12303 | D 76.992 | B146 | 17244 | D 62.000 | B138,B140 | 27820 | D 80.03 | | 9180 | d 61.912 | B154 | 12520 | D 49.225 | B136 | 17520 | D 42.862 | B136 | 27880 | d 38.10 | | 9185
9220
9285 | d 68.262
D 161.925
d 76.200 | B156
B158
B158 | 12580
M12610
M12648 | $egin{array}{ccc} d & 20.638 \\ D & 50.005 \\ d & 22.225 \\ \end{array}$ | B136
B136
B136 | 17580
17831
17887 | d 15.875
D 79.985
d 45.230 | B136
B148
B148 | 28138
28315
28521 | d 34.97
D 80.00
D 92.07 | | 9320 | D 177.800 | B160 | M12649 | d 21.430 | B136 | 18200 | d 50.800 | B150 | 28580 | d 50.80 | | 9321 | D 171.450 | B160,B162 | LM12710 | D 45.237 | B136 | 18337 | D 85.725 | B150 | 28584 | d 52.38 | | 9378 | d 76.200 | B160 | LM12711 | D 45.975 | B136 | 18520 | D 73.025 | B144 | 28622 | D 97.63 | | 9380 | d 76.200 | B160 | LM12749 | d 22.000 | B136 | 18590 | d 41.275 | B144 | 28680 | d 55.56 | | 9385 | d 84.138 | B162 | 13175 | d 44.450 | B146 | 18620 | D 79.375 | B148 | 28920 | D 101.60 | | 02420 | D 68.262 | B138,B140 | 13181 | d 46.038 | B148 | 18690 | d 46.038 | B148 | 28921 | D 100.00 | | 02473 | d 25.400 | B138 | 13318 | D 80.962 | B146,B148 | 18720 | D 85.000 | B150 | 28985 | d 60.32 | | 02474 | d 28.575 | B138 | 13620 | D 69.012 | B144 | 18790 | d 50.800 | B150 | 29520 | D 107.95 | | 02475 | d 31.750 | B140 | 13621 | D 69.012 | B144 | 19138 | d 34.976 | B142 | 29586 | d 63.50 | | Bearing No.
CONE, CUP | d:00 | I Dimension (mm)
NE (Bore Dia.)
P (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:CC | al Dimension (mm)
DNE (Bore Dia.)
IP (Outside Dia.) | Pages | |-----------------------------|--|--|---------------------------|---------------------------|--|---|--------------------------------| | 13685
13687
13830 | d
d
D | 38.100
38.100
63.500 | B144
B144
B144 | 19150
19268
21075 | $d \\ D \\ d$ | 38.100
68.262
19.050 | B144
B142,B144
B136 | | 13889
14123 A
14125 A | $egin{array}{c} d \\ d \\ d \end{array}$ | 38.100
31.750
31.750 | B144
B140
B140 | 21212
L21511
L21549 | $D \\ D \\ d$ |
53.975
34.988
15.875 | B136
B136
B136 | | 14130
14131
14137 A | $egin{array}{c} d \\ d \\ d \end{array}$ | 33.338
33.338
34.925 | B142
B142
B142 | 22168
22325
23100 | d_D_d | 42.862
82.550
25.400 | B146
B146
B138 | | 14138 A
14139
14274 | $egin{matrix} d \\ d \\ D \end{matrix}$ | 34.925
34.976
69.012 | B142
B142
B140,B142 | 23256
23621
23691 | $D \\ D \\ d$ | 65.088
73.025
35.000 | B138
B142
B142 | | 14276
14283
15100 | $D \\ D \\ d$ | 69.012
72.085
25.400 | B140,B142
B142
B138 | 24720
24721
24780 | $D \\ D \\ d$ | 76.200
76.200
41.275 | B146
B146
B146 | | 15101
15106
15112 | $egin{array}{c} d \\ d \\ d \end{array}$ | 25.400
26.988
28.575 | B138
B138
B138 | 25520
25521
25523 | $D \\ D \\ D$ | 82.931
83.058
82.931 | B146,B148
B146
B146,B148 | | 15113
15116
15117 | $egin{array}{c} d \\ d \\ d \end{array}$ | 28.575
30.112
30.000 | B138
B140
B140 | 25577
25578
25580 | $egin{array}{c} d \\ d \\ d \end{array}$ | 42.875
42.862
44.450 | B146
B146
B146 | | 15118
15119
15120 | $egin{array}{c} d \\ d \\ d \end{array}$ | 30.213
30.213
30.213 | B140
B140
B140 | 25584
25590
25820 | $\stackrel{d}{\stackrel{d}{_D}}$ | 44.983
45.618
73.025 | B148
B148
B142 | | 15123
15125
15126 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 31.750
31.750
31.750 | B140
B140
B140 | 25821
25877
25878 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 73.025
34.925
34.925 | B142,B144
B142
B142 | | 15245
15250
15250 X | $D \\ D \\ D$ | 62.000
63.500
63.500 | B138,B140
B140
B138 | 25880
26118
26131 | $egin{array}{c} d \\ d \\ d \end{array}$ | 36.487
30.000
33.338 | B144
B140
B142 | | 15520
15523
15578 | $D \\ D \\ d$ | 57.150
60.325
25.400 | B138
B138
B138 | 26283
26820
26822 | $D \\ D \\ D$ | 72.000
80.167
79.375 | B140,B142
B146
B146 | | 15580
16150
16284 | $egin{matrix} d \\ d \\ D \end{matrix}$ | 26.988
38.100
72.238 | B138
B144
B144 | 26823
26882
26884 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 76.200
41.275
42.875 | B146
B146
B146 | | 16929
16986
17098 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 74.988
43.000
24.981 | B146
B146
B138 | 27620
27687
27689 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 125.412
82.550
83.345 | B160
B160
B160 | | 17118
17244
17520 | $_{D}^{d}$ | 30.000
62.000
42.862 | B140
B138,B140
B136 | 27690
27820
27880 | d
D
d | 83.345
80.035
38.100 | B160
B144
B144 | | 17580
17831
17887 | $egin{matrix} d \\ D \\ d \end{matrix}$ | 15.875
79.985
45.230 | B136
B148
B148 | 28138
28315
28521 | $_{D}^{d}$ | 34.976
80.000
92.075 | B142
B142
B150 | | 18200
18337
18520 | d
D
D | 50.800
85.725
73.025 | B150
B150
B144 | 28580
28584
28622 | $_{D}^{d}$ | 50.800
52.388
97.630 | B150
B150
B152 | | 18590
18620
18690 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 41.275
79.375
46.038 | B144
B148
B148 | 28680
28920
28921 | $_{D}^{d}$ | 55.562
101.600
100.000 | B152
B154
B154 | | 18720
18790
19138 | D
d
d | 85.000
50.800
34.976 | B150
B150
B142 | 28985
29520
29586 | d
D
d | 60.325
107.950
63.500 | B154
B154
B154 | C 28 C 29 | Bearing No.
CONE, CUP | d:CONE | nension (mm)
(Bore Dia.)
Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d :CONE (Bore Dia.) D :CUP (Outside Dia.) | Pages | | ing No.
E, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm d:CONE (Bore Dia.) D:CUP (Outside Dia. | Pages | |-----------------------------|-------------|--|---------------------------|-------------------------------|--|---------------------------|-----|------------------------|--|--------------------------------|---------------------------------|---|--------------------------------| | 29620
29630
29675 | D 12 | 12.712
20.650
69.850 | B156,B158
B156
B156 | 42690
43118
43131 | d 77.788
d 30.162
d 33.338 | B160
B140
B142 | 5 | 9585
2387
2393 | d 50.800
d 98.425
d 100.012 | B150
B164
B164 | 67920
67983
67985 | D 282.575
d 203.200
d 206.375 | B170
B170
B170 | | 29685
LM29710
LM29711 | d
D
D | 73.025
65.088
65.088 | B158
B144
B144 | 43300
43312
44143 | D 76.200
D 79.375
d 36.512 | B140
B142
B144 | 5 | 2400
2618
2637 | d 101.600
D 157.162
D 161.925 | B166
B164,B166
B164,B166 | L68110
L68111
L68149 | D 59.131
D 59.975
d 35.000 | B142
B142
B142 | | LM29748
LM29749
31520 | d 3 | 38.100
38.100
76.200 | B144
B144
B142 | 44150
44157
44162 | d 38.100
d 40.000
d 41.275 | B144
B144
B146 | 5 | 3150
3162
3176 | d 38.100
d 41.275
d 44.450 | B144
B146
B148 | 68450
68462
68709 | d 114.300
d 117.475
D 180.000 | B166
B166
B166 | | 31594
33262
33275 | d 6 | 34.925
66.675
69.850 | B142
B156
B156 | 44348
L44610
L44640 | D 88.501
D 50.292
d 23.812 | B144,B146
B138
B138 | 5 | 3177
3178
3375 | d 44.450
d 44.450
D 95.250 | B148
B148
B144,B148 | 68712
JL69310
JL69349 | D 180.975
D 63.000
d 38.000 | B166
B144
B144 | | 33281
33287
JHM33410 | d | 71.438
73.025
55.000 | B158
B158
B138 | L44643
L44649
45220 | d 25.400
d 26.988
D 104.775 | B138
B138
B152 | 5 | 3387
5175
5187 | D 98.425
d 44.450
d 47.625 | B146,B148
B148
B148 | 71412
71425
71437 | d 104.775 d 107.950 d 111.125 | B166 | | JHM33449
33462
33821 | D 11 | 24.000
17.475
95.250 | B138
B156,B158
B150 | 45221
45289
L45410 | D 104.775
d 57.150
D 50.292 | B152
B152
B140 | 5 | 5200
5200 C
5206 | d 50.800
d 50.800
d 52.388 | B150
B150
B150 | 71450
71453
71750 | d 114.300
d 115.087
D 190.500 | B166
B166
B166 | | 33889
34300
34306 | d | 50.800
76.200
77.788 | B150
B158
B160 | L45449
46143
46162 | d 29.000
d 36.512
d 41.275 | B140
B144
B146 | 5 | 5437
5443
6418 | D 111.125
D 112.712
d 106.362 | B148,B150
B148
B166 | 72187
72200
72200 C | d 47.625
d 50.800
d 50.800 | B148
B150
B150 | | 34478
36620
36690 | D 19 | 21.442
93.675
46.050 | B158,B160
B168
B168 | 46176
46368
46720 | d 44.450
D 93.662
D 225.425 | B146
B144,B146
B168 | 5 | 6425
6650
9200 | d 107.950
D 165.100
d 50.800 | B166
B166
B150 | 72212
72212C
72218 | d 53.975
d 53.975
d 55.562 | B152
B152
B152 | | 36920
36990
37425 | d 17 | 27.012
77.800
07.950 | B170
B170
B166 | 46780
47420
47487 | d 158.750
D 120.000
d 69.850 | B168
B156,B158
B156 | 6 | 9429
4433
4450 | D 108.966
d 109.992
d 114.300 | B150
B166
B166 | 72218C
72225C
72487 | d 55.562
d 57.150
D 123.825 | B152
B152
B148,B150,B152 | | 37625
M38510
M38511 | D = 6 | 58.750
66.675
65.987 | B166
B142
B142 | 47490
47620
47680 | d 71.438
D 133.350
d 76.200 | B158
B158,B160
B158 | 6 | 4700
5200
5212 | D 177.800
d 50.800
d 53.975 | B166
B150
B152 | LM72810
LM72849
74500 | D 47.000
d 22.606
d 127.000 | B138
B138
B168 | | M38547
M38549
39236 | d 3 | 35.000
34.925
60.000 | B142
B142
B154 | 47685
47686
47687 | d 82.550
d 82.550
d 82.550 | B160
B160
B160 | 6 | 5237
5320
5385 | d 60.325
D 114.300
d 44.450 | B154
B148
B148 | 74525
74537
74550 | d 133.350
d 136.525
d 139.700 | B168
B168
B168 | | 39250
39412
39520 | D 10 | 63.500
04.775
12.712 | B154
B154
B154,B156 | 47820
47890
47896 | D 146.050
d 92.075
d 95.250 | B164
B164
B164 | 6 | 5500
6187
6462 | D 127.000
d 47.625
D 117.475 | B150,B152,B154
B148
B148 | 74850
74856
77375 | D 215.900
D 217.488
d 95.250 | B168
B168
B164 | | 39521
39585
39590 | d 6 | 12.712
63.500
66.675 | B156
B154
B156 | 48120
48190
48220 | D 161.925
d 107.950
D 182.562 | B166
B166
B168 | 6 | 6520
6584
6585 | D 122.238
d 53.975
d 60.000 | B152,B154
B152
B154 | 77675
78225
78250 | D 171.450
d 57.150
d 63.500 | | | 41100
41125
41126 | d 2 | 25.400
28.575
28.575 | B138
B138
B138 | 48282
48286
48290 | d 120.650
d 123.825
d 127.000 | B168
B168
B168 | LM6 | 6587
7010
7043 | d 57.150
D 59.131
d 28.575 | B152
B138,B140
B138 | LM78310
LM78310 A
LM78349 | D 62.000
D 62.000
d 35.000 | B142
B142
B142 | | 41286
42350
42362 | d 8 | 72.626
88.900
92.075 | B138
B162
B164 | 48320
48385
48393 | D 190.500
d 133.350
d 136.525 | B168
B168
B168 | 6 | 7048
7320
7322 | d 31.750
D 203.200
D 196.850 | B140
B168
B168 | 78537
78551
78571 | D 136.525
D 140.030
D 144.983 | | | 42368
42375
42376 | d | 93.662
95.250
95.250 | B164
B164
B164 | LM48510
LM48511
LM48548 | $egin{array}{ccc} D & 65.088 \\ D & 65.088 \\ d & 34.925 \\ \end{array}$ | B142
B142
B142 | 6 | 7388
7389
7390 | d
127.000
d 130.175
d 133.350 | B168
B168
B168 | HM81610
HM81649
M84210 | D 47.000
d 16.000
D 59.530 | B136
B136
B138 | | 42381
42584
42587 | D 14 | 96.838
48.430
49.225 | B164
B164
B162,B164 | 48620
48685
49175 | D 200.025
d 142.875
d 44.450 | B168
B168
B146 | 6 | 7720
7780
7787 | D 247.650
d 165.100
d 174.625 | B168,B170
B168
B170 | M84249
M84510
M84548 | d 25.400
D 57.150
d 25.400 | | | 42620
42687
42688 | d | 27.000
76.200
76.200 | B158,B160
B158
B158 | 49176
49368
49520 | d 44.450
D 93.662
D 101.600 | B146
B150 | 6 | 7790
7820
7885 | d 177.800
D 266.700
d 190.500 | B170
B170
B170 | M86610
M86643
M86647 | D 64.292
d 25.400
d 28.575 | B138,B140
B138
B138 | | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:C0 | al Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------------------|--|--|-------------------------------------|-----------------------------------|--|---|---------------------------| | M86648 A
M86649
M88010 | $d \\ d \\ D$ | 30.955
30.162
68.262 | B140
B140
B140,B142 | HH221432
HH221434
HH221440 | $egin{matrix} d \\ d \\ d \end{matrix}$ | 87.312
88.900
95.250 | B162
B162
B164 | | M88043
M88046
M88048 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 30.162
31.750
33.338 | B140
B140
B142 | HH221442
HH221447
HH221449 | $egin{array}{c} d \\ d \\ d \end{array}$ | 98.425
99.982
101.600 | B164
B164
B166 | | HM88510 | $egin{array}{c} D \\ d \\ d \end{array}$ | 73.025 | B140,B142 | HH224310 | D | 212.725 | B166 | | HM88542 | | 31.750 | B140 | HH224335 | d | 101.600 | B166 | | HM88547 | | 33.338 | B142 | HH224340 | d | 107.950 | B166 | | HM88610
HM88630
HM88638 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 72.233
25.400
32.000 | B138,B140,B142,B144
B138
B140 | HH224346
M224710
M224748 | $^{d}_{\substack{D\\d}}$ | 114.300
174.625
120.000 | B166
B168
B168 | | HM88648 | $d \\ d \\ D$ | 35.717 | B144 | LL225710 | D | 165.895 | B168 | | HM88649 | | 34.925 | B142 | LL225749 | d | 127.000 | B168 | | HM89410 | | 76.200 | B142,B144 | HM231110 | D | 236.538 | B168 | | HM89411
HM89443
HM89444 | $egin{array}{c} D \\ d \\ d \end{array}$ | 76.200
33.338
33.338 | B142
B142
B142 | HM231140
M236810
M236849 | $egin{matrix} d \\ D \\ d \end{matrix}$ | 146.050
260.350
177.800 | B168
B170
B170 | | HM89446 | $egin{array}{c} d \\ d \\ d \end{array}$ | 34.925 | B142 | LM300811 | D | 68.000 | B144 | | HM89446 A | | 34.925 | B142 | LM300849 | d | 41.000 | B144 | | HM89449 | | 36.512 | B144 | L305610 | D | 80.962 | B150 | | 99100 | D | 254.000 | B168 | L305649 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 50.800 | B150 | | 99550 | d | 139.700 | B168 | JH307710 | | 110.000 | B152 | | 99575 | d | 146.050 | B168 | JH307749 | | 55.000 | B152 | | 99587 | d | 149.225 | B168 | JHM318410 | D | 155.000 | B162 | | 99600 | d | 152.400 | B168 | JHM318448 | d | 90.000 | B162 | | LM102910 | D | 73.431 | B148 | L327210 | D | 177.008 | B168 | | LM102949 | d | 45.242 | B148 | L327249 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 133.350 | B168 | | JLM104910 | D | 82.000 | B150 | LM328410 | | 187.325 | B168 | | LM104911 | D | 82.550 | B150 | LM328448 | | 139.700 | B168 | | LM104911 A
LM104912
LM104947 A | $D \\ D \\ d$ | 82.550
82.931
50.000 | B150
B150
B150 | H414210
H414245
H414249 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 136.525
68.262
71.438 | B156,B158
B156
B158 | | JLM104948 | d | 50.000 | B150 | JH415610 | D | 145.000 | B158 | | LM104949 | d | 50.800 | B150 | JH415647 | d | 75.000 | B158 | | M201011 | D | 73.025 | B144 | LM501310 | D | 73.431 | B144 | | M201047 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 39.688 | B144 | LM501314 | D | 73.431 | B144 | | JM205110 | | 90.000 | B150 | LM501349 | d | 41.275 | B144 | | JM205149 | | 50.000 | B150 | LM503310 | D | 75.000 | B148 | | JM207010 | D | 95.000 | B152 | LM503349 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 46.000 | B148 | | JM207049 | d | 55.000 | B152 | HH506310 | | 114.300 | B150 | | JH211710 | D | 120.000 | B156 | HH506348 | | 49.212 | B150 | | JH211749 | $D \\ D \\ D$ | 65.000 | B156 | JLM506810 | D | 90.000 | B152 | | HM212010 | | 122.238 | B154,B156 | JLM506849 | d | 55.000 | B152 | | HM212011 | | 122.238 | B154,B156 | JLM508710 | D | 95.000 | B154 | | HM212044
HM212046
HM212047 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 60.325
63.500
63.500 | B154
B154
B154 | JLM508748
JM511910
JM511946 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 60.000
110.000
65.000 | B154
B156
B156 | | HM212049 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 66.675 | B156 | JM515610 | D | 130.000 | B160 | | JH217210 | | 150.000 | B162 | JM515649 | d | 80.000 | B160 | | JH217249 | | 85.000 | B162 | HM516410 | D | 133.350 | B160 | | HM218210 | D | 147.000 | B162 | HM516448 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 82.550 | B160 | | HM218248 | d | 90.000 | B162 | JHM516810 | | 140.000 | B162 | | HH221410 | D | 190.500 | B162,B164,B166 | JHM516849 | | 85.000 | B162 | | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------|--|--|----------------| | HM518410 | D | 152.400 | B162 | | HM518445 | d | 88.900 | B162 | | LM522510 | D | 159.987 | B166 | | LM522546 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 107.950 | B166 | | LM522548 | | 109.987 | B166 | | LM522549 | | 109.987 | B166 | | JHM522610 | D | 180.000 | B166 | | JHM522649 | d | 110.000 | B166 | | JHM534110 | D | 230.000 | B170 | | JHM534149 | d | 170.000 | B170 | | LM603011 | D | 77.788 | B148 | | LM603012 | D | 77.788 | B148 | | LM603049 | d | 45.242 | B148 | | L610510 | D | 94.458 | B154 | | L610549 | d | 63.500 | B154 | | JM612910 | D | 115.000 | B158 | | JM612949 | d | 70.000 | B158 | | LM613410 | D | 112.712 | B156 | | LM613449 | $egin{array}{c} d \\ D \\ d \end{array}$ | 69.850 | B156 | | HM617010 | | 142.138 | B162 | | HM617049 | | 85.725 | B162 | | L623110 | D | 152.400 | B166 | | L623149 | d | 114.300 | B166 | | JLM710910 | D | 105.000 | B156 | | JLM710949 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 65.000 | B156 | | JLM714110 | | 115.000 | B158 | | JLM714149 | | 75.000 | B158 | | JM714210 | D | 120.000 | B158 | | JM714249 | d | 75.000 | B158 | | H715311 | D | 136.525 | B154,B156,B158 | | H715334 | $egin{array}{c} d \\ d \\ d \end{array}$ | 61.912 | B154 | | H715340 | | 65.088 | B156 | | H715341 | | 66.675 | B156 | | H715343 | d | 68.262 | B156 | | H715345 | d | 71.438 | B158 | | JM716610 | D | 130.000 | B162 | | JM716648 | d | 85.000 | B162 | | JM716649 | d | 85.000 | B162 | | JM718110 | D | 145.000 | B162 | | JM718149 | $egin{array}{c} d \\ D \\ d \end{array}$ | 90.000 | B162 | | JM719113 | | 150.000 | B164 | | JM719149 | | 95.000 | B164 | | JM720210 | $D \\ D \\ d$ | 155.000 | B164 | | JHM720210 | | 160.000 | B164 | | JM720249 | | 100.000 | B164 | | JHM720249 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 100.000 | B164 | | JL724314 | | 170.000 | B168 | | JL724348 | | 120.000 | B168 | | JL725316 | D | 175.000 | B168 | | JL725346 | d | 125.000 | B168 | | JM734410 | D | 240.000 | B170 | | JM734449 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 170.000 | B170 | | JM738210 | | 260.000 | B170 | | JM738249 | | 190.000 | B170 | | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
ONE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------|--|--|----------------| | HM801310 | D | 82.550 | B144 | | HM801346 | d | 38.100 | B144 | | M802011 | D | 82.550 | B146 | | M802048 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 41.275 | B146 | | HM803110 | | 88.900 | B146 | | HM803145 | | 41.275 | B146 | | HM803146 | $d \\ d \\ D$ | 41.275 | B146 | | HM803149 | | 44.450 | B146 | | M804010 | | 88.900 | B148 | | M804049 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 47.625 | B148 | | HM804810 | | 95.250 | B146,B148,B150 | | HM804840 | | 41.275 | B146 | | HM804843 | $egin{array}{c} d \\ d \\ d \end{array}$ | 44.450 | B148 | | HM804846 | | 47.625 | B148 | | HM804848 | | 48.412 | B150 | | HM804849 | $_{D}^{d}$ | 48.412 | B150 | | HM807010 | | 104.775 | B148,B150 | | HM807011 | | 104.775 | B150 | | JHM807012 | D | 105.000 | B150 | | HM807040 | d | 44.450 | B148 | | HM807044 | d | 49.212 | B150 | | JHM807045 | $d \\ d \\ D$ | 50.000 | B150 | | HM807046 | | 50.800 | B150 | | JLM813010 | | 110.000 | B158 | | JLM813049 | d_D | 70.000 | B158 | | JLM820012 | | 150.000 | B164 | | JLM820048 | | 100.000 | B164 | | JM822010 | D | 165.000 | B166 | | JM822049 | d | 110.000 | B166 | | JHM840410 | D | 300.000 | B170 | | JHM840449 | d_D | 200.000 | B170 | | HM903210 | | 95.250 | B148 | | HM903247 | | 44.450 | B148 | | HM903249 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 44.450 | B148 | | HM911210 | | 130.175 | B152 | | HM911242 | | 53.975 | B152 | | H913810 | $egin{array}{c} D \\ d \\ d \end{array}$ | 146.050 | B154,B156 | | H913842 | | 61.912 | B154 | | H913849 | | 69.850 | B156 | | Worldwi | de Sales Offices and Manufacturi | ng Plants | P: Phone F: Fax C: Country Code Printed in Japan | |------------------------------|--
--------------------------------|--| | NSK LTD. | -HEADQUARTERS, TOKYO, JAPAN
Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan | CHONGQING | Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing, China (400039) | | | INERY BUSINESS DIVISION-HEADQUARTERS P: 03-3779-7227 F: 03-3779-7644 C: 81 | CHENGDU | P:023-8806-5310 F:023-6806-5292 C:86
Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041)
P: 028-8528-3680 F: 028-8528-3690 C: 86 | | | RKET DEPARTMENT
P: 03-3779-7253 F: 03-3779-7644 C: 81
NERY DEPARTMENT | NSK CHINA SA
HEAD OFFICE | ALES CO., LTD. No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) | | | P: 03-3779-7163 F: 03-3779-7644 C: 81 USINESS DEPARTMENT | NSK-WARNER
OFFICE/PLANT | P: 0512-5796-3000 F: 0512-5796-3300 C: 86 (SHANGHAI) CO., LTD. No. 2518 bit upop hong Poad (Meet) Fanayian Dietrict Shanghai China (201401) | | | P: 0466-21-3027 F: 0466-21-3206 C: 81
NESS DIVISION-HEADQUARTERS | | No. 2518 Huancheng Road (West) Fengxian District, Shanghai,China (201401)
P: 021-3365-5757 F: 021-3365-5262 C: 86
N BALL (HANGZHOU) CO., LTD. | | • Africa
South Africa: | P: 03-3779-7189 F: 03-3779-7917 C: 81 | PLANT | No. 189 Hongda Road, Xiaoshan Area of Economic & Technological Development Zone,
Hangzhou, Zhejiang, China (311231) | | NSK SOUTH AF | FRICA (PTY) LTD. 25 Galaxy Avenue, Linbro Business Park, Sandton, Gauteng, P.O. Box 1157, Kelvin, 2054, South Africa P: 011-458-3600 F: 011-458-3608 C: 27 | NSK-YAGI PRE
PLANT | P: 0571-2280-1288 F: 0571-2280-1268 C: 86 ECISION FORGING (ZHANGJIAGANG) CO., LTD. No. 34 Zhenxing Road, Zhangjiagang Economic Development Zone, Zhangjiagang City, Jiangsu, China (215600) | | •Asia and | l Oceania | NSK-WANDA E
OFFICE/PLANT | P:0512-5867-6496 F:0512-5818-0970 C:86
ELECTRIC POWER ASSISTED STEERING SYSTEMS CO.,LTD.
1833 Yatai Road, Wenyan Town, Xiaoshan, Hangzhou, Zhejiang, China (311258) | | NSK AUSTRALI.
MELBOURNE | A PTY, LTD.
11 Dalmore Drive, Scoresby, Victoria 3179, Australia
P: 03-9765-4400 F: 03-9764-8304 C: 61 | SHENYANG NS | P:0571-8231-4818 F:0571-8248-6656 C:86
SK PRECISION CO., LTD. | | SYDNEY | P: 03-9763-4400 F: 03-9764-8304 C: 61
24-28 River Road West, Parramatta, New South Wales 2150, Australia
P: 02-9843-8100 F: 02-9893-8406 C: 61 | OFFICE/PLANT | No. 7, 15 Street, Shenyang Economic & Technological Development Area,
Shenyang, Liaoning, China (110141)
P: 024-2550-5017 F: 024-2532-6081 C: 86 | | BRISBANE | F: 02-9893-8400 F: 02-9893-8400 C: 61
1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia
P: 07-3347-2600 F: 07-3345-5376 C: 61 | SHENYANG NS | SK CO., LTD. | | PERTH | P: 07-3347-2000 F: 07-3349-3370 C: 61
Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia
P: 08-9256-5000 F: 08-9256-1044 C: 61 | OFFICE/PLANT | No. 5, 15 Street, Shenyang Economic & Technological Development Area,
Shenyang, Liaoning, China (110141)
P. 024-252-6080 F: 024-2532-6081 C: 86 | | China:
NSK HONG KO | NG LTD. | India: | | | HONG KONG | Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T,
Kowloon, Hong Kong, China | CHENNAI | EERING SYSTEMS LTD. 14, Rajagopalan Salai, Vallancherry, Guduvancherry, Tamil Nadu-603 202, India | | SHENZHEN | P: 02739-9933 F: 02739-9323 C: 852
Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China | BAWAL | P:044-474-06017 F:044-274-66001 C:91 Plot No.28A, Sector 6, HSIIDC Growth Centre Bawal, District Rewari, Haryana -123 501. India | | KUNSHAN NSK | P: 0755-25904886 F: 0755-25904883 C: 86 CO., LTD. 258 South Huang Pu Jiang Rd., Kunshan Economic & Technical Development | NEK INDIV EVI | P:01284-264281 F:01284-264280 C:91
LES CO.PVT.LTD. | | | Zone, Jiangsu, China (215335)
P: 0512-5771-5654 F: 0512-5771-5689 C: 86 | CHENNAI | 6th Floor, Bannari Amman Towers, No.29 Dr. Radhakrishnan Salai, Mylapore,
Chennai-600 004 Tamil Nadu, India
P.044-2847-9600 F.044-2847-9601 C:91 | | OFFICE/PLANT | K NEEDLE BEARING CO., LTD. No. 66 Dongnan Road, Changshu Southeast Economic Development Zone, Changshu City, Jiangsu, China (215500) P: 0512-9230-1111 F: 0512-5230-0611 C: 86 | GURGAON | Unit No-202, 2nd Floor, Block-A, Iris Tech Park, Sector-48, Gurgaon,
Haryana-122008, India
P:0124-4104-530 F:0124-4104-532 C:91 | | NSK STEERING
OFFICE/PLANT | P: 0512-5230-1111 F: 0512-5230-6011 C: 86 i SYSTEMS DONGGUAN CO., LTD. High-tech Park, Shillong Road, Guanlong Section, Dongguan, Guangdong, China (523119) | KOLKATA | 502, Trinity Towers, 83, Topsia Road, Kolkata-700 046, India
P:033-4001-2062 F:033-4001-2064 C:91 | | | P: 0769-2262-0960 F: 0769-2316-2867 C: 86 G NSK PRECISION MACHINERY CO., LTD. | MUMBAI | 321, 'A' Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (East), Mumbai -400 093, India | | OFFICE/PLANT | No. 34 Zhenxing Road, Zhangjiagang Economic Development Zone, Zhangjiagang City,
Jiangsu, China (215600) | NSK-ABC BEA
OFFICE/PLANT | P:022-2838-7787 F:022-2838-5191 C:91 KRINGS LTD. Plot No.A2, SIPCOT Growth Centre, Oragadam, Mathur Village, Sriperumbudur Taluk, | | SUZHOU NSK E | P: 0512-5867-6496 F: 0512-5818-0970 C: 86
BEARINGS CO., LTD.
No. 22 Taishan Road, Suzhou New District, Jiangsu, China (215129) | | Kancheepuram District, Tamil Nadu-602 105, India
P:044-2714-3000 F:044-2714-3099 C:91 | | NSK (CHINA) R | P: 0512-6665-5666 F: 0512-6665-9138 C: 86
ESEARCH & DEVELOPMENT CO., LTD. | Indonesia:
PT. NSK BEAR | RINGS MANUFACTURING INDONESIA
F Blok M4, Kawasan Berikat MM2100 Industrial Town Cikarang Barat, Bekasi | | JIANGSU | No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: 0512-5796-3000 F: 0512-5796-3300 C: 86 | JANANIA FLANI | 17520, Indonesia
P: 021-898-0155 F: 021-898-0156 C: 62 | | HEAD OFFICE | Al) TRADING CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: 0512-5796-3000 F: 0512-5796-3300 C: 86 | PT. NSK INDOI
JAKARTA | Summitmas II, 6th Floor, Jl. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia | | NSK (CHINA) IN | IVESTMENT CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) | PT. NSK-WARI | P: 021-252-3458 F: 021-252-3223 C: 62
NER INDONESIA | | BEIJING | P: 0512-5796-3000 F: 0512-5796-3300 C: 86 Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District, | BEKASI
Korea: | MM2100 Industrial Town, Cikarang Barat, Bekasi 17520, Indonesia
P: 021-8998-3216 F: 021-8998-3218 C: 62 | | TIAN JIN | Beijing, China (100004)
P: 010-6590-8161 F: 010-6590-8166 C: 86
Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District, | NSK KOREA C
SEOUL | Posco Center (West Wing) 9F, 892, Daechi-4Dong, Kangnam-Ku, Seoul, 135-777, Korea | | TIAN SIN | P: 022-8319-5030 F: 022-8319-5033 C: 86 | CHANGWON
PLANT | P: 02-3287-0300 F: 02-3287-0345 C: 82
60, Seongsan-Dong, Changwon, Kyungsangnam-Do, 642-315, Korea
P: 055-287-8001 F: 055-285-9882 C: 82 | | CHANGCHUN | Room 1001, Building A, Zhongyin Building, 727 Xi'an Road, Changchun, Jilin,
China (130061) | Malavsia: | S (MALAYSIA) SDN. BHD. | | SHENYANG | P: 0431-8898-8682 F: 0431-8898-8670 C: 86 Room 1101, China Resources Building, No. 286 Qingnian Street, Heping District, Shenyang Liaoning, China (110004) P: 024-2334-2688 F: 024-2334-2688 C: 86 | HEAD OFFICE | No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park,
40150 Shah Alam, Selangor, Malaysia
P: 03-7804-8859 F: 03-7806-5982 C: 60 | | DALIAN | P: 024-2334-2868 F: 024-2334-2058 C: 86
Room 1805 Xiwang Tower, No.136 Zhongshan Road,
Zhongshan District, Dallan, Liaoning, China (116001) | PRAI
JOHOR BAHRU | No.36, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia
P: 04-3902275 F: 04-3991830 C: 60
88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia | | NANJING | P: 0411-8800-8168 F: 0411-8800-8160 C: 86
Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing,
Jiangsu, China (210029) | IPOH | 88 Jalan Hos Meran 2717, 1aman Jonor Jaya, 81100 Johor Banru, Jonor, Maiaysia
P: 07-3546290 F: 07-3546291 C: 60
Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia
P: 05-2553000 F: 05-255330 | | FUZHOU | P:025-8472-6671 F:025-8472-6687 C:86
Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road,
Fuzhou, China (350009) | NSK MICRO PI
MALAYSIA PLANT | RECISION (M) SDN. BHD. No.43 Jalan Taming Dua, Taman Taming Jaya 43300 Balakong, Selangor Darul Ehsan, Malaysia | | WUHAN | P: 0591-8380-1030 F: 0591-8380-1225 C: 86
Room 2108, New World International Trade Tower I, No.568 Jianshe Road, Wuhan,
Hubel, China (430000) | New Zealand: | P: 03-8961-3960 F: 03-8961-3968 C: 60 | | QINGDAO | P: 027-8556-9630 F: 027-8556-9615 C: 86
Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District,
Oingdao, Shandong, China (266071) | NSK NEW ZEA
AUCKLAND | 3 Te Apunga Place, Mt. Wellington, Auckland, New Zealand
P: 09-276-4992 F: 09-276-4082 C: 64 | | GUANGZHOU | P: 0532-5568-3877 F: 0532-5568-3876 C: 86
Room 2302, TalKoo Hui Tower 1, No.385 Tianhe Road,
Tianhe District, Guangzhou, China (510620) | NSK REPRESE
MANILA | ENTATIVE OFFICE 8th Floor The Salcedo Towers 169 H.V. dela Costa St., Salcedo Village Makati City, Philippines 1227 | | CHANGSHA | P: 020-3817-7800 F: 020-3788-4501 C: 86
Room 1048, 10/F, Zhongtlan Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005)
P: 0731-8571-3255 C: 86 | Singapore: | P: 02-893-9543 F: 02-893-9173 C: 63 | | LUOYANG | P: 0/31-8571-3100 F: 0/31-8571-3255 C: 86
Room
1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003)
P: 0379-6069-6188 F: 0379-6069-6180 C: 86 | SINGAPORE | TIONAL (SINGAPORE) PTE LTD. 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: 6496-8000 F: 6250-5845 C: 65 | | XI'AN | P: 0379-0009-6188 F: 0379-0009-6180 C: 86
Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi,
China (710068)
P: 029-8765-1896 F: 029-8765-1895 C: 86 | | P: 6496-8000 F: 6250-5845 G: 65 PRE (PRIVATE) LTD. 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: 6496-8000 F: 6250-5845 C: 65 | | | | | | ## **Worldwide Sales Offices and Manufacturing Plants** | TAIWAN NSK I | PRECISION CO., LT | D. | | |--|--|---|--| | TAIPEI | | ng Rd., Jhongshan Distri | ct, Taipei City 104, Taiwan R.O. | | | P: 02-2509-3305 | F: 02-2509-1393 | C: 886 | | TAICHUNG | 107-7, Sec. 3, Wen Xir | ng Rd., Taichung City 40 | 7, Taiwan R.O.C. | | TAINIANI | P: 04-2311-7978 | F: 04-2311-2627 | C: 886 | | TAINAN | 5F. No.8, Daye 1st Hd.
Taiwan R.O.C. | ., Southern Taiwan Scien | ice Park, Tainan City 741, | | | P: 06-505-5861 | F: 06-505-5061 | C: 886 | | TAIMAN NEW | TECHNOLOGY CO. | | 0.800 | | TAIWAN NON | 11E No 87 Song Jian | , LTD.
na Rd. Jhonashan Distri | ct, Taipei City 104, Taiwan R.O. | | 1741 21 | P: 02-2509-3305 | F: 02-2509-1393 | C: 886 | | TAICHUNG | | Junggang Rd., Taichung | | | | P: 04-2358-2945 | F: 04-2358-7682 | C: 886 | | TAINAN | 5F. No.8, Daye 1st Rd. | , Southern Taiwan Scien | ice Park, Tainan City 741, | | | Taiwan R.O.C. | | | | | P: 06-505-5861 | F: 06-505-5061 | C: 886 | | Thailand: | | | | | NSK BEARING | S (THAILAND) CO., | LTD. | | | BANGKOK | | | District, Bangkok 10250, Thaila | | NOV DEADING | P: 02320-2555 | F: 02320-2826 | C: 66 | | OFFICE/PLANT | S MANUFACTURIN | IG (THAILAND) CO. | ., LID.
e, T.Donhualor, A.Muangchonbi | | OI I ICE/FLANT | Chonburi 20000, Thaila | | e, i.poniluaior, A.iviuarigenonbi | | | P: 038-454-010 | F: 038-454-017 | C: 66 | | SIAM NSK STE | ERING SYSTEMS | | 5.50 | | OFFICE/PLANT | 90 Moo 9, Wellgrow In | dustrial Estate, Km.36 B | angna-Trad Rd., Bangwao, | | | Bangpakong, Chachoe | engsao 24180, Thailand | | | | P: 038-522-343 | F: 038-522-351 | C: 66 | | NSK ASIA PAC | IFIC TECHNOLOG | Y CENTRE (THAILA | ND) CO., LTD. | | CHONBURI | 700/430 Moo 7, Amata | Nakorn Industrial Estate | e, T.Donhualor, A.Muangchonbi | | | Chonburi 20000, Thaila | | | | | P: 038-454-631 | F: 038-454-634 | C: 66 | | Vietnam: | | | | | NSK VIETNAM | CO., LTD. | | | | HEAD OFFICE | | 204-205, Thang Long In | dustrial Park, Dong Anh District | | | Hanoi, Vietnam | F: 04-3955-0158 | C: 84 | | NEW DEDDEED | P: 04-3955-0159 | F: U4-3955-U158 | C: 84 | | HO CUI MINU CITY | NTATIVE OFFICE | n Building 225 Dong Kh | oi Street, District 1,HCMC, Vietr | | TIO OTILIVIIIVIT OTITI | P: 08-3822-7907 | F: 08-3822-7910 | C: 84 | | | | | | | | | | | | ●Europe | | | | | NSK EUROPE | LTD. (EUROPEAN I | HEADQUARTERS) | | | NSK EUROPE | Belmont Place, Belmo | nt Road, Maidenhead, B | | | NSK EUROPE
MAIDENHEAD | LTD. (EUROPEAN I
Belmont Place, Belmon
P: 01628-509-800 | HEADQUARTERS)
nt Road, Maidenhead, B
F: 01628-509-808 | erkshire SL6 6TB, U.K.
C: 44 | | NSK EURÖPE
MAIDENHEAD
France: | Belmont Place, Belmon
P: 01628-509-800 | nt Road, Maidenhead, B | | | NSK EUROPE
MAIDENHEAD
France:
NSK FRANCE | Belmont Place, Belmon
P: 01628-509-800
S.A.S. | nt Road, Maidenhead, B
F: 01628-509-808 | C: 44 | | NSK EURÖPE
MAIDENHEAD
France: | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2 | nt Road, Maidenhead, B
F: 01628-509-808
P. Rue Georges Guyneme | C: 44 r, 78283 Guyancourt, France | | NSK EURÖPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS | Belmont Place, Belmon
P: 01628-509-800
S.A.S. | nt Road, Maidenhead, B
F: 01628-509-808 | C: 44 | | NSK EURÖPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany: | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39 | nt Road, Maidenhead, B
F: 01628-509-808
P. Rue Georges Guyneme | C: 44 r, 78283 Guyancourt, France | | NSK EURÖPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany:
NSK DEUTSCH | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39 | nt Road, Maidenhead, B
F: 01628-509-808
Price Georges Guyneme
F: 01-30-57-00-01 | C: 44
r, 78283 Guyancourt, France
C: 33 | | NSK EURÖPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany:
NSK DEUTSCH | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
HLAND GMBH
Harkortstrasse 15, D-4 | nt Road, Maidenhead, B
F: 01628-509-808
P: Rue Georges Guyneme
F: 01-30-57-00-01 | C: 44
#, 78283 Guyancourt, France
C: 33 | | NSK EURÖPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany:
NSK DEUTSCH
HEAD OFFICE | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
ILAND GMBH
Harkortstrasse 15, D-4
P: 02102-4810 | nt Road, Maidenhead, B
F: 01628-509-808
R: Rue Georges Guyneme
F: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 | | NSK EURÖPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany:
NSK DEUTSCH
HEAD OFFICE | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
ILAND GMBH
Harkortstrasse 15, D-4
P: 02102-4810 | nt Road, Maidenhead, B
F: 01628-509-808
P: Rue Georges Guyneme
F: 01-30-57-00-01 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 | | NSK EURÔPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany:
NSK DEUTSCH
HEAD OFFICE
STUTTGART | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
HLAND GMBH
Harkortstrasse 15, D-4
P: 02102-4810
Liebknechtstrasse 33,
P: 0711-79082-0 | nt Road, Maidenhead, B
F: 01628-509-808
P. Rue Georges Guyneme
F: 01-30-57-00-01
00880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-79082-289 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 | | NSK EURÔPE
MAIDENHEAD
France:
NSK FRANCE:
PARIS
Germany:
NSK DEUTSCH
HEAD OFFICE
STUTTGART | Belmont Place, Belmon
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
HLAND GMBH
Harkortstrasse 15, D-4
P: 02102-4810
Liebknechtstrasse 33,
P: 0711-79082-0 | nt Road, Maidenhead, B
F: 01628-509-808
PRUG Georges Guyneme
F: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Vailbu | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 | | NSK EUROPE
MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER | Belmont Place, Belmo
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P:
01-30-57-39-39
HLAND GMBH
Harkortstrasse 15, D-4
P: 02 102-4810
Leicknechtstrasse 33,
P: 0711-79082-0
Heinrich-Nordoff-Strr
P: 05361-27647-10 | nt Road, Maldenhead, B
F: 01628-509-808
P: 01628-509-808
P: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stutgart-Vahil
F: 0711-79082-289
Sse 101, D-38440 Wolfs
F: 05361-27647-70 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 G: 49 G: 49 Urg, Germany C: 49 Urg, Germany C: 49 | | NSK EUROPE
MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER | Belmont Place, Belmo
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
+LAND GMBH
Harkortstrasse 15, D-4
P: 02102-4810
Liebknechtstrasse 33,
P: 0711-79082-0
Heinrich-Nordhoff-Stre
P: 05361-27647-10 | nt Road, Maldenhead, B
F: 01628-509-808
P. Rue Georges Guyneme
F: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Suttgart-Valhi
F: 0711-79082-289
ssse 101, D-38440 Wolfst
F: 05361-27647-70 | C: 44 y, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 burg, Germany C: 49 rmany | | NSK EURÓPE MAIDENHEAD FRANCE: NSK FRANCE: NSK FRANCE: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER OFFICE/PLANT | Belmont Place, Belmo
P: 01628-509-800
S.A.S.
Quartier de l'Europe, 2
P: 01-30-57-39-39
HLAND GMBH
Harkortstrasse 15, D-4
P: 02 102-4810
Leicknechtstrasse 33,
P: 0711-79082-0
Heinrich-Nordoff-Strr
P: 05361-27647-10 | nt Road, Maldenhead, B
F: 01628-509-808
P: 01628-509-808
P: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stutgart-Vahil
F: 0711-79082-289
Sse 101, D-38440 Wolfs
F: 05361-27647-70 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 G: 49 G: 49 Urg, Germany C: 49 Urg, Germany C: 49 | | NSK EURÔPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER' OFFICE/PLANT Italy: | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
P. Rue Georges Guyneme
F: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Suttgart-Valhi
F: 0711-79082-289
ssse 101, D-38440 Wolfst
F: 05361-27647-70 | C: 44 y, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 burg, Germany C: 49 rmany | | NSK EURÓPE MAIDENHEAD FRANCE: NSK FRANCE: PARIS GERMANY: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER' OFFICE/PLANT Italy: NSK ITALIA S.I | Belmont Place, Belmo Processes and Section 19, 101628–509-800 S.A.S. Quartier de l'Europe, 2 Pr. 01-30-57-39-39 HLAND GMBH Hairtortstrasse 15, D-4 Leibeknechtstrasse 33, Pr. 0711-79082-0 Heinrich-Northeff-Strapes 35, 10-30 Pr. 0711-79082-0 Heinrich-Northeff-Strapes 35, 10-30 Pr. 07393-540 Pr. 07393-540 Pr. 07393-540 Pr. 07393-540 Pr. 0. 10 1 | nt Road, Malidenhead, B
F: 01628-509-808
F: 01628-509-808
P: 01-30-5-00-01
10980 Ratingen, German
F: 02102-4812-990
D-70565 Suttgar-1-Valhi
F: 0711-79082-289
ses 101, D-384-01 Wolfs
F: 05361-27647-70
99997 Munderkingen, Ge
F: 07393-5414 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 burg, Germany C: 49 rmany C: 49 | | NSK EURÓPE MAIDENHEAD FRANCE: NSK FRANCE: PARIS GERMANY: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER' OFFICE/PLANT Italy: NSK ITALIA S.I | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
P: 01-30-57-00-01
00880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-7982-289
sase 101, D-38440 Wolfs
F: 05361-2764-70 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 c: 49 c: 49 rmany C: 49 c: 49 | | NSK EURÓPE MAIDENHEAD FRANCE: NSK FRANCE: NSK FRANCE: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO | Belmont Place, Belmo Processes and Section 19, 101628–509-800 S.A.S. Quartier de l'Europe, 2 Pr. 01-30-57-39-39 HLAND GMBH Hairtortstrasse 15, D-4 Leibeknechtstrasse 33, Pr. 0711-79082-0 Heinrich-Northeff-Strapes 35, 10-30 Pr. 0711-79082-0 Heinrich-Northeff-Strapes 35, 10-30 Pr. 07393-540 Pr. 07393-540 Pr. 07393-540 Pr. 07393-540 Pr. 0. 10 1 | nt Road, Malidenhead, B
F: 01628-509-808
F: 01628-509-808
P: 01-30-5-00-01
10980 Ratingen, German
F: 02102-4812-990
D-70565 Suttgar-1-Valhi
F: 0711-79082-289
ses 101, D-384-01 Wolfs
F: 05361-27647-70
99997 Munderkingen, Ge
F: 07393-5414 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 burg, Germany C: 49 rmany C: 49 | | NSK EURÓPE MAIDENHEAD France: NSK FRANCE: NSK FRANCE: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I. MILANO Netherlands: | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
P: 01-30-57-00-01
00880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-7982-289
asse 101, D-38440 Wolfs
F: 07393-5414
bagnate Milanese (Milan
F: 0299-025778 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 c: 49 c: 49 rmany C: 49 c: 49 | | NSK EURÓPE MAIDENHEAD France: NSK FRANCE: NSK FRANCE: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I. MILANO Netherlands: | Belmont Place, Belmo Processes of the Community Co | nt Road, Malidenhead, B
F: 01628-509-808
P: 01528-509-808
P: 01520-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Vahill
F: 0711-79082-299
Sase 101, D-38440 Wotle
F: 05361-2764-70
99597 Munderkingen, Ge
F: 07933-5414 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 C: 49 burg, Germany C: 49 39 | | NSK EURÓPE MAIDENHEAD France: NSK FRANCE: NSK FRANCE: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I. MILANO Netherlands: | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
F: 01628-509-808
P: 01-30-57-00-01
0880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-79082-289
asse 101, D-38440 Wolfs
F: 07393-5414
Dagnate Milanese (Milan
F: 0299-025778
CENTRE B.V. | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 D: 49 C: 49 C: 49 C: 49 D: 20024, Italy C: 39 ds | | NSK EUROPE MAIDENHEAD France: NSK FRANCE: PARIS GERMAN: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE/ | Belmont Place, Belmo Processes of the Community Co | nt Road, Malidenhead, B
F: 01628-509-808
P: 01528-509-808
P: 01520-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Vahill
F: 0711-79082-299
Sase 101, D-38440 Wotle
F: 05361-2764-70
99597 Munderkingen, Ge
F: 07933-5414 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 C: 49 burg, Germany C: 49 39 | | NSK EURÖPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER' OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE/ | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
F: 01630-57-00-01
00880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-79802-289
asse 101, D-38440 Wolfs
F: 05361-27647-70
99597 Munderkingen, Ge
F: 07393-5414 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 D: 49 C: 49 C: 49 C: 49 D: 20024, Italy C: 39 ds | | NSK EURÖPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE Poland: NSK EUROPE | Belmont Place, Belmo Processes of the Pr | nt Road, Malidenhead, B
F: 01628-509-808
P: 01628-509-808
P: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-79082-289
sase 101, D-38440 Wolfs
F: 03581-27647-70
99597 Munderkingen, Ge
F: 0793-5414
Vallagnate Milanese (Milane
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-447648 | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 D: 49 C: 49 C: 49 C: 49 D: 20024, Italy C: 39 ds | | NSK EURÖPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE Poland: NSK EUROPE | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
F: 01628-509-808
2? Rue Georges Guyneme
F: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-79082-289
asse 101, D-38440 Wolfs
F: 05361-27647-70
99597 Munderkingen, Ge
F: 07393-5414
Dagnate Milanese (Milant
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-4647648
TIVE OFFICE | C: 44 r, 78283 Guyancourt, France C: 33 y C: 49 ngen, Germany C: 49 D: 49 C: 49 C: 49 C: 49 D: 20024, Italy C: 39 ds | | NSK EUROPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE Poland: NSK EUROPE WARSAW | Belmont Place, Belmo Place, Belmo Place, Belmo P: 01628-509-800 S.A.S. Quartier de l'Europe, 2, P: 01-30-57-39-39 **LAND GMBH** Harkortstrasse 15, D-4 P: 02102-481-81 Liebknechtstrasse 33, P: 0211-79367-10 Heinrich-Nordhoff-Strape, 0361-27497-10 **TGUNG GMBH** Enlinger Strasse 5, D-8 P: 07393-340 Vis Garrbaldi 215, Gart P: 0299-5191 AN DISTRIBUTION. De Kroonstraat 38, 50-P: 013-4647647-1 U. Migdalowa 4/73, 02 LTD. REPRESENT4 UI. Migdalowa 4/73, 02 **LTD. REPRESENT4** LTD. REPRESENT4* | nt Road, Malidenhead, B
F: 01628-509-808
P: 01628-509-808
P: 01-30-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F:
0711-79082-289
sase 101, D-38440 Wolfs
F: 03581-27647-70
99597 Munderkingen, Ge
F: 0793-5414
Vallagnate Milanese (Milane
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-447648 | C: 44 r, 78283 Guyancourt, France C: 33 Y C: 49 ngen. Germany C: 49 D: 49 C: 39 | | NSK EURÖPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Poland: NSK EUROPE/ Poland: NSK EUROPE MARSAW NSK BEARING | Belmont Place, Belmo Processes of the Pr | nt Road, Maldenhead, B
F: 01628-509-808
F: 01630-57-00-01
00880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhi
F: 0711-7982-289
asse 101, D-38440 Wolfs
F: 07393-5414
bagnate Milanese (Milant
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-4647648
TIVE OFFICE | C: 44 r, 78283 Guyancourt, France C: 33 Y C: 49 ngen. Germany C: 49 D: 49 C: 39 | | NSK EUROPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCHEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER: OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE Poland: NSK EUROPE WARSAW | Belmont Place, Belmo Place, Belmo Place, Belmo P: 01628-509-800 S.A.S. Quartier de l'Europe, 2, P: 01-30-57-39-39 **LAND GMBH** Harkortstrasse 15, D-4 P: 02102-481-81 Liebknechtstrasse 33, P: 0211-79367-10 Heinrich-Nordhoff-Strape, 0361-27497-10 **TGUNG GMBH** Enlinger Strasse 5, D-8 P: 07393-340 Vis Garrbaldi 215, Gart P: 0299-5191 AN DISTRIBUTION. De Kroonstraat 38, 50-P: 013-4647647-1 U. Migdalowa 4/73, 02 LTD. REPRESENT4 UI. Migdalowa 4/73, 02 **LTD. REPRESENT4** LTD. REPRESENT4* | nt Road, Maldenhead, B
F: 01628-509-808
F: 01630-57-00-01
00880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhi
F: 0711-7982-289
asse 101, D-38440 Wolfs
F: 07393-5414
bagnate Milanese (Milant
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-4647648
TIVE OFFICE | C: 44 r, 78283 Guyancourt, France C: 33 Y C: 49 ngen. Germany C: 49 D: 49 C: 39 | | NSK EUROPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE/ Poland: NSK EUROPE WARSAW NSK BEARING OFFICE/PLANT | Belmont Place, Belmo Picote Belmont Place, Belmo P: 01628-509-800 S.A.S. Quartier de l'Europe, 2 P: 01-30-57-39-39 HLAND GMBH Harkortstrasse 15, D-4 P: 02102-481 Liebknechtstrasse 31, D-7 P: 02102-481 Liebknechtstrasse 31, D-8 P: 0711-79082-0 Helinich-Nordhoff-Str P: 05361-27647-10 TIGUNG GMBH Ehinger Strasse 5, D-8 P: 07393-540 P.A. Via Garibaldi 215, Gart P: 0299-5191 AN DISTRIBUTION De Kroonstraat 38, 50- P: 013-4647647 LTD. REPRESENT U. Migdalowa 4/73, 02 P: 022-645-1525 S POLSKA S.A. Ul. Jagiellonska 109, 2 P: 041-366-5001 | nt Road, Malidenhead, B
F: 01628-509-808
F: 01630-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-7982-289
asse 101, D-38440 Wolfs
F: 05361-27647-70
9997 Munderkingen, Ge
F: 07393-5414
0agnate Milanese (Milant
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-4647648
TIVE OFFICE
2796, Warsaw, Poland
F: 022-645-1529
5-734 Kielce, Poland
F: 041-367-0500 | C: 44 r, 78283 Guyancourt, France C: 33 Y C: 49 ngen, Germany C: 49 Usurg, Germany C: 49 48 | | NSK EUROPE MAIDENHEAD France: NSK FRANCE: PARIS Germany: NSK DEUTSCH HEAD OFFICE STUTTGART WOLFSBURG NEUWEG FER OFFICE/PLANT Italy: NSK ITALIA S.I MILANO Netherlands: NSK EUROPE/ Poland: NSK EUROPE WARSAW NSK BEARING OFFICE/PLANT | Belmont Place, Belmo Processes of the Pr | nt Road, Malidenhead, B
F: 01628-509-808
F: 01630-57-00-01
10880 Ratingen, German
F: 02102-4812-290
D-70565 Stuttgart-Valhin
F: 0711-7982-289
asse 101, D-38440 Wolfs
F: 05361-27647-70
9997 Munderkingen, Ge
F: 07393-5414
0agnate Milanese (Milant
F: 0299-025778
CENTRE B.V.
48 AP Tilburg, Netherlan
F: 013-4647648
TIVE OFFICE
2796, Warsaw, Poland
F: 022-645-1529
5-734 Kielce, Poland
F: 041-367-0500 | C: 44 r, 78283 Guyancourt, France C: 33 Y C: 49 ngen, Germany C: 49 Usurg, Germany C: 49 48 | OFFICE/PLANT UL. Jagiellonska 109, 25-734 Kielce, Poland P: 041-345-2469 F: 041-345-0361 NSK POLSKA SP.Z 0.0. KIELCE UI. Karczowkowska 41, 25-711 Kielce, Poland P: 041-347-5110 F: 041-347-5101 Turkey: NSK RULMANLARI ORTA DOGU TIC. LTD. STI. ISTANBUL 19 Mayis Mah. Ataturk Cad. Ulya Engin Is Merkezi No. 68 Kat. 6, Kozyatagi 34734, Istanbul, Turkey P: 0216-355-0398 F: 0216-355-0399 C: 90 | PETERLEE | 3 Brindley Road, South West Industrial Estate, Peterlee, Co. Durham SR8 2JD, U | |-------------------------------------|--| | PLANT
NEWARK | P: 0191-586-6111 F: 0191-586-3482 C: 44
Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. | | PLANT | P: 01636-605-123 F: 01636-605-000 C: 44 | | NSK EUROPEA | IN TECHNOLOGY CENTRE | | NEWARK | Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
P: 01636-605-123 F: 01636-643-241 C: 44 | | NSK UK LTD. | 1.01030-003-123 | | NEWARK | Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. | | | P: 01636-605-123 F: 01636-605-000 C: 44 | | North ar | nd South America | | NSK AMERICA | S, INC. (AMERICAN HEADQUARTERS) | | ANN ARBOR | 4200 Goss Road, Ann Arbor, Michigan 48105, Ú.S.A.
P: 734-913-7500 F: 734-913-7511 C: 1 | | Argentina: | P: /34-913-/500 F: /34-913-/511 C: 1 | | NSK ARGENTII | NA SRL | | BUENOS AIRES | Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina
P: 11-4704-5100 F: 11-4704-0033 C: 54 | | Brazil: | P: 11-4704-5100 F: 11-4704-0033 C: 54 | | NSK BRASIL L' | TDA. | | HEAD OFFICE | Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Br | | SUZANO PLANT | P: 011-3269-4786 F: 011-3269-4720 C: 55 Av. Vereador Joao Batista Fitipaldi, 66, CEP 08685-000, Vila Maluf, Suzano, SP, Bri | | SUZANO PLANT | Av. Vereador Joao Batista Fitipaldi, 66, GEP 08685-000, Vila Maiur, Suzano, SP, Bra
P: 011-4744-2527 F: 011-4744-2529 C: 55 | | BELO HORIZONTE | Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil | | | 30150-311 | | IOINVII I F | P: 031-3274-2591 F: 031-3273-4408 C: 55
Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250 | | JOHANIEEE | P: 047-3422-5445 F: 047-3422-2817 C: 55 | | PORTO ALEGRE | Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 0 | | RECIFE | P: 051-3222-1324 F: 051-3222-2599 C: 55 Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020- | | TECIFE | P: 081-3326-3781 F: 081-3326-5047 C: 55 | | Peru: | | | NSK PERU S.A | .C. | | LIMA | Av. Caminos del Inca 670, Ofic : # 402, Santiago del Surco, Lima, Perú
P: 01-652-3372 F: 01-638-0555 C: 51 | | Canada: | 1.01 002 0072 | | NSK CANADA | INC. | | HEAD OFFICE | 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4
P: 905-890-0740 F: 800-800-2788 C: 1 | | TORONTO | 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4 | | | P: 877-994-6675 F: 800-800-2788 C: 1 | | JONTREAL | 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 | | /ANCOUVER | P: 514-633-1220 F: 800-800-2788 C: 1
3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4 | | ANOGOVEN | P: 877-994-6675 F: 800-800-2788 C: 1 | | Mexico: | | | NSK RODAMIE
MEXICO CITY | NTOS MEXICANA, S.A. DE C.V. Av. Presidente Juarez No.2007 Lote 5, Col. San Jeronimo Tepetlacalco, | | VIEXICO CITT | Tialnepantia, Estado de Mexico, Mexico, C.P.54090 | | | P: 55-3682-2900 F: 55-3682-2937 C: 52 | | MONTERREY | Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa | | | Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267
P: 81-8000-7300 F: 81-8000-7095 C: 52 | | United States of | | | NSK CORPORA | ATION | | HEAD OFFICE | 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
P: 734-913-7500 F: 734-913-7511 C: 1 | | NSK AMERICAN | 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. | | | P: 734-913-7500 F: 734-913-7511 C: 1 | | CLARINDA PLANT | 1100 N. First Street, Clarinda, Iowa 51632, U.S.A. | | FRANKLIN PLANT | P: 712-542-5121 F: 712-542-4905 C: 1
3400 Bearing Drive, Franklin, Indiana 46131, U.S.A. | | FRANKLIN FLAINT | P: 317-738-5000 F: 317-738-5064 C: 1 | | LIBERTY PLANT | 1112 East Kitchel Road, Liberty, Indiana 47353, U.S.A. | | | P: 765-458-5000 F: 765-458-7832 C: 1 | | NSK PRECISIO
OFFICE/PLANT | N AMERICA, INC.
3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. | | OFFICE/FLAINT | P: 317-738-5000 F: 317-738-5050 C: 1 | | SAN JOSE | 780 Montague Expressway, Suite 508, San Jose, California 95131, U.S.A. | | | P: 408-944-9400 F: 408-944-9405 C: 1 | | NSK STEERING
OFFICE/PLANT | S SYSTEMS AMERICA, INC.
110 Shields Drive, Bennington, Vermont 05201, U.S.A. | | O. HOLFLANI | P: 802-442-5448 F: 802-442-2253 C: 1 | | DYERSBURG PLANT | 2962 Fort Hudson Road, Dyersburg, TN 38024, U.S.A. | | ANN ADDOD | P: 731-288-3000 F: 731-288-3001 C: 1 | | ANN ARBOR | 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
P: 734-913-7500 F: 734-913-7102 C: 1 | | NSK-WARNER | | | TROY | 3001 West Big Beaver Road, Suite 701, Troy, Michigan 48084, U.S.A. | | | P: 248-822-8888 F: 248-822-1111 C: 1 | | | | NSK LATIN AMERICA, INC. MIAMI 2500 NW 107th Avenue, Suite 300, Miami, Florida 33172, U.S.A. P: 305-477-0805 F: 305-477-0377 C: 1 United Kingdom: NSK BEARINGS EUROPE LTD. P: Phone F: Fax C: Country Code Printed in Japan <As of June 2012> For the latest information, please refer to the NSK website. NSK Ltd. has a basic policy not to export any products or technology designated as controlled Items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and
without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or onisions. We will grades acknowledge any additions or corrections.